Header menu link for other important links
Surface Activities of a Lipid Analogue Room-Temperature Ionic Liquid and Its Effects on Phospholipid Membrane
Mitra S., Das R., Singh A., Mukhopadhyay M.K., Roy G.,
Published in American Chemical Society
PMID: 31826620
Volume: 36
Issue: 1
Pages: 328 - 339
There are great efforts of synthesizing imidazolium-based ionic liquids (ILs) for developing new antibiotics as these molecules have shown strong antibacterial activities. Compared to a single-hydrocarbon-chained IL, the lipid analogues (LAs) with two chains are more effective. In the present study, the LA molecule MeIm(COOH)Me(Oleylamine)Iodide has been synthesized and its surface activities along with the effectiveness in restructuring of a model cellular membrane have been quantified. The molecule is found to be highly surface active as estimated from the area-pressure isotherm of a monolayer of the molecules formed at the air-water interface. The X-ray reflectivity (XRR) studies of a monolayer dip-coated on a hydrophilic substrate have shown the structural properties of the layer which resembles to those of unsaturated phospholipids. The LA molecules are observed to fluidize a phospholipid bilayer formed by the saturated lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). At a lower surface pressure, the lipid monolayer of DPPC has exhibited a thickening effect at a low concentration of added LA and a thinning effect at higher concentration. However, at a high surface pressure of the monolayer, the thickness is found to decrease monotonically. The in-plane pressure-dependent interaction of LA molecules with model cellular membrane and the corresponding perturbation in the structure and physical properties of the membrane may be linked to the strong lysing effect of these types of molecules. © 2019 American Chemical Society.
About the journal
Published in American Chemical Society
Open Access
Impact factor