In this manuscript, higher-order Orbital Angular Momentum (OAM) modes and parameters affecting vortex in the radiation pattern have been studied. A uniform circular array resonating at 10 GHz frequency is formed using eight identical rectangular patch antennas. Three uniform circular arrays are analyzed, simulated, and fabricated for OAM modes 0, +1, and-1 respectively. The higher-order OAM modes ±2, ±3, and ±4 are simulated and their effects on radiation and phase pattern are discussed. The effect of number of antenna elements and radius of the circular array on the phase purity of higher order OAM modes is presented. The results of simulated radiation patterns and phase front are well satisfying the generation of OAM modes. The measured results show a close agreement with the simulated result. © 2020, Iran University of Science and Technology. All rights reserved.