In the present work, an investigation has been performed on a rigid rotor supported by two-lobe journal bearings operating with a non-Newtonian lubricant. The governing Reynolds equation for pressure field is solved by using non-linear finite element method. Further to study the dynamic stability of the bearing system, governing equation of motion for the rotor position is solved by fourth order Runge–Kutta method. Bifurcation and Poincaré maps of two-lobe bearings are presented for different values of the non-Newtonian parameter and bearing ellipticity ratio. The numerical results illustrate that the ellipticity of a bearing with a dilatant lubricant improve the stability of the rotordynamic system. © IMechE 2018.