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Stability analysis of a rigid rotor
supported by two-lobe hydrodynamic
journal bearings operating with
a non-Newtonian lubricant
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Abstract

In the present work, an investigation has been performed on a rigid rotor supported by two-lobe journal bearings

operating with a non-Newtonian lubricant. The governing Reynolds equation for pressure field is solved by using non-

linear finite element method. Further to study the dynamic stability of the bearing system, governing equation of motion

for the rotor position is solved by fourth order Runge–Kutta method. Bifurcation and Poincaré maps of two-lobe

bearings are presented for different values of the non-Newtonian parameter and bearing ellipticity ratio. The numerical

results illustrate that the ellipticity of a bearing with a dilatant lubricant improve the stability of the rotordynamic system.
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Introduction

The performance of a rotating machine mainly

depends upon the performance of the bearing system.

Hydrodynamic journal bearings are widely used in dif-

ferent rotatory machineries in industries due to its

inherent characteristics to avoid direct metal-to-metal

contact and support heavy load in rotating machines

with lesser friction. Hydrodynamic journal bearings

not only support heavy load but also provide high

value of stiffness and damping coefficient to rotor

system. Damping and stiffness of these bearings

mainly depend on the fluid film profile of the bearing

and behavior of the lubricant. Damping and stiffness

coefficients of the bearing play a key role in the

dynamic response of a rotor. Therefore, it is necessary

to investigate the dynamic performance of the bearing

and its influence on the behavior of a machine.

Generally, rotor bearing systems experience unba-

lanced harmonic force due to eccentricity, unbalance

mass, misalignment of rotational masses and manu-

facturing errors. Such repeating harmonic forces

result in chaotic motion of journal and make the

machine unsafe and unstable. Hence, it becomes obvi-

ous to investigate the dynamic behavior of machine

under such conditions.

In the past, various studies1–4 have been conducted

to analyze the dynamic response of the bearing.

Adileta et al.1 presented the effect of bearing condi-

tions that gives rise to chaotic motion in a bearing.

They theoretically analyzed the chaotic motion by

using the numerical integration of equation of

motion. Bifurcation plot were presented to visually

analyze the dynamic behavior of a bearing for the

applied condition.2,3 They performed a number of

numerical trials to find the system’s chaotic responses.

They also compared the theoretical results with the

experimental data. Wang and Chen4 performed the

study on the dynamic analysis of a rotor bearing
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supported by the aerodynamic gas film bearing.

Their results indicate that rotor mass and rotational

velocity significantly influence the dynamic behavior

of the rotor system. They presented journal trajec-

tories, power spectra, Poincare map and bifurcation

map. Jian and Chens5 presented the bifurcation

and chaos study of a flexible rotor bearing system.

Their study illustrates that the dynamic study of the

system includes 2T-periodic, quasi-periodic and cha-

otic motions. They also discussed the existence of a

complex rotordynamic behavior indicating periodic

and sub-harmonic responses of the rotor center.

Wang et al.6 studied the gas journal bearing sys-

tem with herringbone-grooved by considering a rigid

rotor6 and a flexible rotor.7,8 Their study illustrates

the complex dynamic behavior of the rotor bearing

system indicating periodic and quasi-periodic

responses. Yang et al.9 presented a new nonlinear

dynamic analysis method of rotor system. They used

second order approximation to evaluate the oil film

stiffness and damping coefficients of the bearings.

They presented nonlinear dynamic performance of a

symmetrical flexible rotor-bearing system via the jour-

nal orbit and Poincaré map. Chen and Yau10 studied

the chaos in the flexible rotor supported by the oil film

bearing by using fractal dimension concept. They sug-

gested that the critical fluid film-bearing system oper-

ate in a chaotic region. Piekos11 simulated the gas

lubricated journal bearings for microfabricated

machines by using orbit formulation method. They

developed two numerical tools for orbit formulation.

Non-linear bifurcation theory was used to predict

stable or unstable periodic oscillations close to the

critical speed. Chouchane and Amamou12 applied

numerical continuation to obtain stable or unstable

limit cycles bifurcation from the equilibrium point at

the critical speed.

Weimin et al.13 presented a numerical method to

compute the linear dynamic coefficient of journal

bearings by using partial derivative method. They

applied a small perturbation method on the oil film

thickness which results in perturbation of the oil film

pressure. By using a dynamic oil film pressure, they

computed static and dynamic coefficients of the oil

film journal bearing.

The dynamic response of the bearing strongly

depends upon the fluid film pressure distribution

and fluid film distribution significantly depends on

the circularity of bearing. Therefore, various analyses

have been performed on the noncircular bearing.14,15

Meybodi et al.14 used finite element method to solve

Reynolds equation and fourth order Runge–Kutta

method was used to solve dynamic equations. They

illustrated the nonlinear dynamic behavior of the

system by using periodic, KT-periodic and quasi-per-

iodic responses of the rotor center.

To enhance lubricating performance, certain types

of additives are generally blended with the lubricant.

The addition of additives significantly affects the

behavior of the lubricant and the lubricant no longer

follow the Newton law of viscosity.16,17 The additized

lubricant are usually modeled by power law lubricant.

Therefore, several studies carried out to study the influ-

ence of non-Newtonian power law lubricant on the

dynamic response of the bearing system. Sharma and

Yadav18 studied that nonlinear behavior on the

dynamic performance of hydrostatic/hybrid thrust

bearing. They considered pseudo-plastic and dilatant

behavior of the lubricant for their analysis. Sharma

and Kushare17 investigated the nonlinear behavior of

the lubricant for a two-lobe hydrostatic journal bearing

operating with the non-Newtonian lubricant. Their

study indicates that a judicious selection of surface

roughness and bearing geometry is essential for the

stability of the bearing system.

From the study of the available literature on rotor

bearing systems, it is found that no study shows the

combined influence of offset factor and non-

Newtonian nature of the lubricant on the dynamics

of the system. Therefore, the present study is aimed to

investigate the influence of a non-Newtonian lubri-

cant on the dynamic response of rotors supported

by two-lobe bearings as shown in Figure 1(a).

The present study indicates that bearing behavior is

basically depending on the four parameters viz. jour-

nal speed, fluid film thickness profile, journal mass

and non-Newtonian parameter. The bifurcation dia-

grams are plotted by taking mass and journal speed as

system variables. It is expected that result will contrib-

ute significant advancement in the development of the

rotor bearing system having a non-Newtonian

lubricant.

Analysis

The analysis of a two-lobe fluid film bearing operating

with non-Newtonian lubricants performed with the

following assumptions:

1. Lubricant in the bearing clearance is assumed to

be isothermal. Temperature in the fluid film bear-

ing is constant.

2. The non-Newtonian behavior of the lubricant is

modeled by using power law model of the

lubricant.

3. The side leakage of the flow is negligible.

The governing Reynolds equation in a non-dimen-

sional form for the non-Newtonian lubricant in the

clearance space of a two-lobe bearing in Figure 1(b) is

written as follows16,17,19–22

@

@�
�h
3
�F2g

@ �p

@�

� �

þ
@

@�
�h
3
�F2g

@ �p

@�

� �

¼ �cav
�U 1�

F1

F0

� �

@ �h

@�
þ acav

@ �h

@�

ð1Þ

2 Proc IMechE Part J: J Engineering Tribology 0(0)



where the non-dimensional parameters are �p ¼ p
ps
,

�h ¼ h
Cr
, �u ¼ R!

Pa

R
C

� �2
, � ¼ x

R
, � ¼ y

R
, � ¼ !t.

where �F0, �F1 and �F2 are the cross apparent viscosity

integrals used for the non-Newtonian lubricant. The

computation of these integral is carried out as follows

�F0 ¼

Z 1

0

1

��
d �z, �F1 ¼

Z 1

0

�z

��
d �z,

�F2 ¼

Z 1

0

�z
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�z�

�F1

�F0

� �

d �z

ð2aÞ

In this work, power law model of a lubricant is used

to obtain the shear stress and shear strain relationship

and it is mathematically represented as follows16,23

�� ¼ _�
� �k

ð2bÞ

Fluid film thickness

The fluid film thickness of a two-lobe bearing is cal-

culated by using following expression17,24

�h ¼ 1� �xj � �xl
� �

sin �ð Þ � �zj � �zl
� �

cos �ð Þ

þ 1�
1

�

� �

cos � � �kl
� � ð3Þ

where �xl, �zl are the coordinate of the lobe centre and

�kl is the lobe angle.

Finite element analysis

To obtain the stiffness and damping coefficient for the

two-lobe bearing solution of Reynolds equation is

required but the solution of Reynolds of a non-

Newtonian lubricant cannot be done by using close

form solution. Therefore, a nonlinear finite element

method (FEM) has been implemented in the present

work to compute stiffness and damping coefficient of

the rotor bearing system. The finite element discret-

ization of the fluid film domain in unwrapped and

wrapped forms is indicated in Figure 2(a) and (b),

respectively. The fluid film pressure variation over

an element is computed as25,26

�p ¼
X

ne
l

j¼1

pjNj ð4Þ

Applying the orthogonality conditions of

Gallerkin’s technique of FEM, the following finite

element matrix is obtained.27

�Fij

� �e
�p

� 	e
¼ �Qi

� 	e
þ� �RHi

� 	e
þ _XJ

�RXJi

� 	e
þ _Zj

�RZJi

� 	e

ð5Þ

Global system of equation for Reynolds equation

is expressed as28
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� �
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� 	
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� 	
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Figure 1. Schematic diagram of (a) rotor bearing system and (b) two-lobe journal bearing.
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Bearing performance parameter

To evaluate the dynamic performance of bearing, the

computation of the fluid film stiffness and damping

coefficient is required. The fluid film stiffness and

damping coefficient of a two-lobe journal bearing

are computed as following.29

Fluid film stiffness coefficients. The fluid film stiffness

coefficients are calculated as

Sij ¼ �
@ �Fi

@qj
i ¼ x, zð Þ ð7Þ

where ‘‘i’’ represents the direction of force and qj rep-

resents the displacement of journal center coordinate

( �xj or �zj).

The four components of stiffness and damping

coefficient are computed as follows

�Sxx ¼ �
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¼ �
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0
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@ �xj
sin�d�d� ð8bÞ

�Sxz ¼ �
@ �Frx

@ �zj
¼ �

Z 1

�1

Z 2	

0

@ �p

@ �zj
cos�d�d� ð8cÞ

�Szz ¼ �
@ �Frz

@ �zj
¼ �

Z 1

�1

Z 2	

0

@ �p

@ �zj
sin�d�d� ð8dÞ

Fluid film damping coefficients. The fluid film damping

coefficients are defined as

Cij ¼ �
@ �Fi

@ _qj
i ¼ x, zð Þ ð9Þ

_qj represents the velocity component of journal center

in _xj or _zj directions.
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Figure 2. Finite element mesh of two-lobe hydrodynamic journal bearing (a) unwrapped surface, (b) (wrapped surface).
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The components of damping coefficient matrix are

computed as

�Cxx ¼ �
@ �Frx

@ _xj
¼ �

Z 1
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0

@ �p

@ _xj
cos�d�d� ð10aÞ
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Boundary conditions

The boundary conditions are suitably applied in the

bearing model on the basis of available study in the

literature.

1. To avoid cavitation, the Reynolds boundary con-

ditions have been used �p ¼ @ �p
@�
¼ 0

� �

.

2. All the nodes lying on the external boundary has

been assigned zero relative pressure with respect to

atmospheric pressure ðpBoundary¼�1 ¼ 0).

Dynamic stability analysis

The following assumptions are considered to analyze

the dynamics of a rotor bearing system.

i. The rotor mass and bearing mass are lumped at

the midpoint.

ii. The effect of axial and torsional vibrations is

negligible.

iii. Shaft and rotor disk is considered as massless.

iv. The rotor, bearing and the support of bearing are

radially symmetric.

The governing equation of motion for the rotor

bearing system is expressed in equation (11). The

behavior of equation of motion is nonlinear; there-

fore, equation (11) for a small time step (�t) is

expressed as30

Mr


 �

�€XJ

n o

þ C


 �

�_XJ

n o

þ S


 �

XJ

� 

¼ �Fr

� �

ð11Þ

The above equation of motion can be written in

matrix form as
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0 �Mr

" #
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þ
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¼
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( )
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To solve the above equation, state space model has

been developed. Further developed state space model

has been solved by using fourth order Rung–Kutta

method.31
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ð13Þ

These are computed as

_X ¼ fðXÞ ð14aÞ

k1 ¼ fðXiÞ ð14bÞ

k2 ¼ f Xi þ k1 �
�t

2

� �

ð14cÞ

k3 ¼ f Xi þ k2 �
�t

2

� �

ð14dÞ

k4 ¼ f Xi þ k3 ��tð Þ ð14eÞ

After computing coefficients k1, k2, k3 and k4, the

updated positions and journal centre velocities are

calculated as

Xiþ1 ¼ Xi þ
k1 þ 2k2 þ 2k3 þ k4

6

� �

��t ð15Þ

The parameter Xi is used to plot trajectory, chaotic

diagram and bifurcation plots from the solution.

Solution scheme

Implementation of the above solution requires an

iterative procedure, because the viscosity of a non-

Newtonian lubricant cannot be computed. Therefore,

a solution scheme has been built to get the bifurcation

map and chaotic motion of bearing. The solution pro-

cedure shown in Figure 3 has been implemented in the

following steps.

1. Mesh generation of fluid domain in four node

elements as shown in Figure 2.

2. Initialization of all initial conditions of the fluid

film pressure and fluid film derivative.

3. For values of the fluid film pressure, fluid film

pressure derivative with respect to _xj, _zj and fluid

film pressure derivative with respect to xj, zj are

initialized.

4. Generation of gauss points in elemental domain

for the integration of equations (8) and (9).

Yadav et al. 5



Input bearing Mesh, Initial Condition and initialize the 

variables

Compute          

and    

Compute pressure gradient 

Compute elemental and global 

matrices by FEM

Apply Boundary Conditions and 

Calculate pressure by FEM

Check Equilibrium 

Position

Calculate Fluid Film reaction, Fluid 

Film stiffness and Fluid Film Damping 

0F
1,F

2F

YES

Apply JFO Condition

NO

Compute apparent 

viscosity

Compute Stiffness, 

Damping

Apply Rung Kutta method in 

equation 12

Figure 3. Solution algorithm flow chart.
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5. Assemble element matrix into global system of

equation.

6. Apply boundary condition in the global system of

equation for pressure.

7. Applying Newton Raphson method, the fluid film

pressure matrix is computed by solving the linear-

ized system of equation.

8. Update the new pressure by taking the weighted

average as follows

�p
� 	

new
¼ 1� wð Þ �p

� 	

old
þ w �p

� 	

Computed
ð16Þ

where w is weighted average and it has the value

between 0 and 1.

9. Check the convergence of the fluid film pressure

and journal center position.

10. Check the following convergence criteria for equi-

librium position

�xj
� �

iþ1
� �xj
� �

i

� �2

þ �zj
� �

iþ1
� �zj
� �

i

� �2
� �

�xj
� �2

iþ1
þ �zj
� �2

iþ1

5 0:0001

ð17Þ

11. Compute stiffness and damping coefficient by

using the derivative of fluid film pressure deriva-

tive with respect to _xj, _zj and fluid film pressure

derivative with respect to �xj, �zj.

12. Once, all the convergence criteria are satisfied,

program finalizes the solution for an unknown

fluid film pressure field.

13. Apply Rung–Kutta method for next time step and

go to step 4.

14. Plot the bifurcation diagram, Poincare map of the

motion.

Results and discussion

On the basis of the mathematical analysis and solution

procedure discussed in earlier sections, a MATLAB

program has been developed to examine the dynamic

response of a rotor supported by a two-lobe bearing

operating with power law lubricant. To authenticate

the methodology adopted, the present results have

been compared for the circular bearing and two-lobe

bearing operating with a Newtonian lubricant. Table 1

indicates a comparison of results of the circular bearing

with published results by Rehmatabadi et al.32 for the

chosen values of bearing operating and geometric par-

ameter. A good agreement between the present and the

published results may be observed from Table 1.

The maximum error in the obtained results and the

published results is 3.58%. Further, the present results

are validated for the two-lobe bearing having twin

groove used by Lund and Thomson33,34 as indicated

in Table 2. The maximum error observed in the simu-

lated results is 5%. To get the confidence with finite

element mesh, a convergence study has been performed

by using finite element mesh. In Figure 4, eccentricity

has been plotted as a function of load. The result of

finite element converges as we increase the mesh size.

The results show that 900 nodes in finite element pro-

duce results with good accuracy. Figure 5 shows the

Table 1. The present result and Rehmatabadi et al.32

Eccentricity

ratio

Present result

(load carrying

capacity)

Multiplication

factor

Present result

with multiplication

factor (load carrying

capacity)

Rehmatabadi et al.32

(load carrying

capacity) % Error

0.1 0.52 0.5 0.26 0.251 3.586

0.2 1.011 0.5 0.5055 0.501 0.898

0.4 2.36 0.5 1.18 1.175 0.426

0.6 5.058 0.5 2.529 2.54 0.433

0.8 13.136 0.5 6.168 6.152 0.260

0.9 28.963 0.5 14.4815 15.045 0.422

Table 2. The present result and Lund and Thomson.33,34

Parameter

Present

work

Lund and

Thomson30,31

Eccentricity "0ð Þ 0.10544 0.100

Fluid film stiffness
�Sxx
�Fz

� �

0.4126 0.24

Fluid film stiffness
�Sxz
�Fz

� �

10.5601 10.79

Fluid film stiffness
�Szx
�Fz

� �

�11.002 �11.25

Fluid film stiffness
�Szz
�Fz

� �

18.5067 18.93

Fluid film damping
�Cxx

�Fz

� �

9.4136 9.40

Fluid film damping
�Cxz

�Fz

� �

12.8750 12.97

Fluid film damping
�Czx

�Fz

� �

12.9862 12.97

Fluid film damping
�Czz

�Fz

� �

37.1336 38.73
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variation of the fluid film stiffness coefficient with

applied load.

In order to examine the dynamic behavior of a

rotor bearing system, the dynamic trajectories of jour-

nal center plotted. These trajectories enable to distin-

guish whether the system is periodic or non-periodic

but not provide adequate information about the

chaos, i.e. motion is either of quasi periodic, periodic

or chaotic. Poincare map and bifurcation diagram

characterize the chaotic behavior of a rotor bearing

system. A Poincare section is a hyper surface in state

space transverse to the flow of the system. The points

on Poincare section indicate the return points of the

time series at a constant interval T (driving period of

exciting force). The projection of Poincare section on

�xj NTð Þ � �zj NTð Þ is termed as Poincare map of journal

dynamics. The return points in Poincare map form a

closed curve for quasi-periodic motion. For chaotic

motion, the return points form a particular structure

or many irregular points while for NT-periodic

motion, return points are N discrete points.

Bifurcation diagram is an effective method to char-

acterize the non-linear behavior of any dynamic

system. In a rotor bearing system, the non-linearities

in dynamic behavior may exists due to either of rotor

speed and rotor mass.35 Therefore, the bifurcation

diagrams have been plotted by taking rotor speed

ratio and mass ratio as system variables individually.

To generate a bifurcation diagram, the system vari-

able (speed ratio or mass ratio) is varied with a con-

stant step and the state variables at the end of one

integration step are used as the initial value for

the next step. The operating and geometric parameter

of bearing has been judiciously chosen on the basis of

available literature and indicated in Table 3. In the

present study, the time step size is 	=200. The time

series data of the first 20,000 time steps are excluded

from dynamic behavior investigation. The results are

presented for different values of non-Newtonian par-

ameter and offset ratio.

Effect of bearing ellipticity parameter

The stability of a bearing is greatly affected by offset

ratio of two-lobe bearing. Therefore, to examine the

effect of bearing ellipticity parameter on the stability

of a rotor bearing system operating with a Newtonian

lubricant, bifurcation maps are plotted with speed

ratio and mass and indicated in Figures 6 and 7

respectively. A significant change in the stability of

the bearing is recorded by changing the bearing

offset ratio. For the bearing having � ¼ 0:7, the mag-

nitude of dynamic motion of �xj nTð Þ and �zj nTð Þ is

noted from �1 to 1 in local bifurcation whereas this

magnitude of dynamic motion of �xj nTð Þ and �zj nTð Þ is

from �0.8 to 0.8. Figure 6 represents the bifurcation

diagrams of rotor center in horizontal and vertical

direction for different values of ellipticity parameters

(� ¼ 0:7, 1:0, 1:3). It may be noticed that Figure 6 rep-

resents the stability of a rotor bearing system. In

bifurcation map, location of the journal has been

plotted for various cycles and each cycle is represented

with a different color. It may be noticed from Figure 6

that the bifurcation of the rotor centre takes place in

the speed range of 15 �!. The chaotic motion of rotor

bearing system having ellipticity ratio �ð Þ of 0.7 is

observed for 2:55 �!. Whereas the chaotic motion

Table 3. Parameters used for a two-lobe journal

bearing.7,9,21,25,28,33

Bearing parameters Value

Bearing diameter (D) 50mm

Bearing length (L) 50mm

Radius clearance (c) 50lm

Offset ratio (c) 0.7,1,1.3

Atmospheric pressure (Pa) 1.01325� 105 Pa

Lubricant viscosity (g) 0.0028 N�s/m2

Lubricant density (
) 850Kg/m3

r/min of journal 2000–5000 r/min

Non-Newtonian parameter (k) 0.5, 0.7, 1, 1.3, 1.5

Eccentricity (
) 0 to 0.8

Number of lobe 2

Number of Node 

̅

, 

0.45

0.455

0.46

0.465

0.47

0.475

0.48

0 200 400 600 800 1000

Mesh Convergence Study

Figure 4. Mesh convergence study.
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Figure 5. Fluid film stiffness coefficient variation with load.
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of rotor bearing system having ellipticity ratio �ð Þ of 1

is observed for 15 �! and the chaotic motion of rotor

bearing system having ellipticity ratio �ð Þ of 1.3 is

observed for 1:25 �!. The stability of the bearing

can be characterized on the basis of journal

speed ratio. Similarly, in Figure 7, bifurcation map

has been presented by taking rotor mass as a

system parameter. From the bifurcation map of bear-

ing system, the system behavior can easily be

observed, where the rotor bearing system having ellip-

ticity ratio �ð Þ of 0.7 shows a stable behavior in

motion for 174 �m. The location of after n cycles

can be observed with different colored points.

Whereas the rotor bearing system having ellipticity

Figure 7. Bifurcation diagram of two-lobe bearing circular bearing by taking mass as a system variable.

Figure 6. Bifurcation diagram of two-lobe bearing by taking �! as a system variable.
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ratio �ð Þ of 1 and 1.3 becomes unstable for 6:55 �m.

From bifurcation map shown in Figures 6 and 7, it

may be observed that the stability of the rotor bearing

system is function of journal speed, ellipticity ratio

and journal mass.

A Poincaré map is an effective way to represent

state of a dynamical system with reduced dimensions.

It is often used for analyzing the original dynamical

system in a simpler way. Therefore, a Poincaré map

has been shown in Figure 8 for different masses and

bearing ellipticity for rotor bearing motion. A stable

motion has been recorded for k ¼ 1, �m ¼ 5, �! ¼ 1 at

all values of ellipticity ratios (� ¼ 0:7, 1:0, 1:3).

Whereas unstable dynamic periodic motions have

been observed at k ¼ 1, �! ¼ 1 and �m ¼ 10 for ellip-

tical bearing with � ¼ 1, 1:3 whereas a stable dynamic

periodic motion is observed with � ¼ 0:7. Hence, it

can be said that if the offset is less than 1, the two-

lobe bearing is more stable. Figure 8 indicates that the

change in the mass of the system results in a change in

the stability of the system.

Effect of non-Newtonian parameter

The addition of additives in the lubricant makes the

lubricant non-Newtonian. Shear stress and strain

behavior of these Newtonian lubricants is represented

as dilatant (k>1) and pseudo-plastic (k<1) lubricant.

This non-Newtonian behavior of lubricants signifi-

cantly affects the stability of the rotor bearing

system. Therefore, to examine the effect of the non-

Newtonian lubricant on the dynamics of rotor bearing

system, bifurcation diagrams are plotted with speed

ratio and mass ratio and indicated in Figures 9 and

10, respectively. Therefore, bifurcation diagram has

been plotted in Figure 9 for various value of power

law index. The bifurcation diagram in Figure 9 has

been plotted with rotor centre displacement ( �xj, �zj)

against the non-dimensional rotor mass ( �mÞ. The dif-

ferent behavior has been observed for the selected

values of �m. For the pseudo-plastic lubricant

(k ¼ 0:7Þ, the bearing shows the bifurcation of the

rotor centre for the speed range of �m5 7. For the

Newtonian lubricant ðk ¼ 1Þ, the two-lobe bearing

Figure 8. Poincaré map two-lobe bearing.
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yields the bifurcation of the rotor centre for the range

of speed �m5 6:2. For the dilatant lubricant ðk ¼ 1:3Þ,

bearing shows the bifurcation of the rotor centre for

the speed range �m5 5:9. By taking non-dimensional

journal speed, bifurcation map has been plotted in

Figure 10 to visualize the influence of non-dimen-

sional speed parameter on rotor bearing system

behavior. The bearing operating with the dilatant

lubricant shows a stable behavior and no unstable

motion has been observed between 05 �!5 3,

whereas the rotor bearing system operating with the

pseudo-plastic lubricant also shows a stable behavior

as compare to system operating with Newtonian

lubricant. The pseudo-plastic lubricant 1:35 �!

Figure 9. Bifurcation diagram of two-lobe bearing operating by taking mass as a system parameter.

Figure 10. Bifurcation map of two-lobe bearing circular bearing operating with journal velocity.
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Figure 12. Poincaré map two-lobe bearing.

Figure 11. Bifurcation of two-lobe bearing circular bearing with mass.
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shows unstable behavior of the system. From

Figure 10, it may be observed that non-Newtonian

behavior results significantly change in the system

behavior.

Combined effect of bearing ellipticity and non-

Newtonian parameter

As discussed in an earlier section, great change in the

system behavior has been observed as the bearing

offset factor and lubricant behavior changes.

Therefore, in this section, a study has been performed

by taking combined effect of offset factor and non-

Newtonian parameter. Figure 11 shows the effect of

the bearing ellipticity on the bearing’s stability.

Bifurcation map in Figure 11 has been plotted by

taking the non-dimensional rotor mass as a system

parameter. Figure 11 shows a two-lobe bearing oper-

ating with the dilatant lubricant shows a stable behav-

ior as compare to circular bearing operating with the

Newtonian lubricant. Therefore, to get a stable design

of system, a study has been done by taking the com-

bined effect of bearing ellipticity and non-Newtonian

parameter. The combined influences of offset factor of

bearing and non-Newtonian parameter on the bear-

ing’s stability have also been studied. As shown in

Figure 8, the bifurcation diagram of bearing is plotted

by taking the different non-dimensional masses and

ellipticity ratios. A significant improvement may be

observed in the stability of the bearing by using the

pseudo-plastic lubricant and bearing ellipticity effect.

For the elliptical bearing at � ¼ 0:7 and the pseudo-

plastic lubricant at k ¼ 1:3, the bifurcation of the

journal center has been observed �m4 17. For the

rotor bearing system at � ¼ 1, i.e. circular bearing

and for the Newtonian lubricant at k ¼ 1, the bifur-

cation of the journal centre is shown for �m4 6. For

the elliptical bearing � ¼ 1:3ð Þ and the pseudo-plastic

lubricant (k ¼ 0:7Þ, the bifurcation of the journal

center is observed for �m4 8. It may be noticed that

to make the bearing stable, addition of additives can

be useful instead of changing the bearing geometry.

However, the effect of lubricant additives is small as

compared to the effect of the bearing geometry.

To study dynamic periodic motion of the bearing,

Poincaré map by taking the periodic data has been

plotted in Figure 12 by taking different non-dimen-

sional masses, ellipticity ratio to show the influence of

non-dimensional mass on dynamic behavior. A stable

motion has been recorded for k ¼ 1, �m ¼ 5, �! ¼ 1

at all values of ellipticity ratios (� ¼ 0:7, 1:0, 1:3)

whereas unstable motions for � ¼ 1ð Þ have been

observed at k ¼ 1, �! ¼ 1 and �m5 8: Bearing operat-

ing with the dilatant lubricant is more stable.

Figure 12 indicates that for a small change in mass

of the system results in a significant change in the

stability of the system. By changing the lubricant

behavior and bearing ellipticity, the dynamic behavior

of completely changes.

Conclusion

Understanding of bearing characteristics is vital

for the configuration of machine components in

engineering applications. In the previous section,

the effect of bearing geometry and lubricant behavior

discussed on the system performance. The stability of

the rotating system is an integral function of design of

the fluid film journal bearings. The results present the

bifurcation maps of a rigid rotor supported by a two-

lobe fluid bearing operating with the non-Newtonian

lubricant. The present work shows dynamic behavior

of a rotordynamic system with the non-Newtonian

lubricant. The non-Newtonian lubricant significantly

changes the system behavior. Bifurcation diagram has

been plotted by taking rotor mass and rotor speed as

system parameters. On the basis of results and discus-

sion, the following conclusions are drawn.

1. Non-Newtonian behavior of bearing also results in

the stability of the bearing. Pseudo-plastic behavior

of the lubricant makes the bearing more stable,

whereas dilatant behavior of the lubricant results

in decrease of the bearing’s stability.

2. The stability of the system is an integral function

of the bearing geometry and lubricant behavior.

The stability in the system can be achieved, if the

lubricant and geometry is properly chosen.

3. A significant improvement in the dynamic stability

of the bearing is observed if the proper combin-

ation of non-Newtonian parameter and bearing

offset ratio is used. As the bearing operating

with the dilatant lubricant is more stable.

stability
�

�

k¼1:3,�¼0:7ð Þ
4 stability

�

�

k¼1,�¼0:7ð Þ

4 stability
�

�

k¼0:7,�¼1:3ð Þ

stability
�

�

�¼0:7ð Þ
4 stability

�

�

�¼1ð Þ
4 stability

�

�

�¼1:3ð Þ

stability
�

�

k¼1:3ð Þ
4 stability

�

�

k¼1ð Þ
4 stability

�

�

k¼0:7ð Þ

4. The results developed in this study will help bear-

ing designer to avoid undesirable behavior of

rotor center trajectory and bearing center trajec-

tory, hence life of rotor system will increase.
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Appendix

Notation

A area, m2

Cx,y fluid film damping coefficient,Ns
m

FR resultant fluid film reaction force
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
rx þ F2

ry

q

Fe external force (N)

h local fluid film thickness, m

c radial clearance in the horizontal

direction when rotor is in the center,

m

cm radial clearance in the vertical direc-

tion, m

p fluid film pressure, N=m2

ps, pa ambient/atmospheric pressure,

N=m2

Q bearing flow, m3=s

n total number of nodes in domain

nt total number of elements

Sx,z fluid film stiffness coefficient, N/m

R radius of journal/rotor, m

Mj mass of the journal/rotor, kg

k1, k2, k3, k4 slope in Rung–Kutta method

k non-Newtonian parameter of

lubricant

xj, zj coordinates of journal/rotor center

T time period of complete cycle

t time, s

� offset ratio, cm
c

� lubricant viscosity, Pa� s


 density of the lubricant, kg=m3

l aspect ratio l ¼ L=D

Non-dimensional parameters

�Cx,z Cx,z �
c!
R2ps

�FR
FR

R2ps

�Frx
Frx

R2ps

�Frz
Frz

R2ps

�h h
c

_h @ �h
@�

_xj
@ �xj
@�

_zj
@ �zj
@�

�p p
ps

�Q �

psh3r
Q

�Mj Mj �
mc!2

paR2

�Sx,z Sx,z �
c

R2ps

�! R2�!

ps�c2

� X
R

� Y
R

� t!

�� �

Subscripts and superscripts

b bearing

e eth element

0 steady state condition

N time internal level

– dimensionless parameter
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