Header menu link for other important links
X
Induced Vacancy-Assisted Filamentary Resistive Switching Device Based on RbPbI3- xClxPerovskite for RRAM Application
Das U., Das D., Paul B., Rabha T., Pattanayak S., , Bhattacharjee S., Sarkar P., Roy A.
Published in American Chemical Society
2020
PMID: 32830960
Volume: 12
   
Issue: 37
Pages: 41718 - 41727
Abstract
Halide perovskite (HP) materials are actively researched for resistive switching (RS) memory devices due to their current-voltage hysteresis along with low-temperature processability, superior charge mobility, and simple fabrication. In this study, all-inorganic RbPbI3 perovskite has been doped with Cl in the halide site and incorporated as a switching media in the Ag/RbPbI3-xClx/ITO structure, since pure RbPbI3 is nonswitchable. Five compositions of the RbPbI3-xClx (x = 0, 0.3, 0.6, 0.9, and 1.2) films are fabricated, and the conductivity was found to be increasing upon increase in Cl concentration, as revealed by dielectric and I-V measurements. The device with a 20\% chloride-substituted film exhibits a higher on/off ratio, extended endurance, long retention, and high-density storage ability. Finally, a plausible explanation of the switching mechanism from iodine vacancy-mediated growth of conducting filaments (CFs) is provided using conductive atomic force microscopy (c-AFM). The c-AFM measurements reveal that pure RbPbI3 is insulating in nature, whereas Cl-doped films demonstrate resistive switching behavior. Copyright © 2020 American Chemical Society.
About the journal
Published in American Chemical Society
Open Access
no
Impact factor
N/A