It is generally believed that the 1.5 μm Er luminescence is enhanced by transferring energy from Si nanocrystals to the nearest Er3+ ions in Er-doped Si-rich SiO2 layers during optical pumping. Here, the influence of Ge nanocrystals instead of excess Si in the same environment is studied using electroluminescence technique on metal-oxide-semiconductor structures. An increase of the 400 nm electroluminescence intensity with a concomitant reduction of the Er-related emission is observed. This is explained in the light of an inverse energy transfer process from Er3+ to the Ge-related oxygen-deficiency centers. © 2009 American Institute of Physics.