Phosphorylation and other post-translational modifications of red blood cell (RBC) proteins govern membrane function and have a role in the invasion of RBCs by the malaria parasite, Plasmodium falciparum. Furthermore, a percentage of RBC proteins are palmitoylated, although the functional consequences are unknown. We establish dynamic palmitoylation of 118 RBC membrane proteins using click chemistry and acyl biotin exchange (ABE)-coupled LC-MS/MS and characterize their involvement in controlling membrane organization and parasite invasion. RBCs were treated with a generic palmitoylation inhibitor, 2-bromopalmitate (2-BMP), and then analyzed using ABE-coupled LC-MS/MS. Only 42 of the 118 palmitoylated proteins detected were palmitoylated in the 2-BMP-treated sample, indicating that palmitoylation is dynamically regulated. Interestingly, membrane receptors such as semaphorin 7A, CR1, and ABCB6, which are known to be involved in merozoite interaction with RBCs and parasite invasion, were found to be dynamically palmitoylated, including the blood group antigen, Kell, whose antigenic abundance was significantly reduced following 2-BMP treatment. To investigate the involvement of Kell in merozoite invasion of RBCs, a specific antibody to its extracellular domain was used. The antibody targeting Kell inhibited merozoite invasion of RBCs by 50%, implying a role of Kell, a dynamically palmitoylated potent host-derived receptor, in parasite invasion. Furthermore, a significant reduction in merozoite contact with the RBC membrane and a consequent decrease in parasite invasion following 2-BMP treatment demonstrated that palmitoylation does indeed regulate RBC susceptibility to parasite invasion. Taken together, our findings revealed the dynamic palmitoylome of RBC membrane proteins and its role in P. falciparum invasion. © 2022 American Chemical Society.