Header menu link for other important links
X
Bioinspired micro/nano structured aluminum with multifaceted applications
Published in Elsevier B.V.
2022
PMID: 34979496
Volume: 211
   
Abstract
Inspired by many biological systems such as lotus leaves, insect wings and rose petals, great attention has been devoted to the study and fabrication of artificial superhydrophobic surfaces with multiple functionalities. In the present study, a simple and ecological synthesis route has been employed for large scale fabrication of self-assembled, sustainable nanostructures on unprocessed and micro imprinted aluminum surfaces named ‘Nano’ and ‘Hierarchy’. The processed samples show extreme wettability ranging from superhydrophilicity to superhydrophobicity depending on post-processing conditions. The densely packed ellipsoidal nanostructures exhibited superhydrophobicity with excellent water, bacterial and dust repellency when modified by low surface energy material 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FOTES), characterized by a static contact angle of 163 ± 1° and contact angle hysteresis (CAH) ~3°. These coated surfaces show significant corrosion resistance with current density of 6 nA/cm2 which is 40 times lower than unprocessed counterpart and retain chemical stability after prolonged immersion in corrosive media. These surfaces show excellent self-cleaning ability with significantly low water consumption (< 0.1 µl/mm2-mg) and prevent biofouling which ensures its applicability in biological environment and marine components. The nanostructured superhydrophilic aluminum shows maximum antibacterial activity due to disruption of cell membrane. This work can offer a simple strategy to large scale fabrication of multifunctional biomimetic metallic surfaces. © 2021
About the journal
Published in Elsevier B.V.
Open Access
no
Impact factor
N/A