Header menu link for other important links
X
Biluminescence via Fluorescence and Persistent Phosphorescence in Amorphous Organic Donor(D4)-Acceptor(A) Conjugates and Application in Data Security Protection
Bhatia H., Bhattacharjee I.,
Published in American Chemical Society
2018
PMID: 29939749
Volume: 9
   
Issue: 14
Pages: 3808 - 3813
Abstract
Purely organic biluminescent materials are of great interest due to the involvement of both singlet and long-lived triplet emissions, which have been rarely reported in bioimaging and organic light-emitting diodes. We show two molecules 3,4,5,6-tetraphenyloxy-phthalonitrile (POP) and 3,4,5,6-tetrakis-p-tolyloxy-phthalonitrile (TOP), in which POP was found to exhibit fluorescence and persistent room-temperature green phosphorescence (pRTGP) in the amorphous powder and crystal states. Both POP and TOP show aggregation-induced emission in a tetrahydrofuran-water mixture. We found in single-crystal X-ray analysis that intra- and intermolecular lp(O)···π interactions along with π(C = C)···π(C≡N), hydrogen bond (H-B), and C-H···π interactions induce a head-to-tail slipped-stack arrangement in POP. In addition, the X-ray structure of TOP with a slipped-stack arrangement induced by only π(C=C)···π(C≡N) and H-B interactions shows dim afterglow only in crystals. These indicate that more noncovalent interactions found in POP may reinforce relatively efficient intersystem crossing that leads to pRTGP. Given the unique green afterglow feature in amorphous powder of POP, document security protection application is achievable. Copyright © 2018 American Chemical Society.
About the journal
Published in American Chemical Society
Open Access
no
Impact factor
N/A