Polymorphism is a central phenomenon in materials science that often results in important differences of the electronic properties of organic crystals due to slight variations in intermolecular distances and positions. Although a large number of π-conjugated organic compounds can grow as polymorphs, it is necessary to have at disposal a series of several polymorphs of the same molecule to establish clear and predictive structure-property relationships. We report here on the occurrence of two solvates and three polymorphs in single crystalline form of the organic p-type semiconductor 2,2′,6,6′-tetraphenyldipyranylidene (DIPO). When grown from chlorobenzene or toluene, the DIPO crystals spontaneously capture solvent molecules to form two pseudopolymorphic 1 : 1 binary solvates. Independently, three solvent-free DIPO polymorphs are obtained either from the vapor phase or from acetonitrile and benzene. Surprisingly, single crystal field-effect transistors (SC-FETs) reveal that the DIPO 1 : 1 binary solvate grown from chlorobenzene possesses a higher hole mobility (1.1 cm2 V-1 s-1) than the three solvent-free polymorphs (0.02-0.64 cm2 V-1 s-1). A refined crystallographic analysis combined with a theoretical transport model clearly shows that the higher mobility of the solvate results from an improved π-π overlap. Our observations demonstrate that solvation allows to tune the π-π overlap and transport properties of organic semiconductors by selecting appropriate solvents © the Owner Societies.