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ABSTRACT 

 In this work, we report on the modification of electronic and magnetic properties of few layered graphene 

(FLG) nanoflakes via nitrogen functionalisation carried out using radio frequency (rf-PECVD) and electron 

cyclotron resonance (ECR) plasma processes. Even though the rf-PECVD N2 treatment leads to higher N-

doping levels in the FLGs (4.06 at%) as compared to the ECR process (2.18 at.%), the ferromagnetic 

behaviour of ECR FLG(118.62 x 10-4 emu/gm) was significantly higher than the rf-PECVD (0.39 x 10-4 

emu/gm) and pristine graphene (3.47 x 10-4 emu/gm). While both plasma processes introduce electron 

donating N-atoms in the graphene structure, distinct dominant nitrogen bonding configurations (pyridinic, 

pyrrolic) were observed for each FLG type. While, the ECR plasma introduces more sp2 type nitrogen 

moieties, the rf-PECVD process led to the formation of sp3 coordinated nitrogen functionalities, as 

confirmed through Raman measurements. The samples further characterised using X-ray absorption near 

edge spectroscopy (XANES) and X-ray, ultraviolet photoelectron spectroscopies revealed an increased 

electronic density of states and a significantly higher concentration of pyrrolic groups in the rf-PECVD 

samples. Due to the formation of reactive edge structures and pyridinic nitrogen moieties, the ECR 

functionalised FLGs expressed highest saturation magnetisation behaviour with the lowest field hysteretic 

features. In comparison, the rf-PECVD samples, displayed the lowest saturation magnetisation owing to the 

disappearance of magnetic edge states and formation of stable non-radical type defects in the pyrrole type 

structures. Our experimental results thus provide new evidence to control the magnetic and electronic 

properties of few layered graphene nanoflakes via control of the plasma-processing route. 

 

• INTRODUCTION  

Intrinsic magnetism observed in materials without d- or f-electrons has attracted much interest, especially for 

carbon-based materials and in particular, graphene. There has been a long-standing interest in the development 

of ferromagnetic graphene for realizing its applications into spintronic devices via the combination of spin 

and charge.1-4 The introduction of magnetic response in graphene via the introduction of edges, vacancy 

defects or adsorbed atoms has been investigated using both theoretical and experimental means.1-13 Various 

theoretical studies.3-10 have suggested that zigzag edges or point defects in graphene as the spin units should 
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carry magnetic moment with possible long-range order coupling. This coupling itself can be ferromagnetic 

or antiferromagnetic, depending on whether the zigzag edges or defects correspond to the same or to 

different hexagonal sub-lattice of the graphene lattice, respectively. At present, the intrinsic magnetic 

properties of finite sized graphene sheet are far from being understood, given that the magnetic signal from 

a finite sized graphene sheet is too weak to be detected by macro-magnetic measurement. Moreover, 

graphene is intrinsically non-magnetic and lacks localized magnetic moment due to the delocalized -bonding 

network, thereby limiting its applications in spintronic devices.14 Therefore, the induction of magnetic moment 

and the subsequent synthesis of ferromagnetic graphene or its derivatives with high magnetization are 

necessary for spintronic applications.  

Studies have shown that nitrogen-doping and/or N-functionalization of graphene is an effective route to obtain 

high magnetization values.15-21 The nitrogen atom, containing one additional electron, upon replacing the 

carbon in the graphene lattice15, can introduce novel electronic properties as well as magnetic moment into 

graphene.16 These localized magnetic moments are induced by various arrangements of the N atom, with the 

pyridine and pyrrole like N-doping defects breaking the degeneracy of the spin polarisation of graphene.16-19 

Indeed, Liu et al.21 have observed high values of magnetization in ferromagnetic graphene oxide (GO), when 

doped with nitrogen. The substitution by nitrogen of a carbon atom in the graphene lattice leads to an increase 

in the electronic density of states and the nitrogen dopant can provide -electron close to the Fermi level of 

graphene, thereby enhancing the coupling via a reduction in the magnetic moment distance.21,22 Zhang et al.19 

proposed that the combination of vacancy defects and N atoms may provide a unique way for enhancing the 

magnetic moment of graphene. However, experimental evidence from nitrogen-doped graphene for such 

magnetism remains both scarce and controversial. Moreover, how the different N-bonded species (pyridinic, 

pyrrolic, graphitic, and adsorbed) affect the electronic and magnetic properties of the host graphene lattice 

remains controversial. Therefore, the understanding and control of the electronic and magnetic structure of 

the N-doped graphene is essential for its applications.   

In the present study, we have studied the electronic and magnetic properties of few layered graphene (FLG) 

system functionalized using two different nitrogen plasma processes i.e. electron cyclotron resonance 

(ECR) and radio frequency plasma enhanced chemical vapour deposition (rf-PECVD). The samples were 
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characterised using X-ray absorption near edge spectroscopy (XANES), X-ray photoelectron spectroscopy 

(XPS) and Raman spectroscopy techniques to understand the changes in the electronic  and bonding 

structure. Magnetic property measurements were carried out using a SQUID type magnetometer in 

conjunction with Magnetic Force Microscopy (MFM), which revealed higher ferromagnetic magnetisation 

saturation values of the ECR samples (118.62 x 10-4 emu/gm), as compared to rf-PECVD samples (0.39 x 

10-4 emu/gm) and the pristine samples (3.47 x 10-4 emu/gm), respectively. Even though the rf-PECVD 

samples have higher N-doping levels (4.06 at.%) as compared to the ECR samples (2.18 at.%), the ECR 

plasma leads to the higher concentration of pyridinic nitrogen moieties and stable reactive edge structures 

leading to pronounced ferromagnetic behaviour.  

 

• EXPERIMENTAL SECTION  

Synthesis of FLG: The synthesis of FLG samples was carried out in a SEKI microwave plasma enhanced 

chemical vapor deposition system, equipped with a 1.5 kW, 2.45 GHz microwave source. The substrates used 

were bare n-type heavily doped Si wafers (resistivity < 0.005  cm-1) (10 mm x 10 mm). Prior to growth, the 

substrates were pre-treated with N2 plasma at 650 W at 40 Torr while the substrate temperature was maintained 

at 900 oC. The synthesis was then carried out using CH4/N2 (gas flow ratio = 1:4) plasma at 800 W for a 

duration of 60 s. The FLG samples were then allowed to cool down to ambient temperature under a constant 

N2 flow. The synthesis conditions used here are similar to the ones reported in our earlier works.28,33  

Nitrogen plasma doping of FLGs: Nitrogen doping/functionalization of FLG was carried out using two 

separate procedures: rf-PECVD and ECR. The ECR treatment offers the advantages of high dissociation 

percentage of process gas (N2) and high uniformity of plasma energy over large areas. During the ECR 

treatment, the chamber was pumped down to a base pressure better than 7 x 10-5 Torr using a combination of 

a turbo molecular and rotary pump. The condition at which resonance occurs for electrons is a function of the 

excitation frequency of the alternating electric field and the strength of the static magnetic field. In our system, 

as mentioned before, the excitation source is 2.45 GHz and the strength of the static magnetic field is 875 G. 

For sufficient resonance to occur, the process pressure should be sufficiently low. For N doping, we have used 

a working pressure of ∼0.025 Pa (1.8 x 10-4 Torr) and the microwave power was maintained at 150 W (samples 
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named as FLG:N(ECR) for a duration of 5 min [28]. Similarly, for an another set of samples, the post-

deposition N-doping process was carried out in a rf-PECVD chamber (samples named as FLG:N(PECVD)) 

using N2 at low pressure ~ 2x10−6 Torr at a power of 200 W.34 

Characterisation: Raman spectroscopy was performed using an ISA LabRam system equipped with a 632.8 

nm He-Ne laser with a spot size of approximately 2-3 µm, yielding a spectral resolution of better than 2 cm-1. 

Due care was given to minimize sample heating by using a low laser power below 2 mW. The XPS spectrum 

was measured on a Kratos Axis Supra DLD employing an Al K radiation (1486.6 eV). The XANES spectra 

was obtained using the high-energy spherical grating monochromator 20A-beamline at the National 

Synchrotron Radiation Research Centre (NSRRC), Hsinchu, Taiwan. The magnetic properties of these FLGs 

were characterized by a SQUID type magnetometer with sensitivity better than 5x10-8 emu. The topographical 

and magnetic force microscopy (MFM) measurements were carried out using a Veeco Dimension 3100 AFM 

connected to a Nanoscope IIIa controller in the tapping mode configuration. To detect magnetic domains in 

the prepared samples, low moment magnetic probes with Co/Cr coatings were used. In addition, the electron 

field emission (EFE) was measured using a Keithley source meter. 

 

• RESULTS AND DISCUSSION  

Fig. 1(a) shows the Raman spectra of pristine and rf-PECVD, ECR treated nitrogen-functionalized FLGs 

within the 1200–3000 cm-1 range. For carbon materials, the main Raman spectral features are the D (~1350 

cm-1) and G (1580 cm-1) bands, respectively. While, the G band corresponds to the optical E2g phonons at the 

Brillouin zone center; the D peak arises due to the breathing-like modes (corresponding to TO phonons close 

to the K point) and requires a defect for its activation via an inter-valley double resonance Raman process. 

The intensity of the D-band provides a simple measure of the amount of disorder in graphene and graphene 

based structures. The overtone, 2D band, appears at around 2670 cm-1, being the sum of two phonons with 

opposite momentums and acts as the fingerprint for monolayer graphene and is present even in the absence of 

any defects.23-27 The D peak observed at ~1620 cm-1, occurs via an intra-valley double resonance process in 

the presence of defects. Since the D band requires a defect to be Raman active, it is generally not used to 

characterize the heteroatom doping. However, both the G and 2D bands are both strongly influenced by the 
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carrier concentration and have been extensively used for doping characterization.23-27 Detailed analysis of 

peak positions and the full width at half-maximum (FWHM) parameters was carried out by fitting the first 

and second order Raman spectra using Lorentzian (for D, G, and G` bands), and Gaussian (for D`) peak 

shapes.28,33  Now, as compared to the peak position (~1582.2 cm-1) and the FWHM (35.6 cm-1) of the G band 

in pristine FLGs; upon nitrogen doping, the G band upshifted slightly to 1581.5 cm-1 (for FLG:N(PECVD) 

samples) and 1581.7 cm-1 (for FLG:N(ECR) samples) with a corresponding increase in the D band position 

from 1329.9 cm-1 (pristine FLG) to 1335.3 cm-1, respectively. It should be noted that although the G band 

peak shifts are more prominent in electrostatically gated mono-layered graphene, nevertheless, similar 

stiffening of the G band along with FWHM enhancement has been previously observed in chemically doped 

graphene as well.28-30 This blue shift of the G band (E2g mode at  along with the associated broadening of 

FWHM has been attributed to the non-adiabatic removal of the Kohn anomaly from the Brillouin zone centre, 

G.28-30 The ECR plasma treatment induces the substitution of electron-donating nitrogen atoms into the 

graphene lattice, with the overall effect of a rise in the Fermi level that is then observed in the blue shift of the 

G band in Raman spectra.28 The incorporation of N into the FLG structure may generate C–N and N–N bonds 

at the expense of the C–C bonds. However, the C–N vibration modes, which lie between the D and G bands, 

cannot be identified owing to the insensitivity of the Raman excitation to distinguish between the cross 

sections of C and N atoms. For electric field gated graphene, by applying suitable bias, both electron and hole 

conduction mechanisms are accessible, by shifting the Fermi level and can be observed in the upshift of the 

G peak in the Raman spectra for both the cases.30 Similarly, the 2D band shows an upshift from 2660.4 cm-1 

(pristine FLG) to 2661.2 cm-1 (for FLG:N(ECR) and further to a value of 2663.8 cm-1 (for FLG:N(PECVD)), 

with a slight increase in the FWHM from 43.7 cm-1 to 44.0 cm-1 (44.3 cm-1). This is accompanied by the 

change in the ID/IG (I2D/IG) ratio to 1.03 (0.80) from 0.83 (1.02) for pristine FLGs and as mentioned earlier 

signifies the formation of FLGs. This blue shift of the 2D band has also been observed by Yan et al., and has 

been attributed to the increased disorder and reduction in the crystallinity in N-doped graphene and is 

consistent with those observed in electrostatically gated graphene.30,31  

In a recent work by Eckmann et al., the ID/ID
 ratio of graphene was used to comment on the nature of induced 

defects through fluorination and Ar+ bombardment.32 In their study, it was observed that the ID/ID
 ratio was 
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maximum (~13) for sp3 type defects and reaches a minimum (~3.5) for boundaries in graphite.32 In our study, 

the ID/ID
 ratio varied from 3.03 for pristine FLGs vs. 3.44 for FLG:N (ECR) and further increased to 4.19 for 

FLG:N(PECVD) samples. The rather high value of ID/ID
 for the pristine samples can be attributed to the finite 

crystallite size and the presence of boundaries, the combination of which leads to the defect induced D peak 

as well. While both the N-treated FLGs were prepared using plasma modification, the difference in the 

working conditions as well as the power leads to significant differences in the formation of defects. The 

electron-cyclotron resonance conditions used for functionalisation produces N+ bombardment, which 

produces substitutional and vacancy-like defects in the graphene lattice. However, the number of defects 

produced in the graphene lattice are limited due to the lower ion energy of the species.28 It can be observed 

that the rf-PECVD nitrogen process introduces more sp3 type defect structures into the graphene lattice unlike 

the ECR process. A similar reduction in the structural order has been previously by Abbas et al in their study 

of the rf-PECVD N2 functionalised vertically aligned carbon nanotubes.34 It should be mentioned that since 

the FLG are vertically aligned on a Si-substrate, it is expected that only the top-most surfaces of the FLG 

would be predominantly accessible to atomic nitrogen during the functionalization procedure. 

Fig. 1(b) shows the plot of EFE current density (J) as a function of the applied electric field (EA) for pristine 

FLG and FLG:N samples. The figure shows the existence of a classical threshold electric field at which the 

current density, J, increases significantly from a zero value. As compared to pristine FLGs, the threshold 

electric field is reduced for FLG:N(ECR) samples; whereas for FLG:N(PECVD) samples, the threshold value 

increases; suggestive of the fact that for FLG:N (PECVD) samples the required activation energy is enhanced 

whereas the ECR N-treatment reduces the required activation energy for the tunnelling of electrons. The 

Fowler–Nordheim (F–N) plots shown in Fig. 1(f) clearly show the existence of turn-on electric field (ETOE) 

which was measured by linear fitting of the curve in the high electric field region. For pristine FLGs, the ETOE 

value was 26.5 V μm-1; which further increased (decreased) to 40.0 (20.0) V μm-1 for PECVD (ECR) N-treated 

graphene samples, respectively, owing to the increase (decrease) in the sp3-hybridized bonds in graphene 

structures.33,35,36 It must be noted that the N-doping levels in the FLG:N (ECR) samples (~2.18 at%) are only 

half of that in the FLG:N (PECVD) sample (~4.06 at%). It is expected that with an increase in the nitrogen 

content of the carbon nanostructures, the electron field emission should increase concurrently. The sp2 
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hybridised bonds, upwards movement of the Fermi level (discussed later) as well as the creation of defect sites 

in the FLG:N(ECR) samples are responsible for the enhancement of electron field emission current; whereas 

for the FLG:N(PECVD) samples, comparatively higher sp3 bonding configuration is observed in the Raman 

analysis.28,33,37 Thus, the reduction of the EFE current in rf-PECVD N-treated graphene is due to the decrease 

of the number of sp2 hybridized bonds in the network which is responsible for the metallic EFE current.38,39 

These results further substantiate that the rf-PECVD plasma treatment promotes the three dimensional sp3 

bonding configuration; whereas the ECR N-doping promotes the more desirable sp2 bonding 

configuration34,37,38 and further establishes that for field emission, the nitrogen bonding configuration in doped 

graphene is the dictating factor rather than the absolute nitrogen content.  

For graphitic materials in general, the XANES spectra can be divided into three regions as characterized by 

their specific resonance energies.40 The first region of * resonance appears around 2851 eV, the C–H* 

resonance around 2881 eV, and finally a broad region corresponding to the * resonance appears between 

290 and 315 eV. The presence of the * and C–H* resonances serve as a fingerprint for the existence of sp2 

hybridized C–C bonds and C–H bonds, respectively. Fig. 2 shows the C K-edge XANES spectra of the pristine 

and N-functionalised FLGs with spectral features at ~285.1 (1) eV, ~291.6 (1) eV and ~292.6 (1) eV; 

attributed to the unoccupied 1s*, excitonic states and 1s* transitions, respectively.40,41 As observed 

from the first order derivative (top inset Fig. 2a) of the C K-edge spectra, the absorption edges of the nitrogen 

functionalized graphene are shifted towards higher (lower) energy levels for the rf-PECVD (ECR) N-graphene 

samples indicating the presence of less (more) sp2-rich structures. This change in the absorption edge is 

attributed to the change in the band gap of the N-FLG samples due to the structural rearrangement via the 

bonding of nitrogen with the host carbon lattice.41,42 Apart from the * and * resonance peaks, two other 

peaks observed at ~288.0 eV and ~289.3 eV are ascribed to C–H bonds and interlayer graphite states, 

respectively (shown as inset below in Fig. 2a). As compared to the pristine FLG and FLG:N(PECVD) spectra, 

the FLG:N(ECR) sample shows an enhanced feature at ~288 eV, accompanied by a prominent peak in the 

interlayer graphite peak intensity. While, Ray et al. have observed a similar feature in the 287-291 eV range 

for amorphous a-C:H(OH) thin films and attributed it to a combination of the C-H * bonding with the O-
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C=C, C-OH and C=O * bonds.35,41 Pacile et al. have attributed it to the splitting of the * bands in graphene 

and to interlayer state related to the charge density between graphene layers.43 Nevertheless, for the 

FLG:N(PECVD) samples, the increase in the feature at ~288 eV can be attributed to the increase in the C–H 

intensity which indicates the formation of sp3-rich structures having a higher content of C–H bonds, thus 

confirming the Raman and EFE analysis of the previous section. In the case of FLG:N(ECR) samples, the C 

K-edge XANES spectrum shows a strong peak at 0.2 eV below the interlayer graphite peak (marked with a 

line bar), which may arise from the contribution of N- and O-related bonds in N-graphene. For the rf-PECVD 

N-functionalized samples, the C K-edge XANES spectra show that both the * and * peaks are wider and 

show an upward energy shift which is different from ECR N-graphene again indicating a change in the band 

gap of the material.  

It is well established that the introduction of nitrogen into the sp2 graphene lattice leads to the appearance of 

various nitrogen moieties. For N-doping in graphene and carbon nanotubes largely three type of bonding has 

been observed: (i) direct substitution (graphitic N), (ii) pyridinic and (iii) pyrrolic configuration.44 In the 

graphitic configuration, three nitrogen valence electrons form three σ-bonds, one electron fills the state 

while the fifth electron enters the  state of the conduction band, leading to strong n-type doping effect. 

Similarly, for CNTs, DFT calculations have shown an increase in the Fermi level for graphitic N doping, 

thereby increasing the metallicity; whereas, upon pyridinic and adatom configurations (p-doping) in CNTs, a 

reduction in the Fermi level has been reported.44 Similarly, for pyridinic and pyrrolic type N-doping in 

graphene, the situation becomes complicated. For example, the simple tight-binding models do not predict 

any charge transfer effects whereas in some studies, the p-type doping induced by these groups have shown 

some charge transfer, however its magnitude is much smaller than that for graphitic nitrogen.44 Fig. 2(b, c) 

shows the N K-edge XANES spectra of the FLG:N samples wherein the intensity of the main * peak reflects 

the N-doping content i.e. lower peak height for FLG:N (ECR) as compared to FLG:N(PECVD). This can be 

described via the delocalisation of the * states with N 2pz orbital components providing much smaller 

transition dipole moment values between the N1s orbitals.45 The * region of N K-edge XANES spectrum 

was deconvoluted into four components using Gaussian line shapes, as shown in Fig. 2(c, d) reflecting the 
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spectral evidence for the local electronic states bound to the nitrogen site. For the FLG:N(ECR) samples, the 

N K-edge XANES spectrum shows four peaks located at ~396.6, ~397.7, ~398.7 and ~399.9 eV. These peaks 

can be attributed to nitrogen in nitride phase, pyridine-like bonding and pyrrole/substitutional graphite like 

bonding, respectively.46 Pyridinic-N refers to nitrogen atoms at the edge of graphene planes, each of which is 

bonded to two atoms and donates one -electron to the aromatic  system, while quaternary nitrogen is also 

called graphitic nitrogen or substituted nitrogen, in which nitrogen atoms are incorporated into graphene layer 

and replace carbon atoms within the graphene sheet. Geng et al. have observed similar peak positions in their 

study of nitrogen doping effects on the structure of graphene.46 The * resonance peak at 397.7 eV, attributed 

to pyridine-like bonding, arises due to transitions from the K-shell (N 1s) to the unoccupied * orbital.48,49 

The peak position of the pyridine like species is however 1.0 eV lower to that reported by Liu et al. in the case 

of nitrogen doped graphene oxide21,47 and that by Usachov et al. in their study of N-graphene synthesised from 

s-triazine molecules.44  

Comparing the deconvoluted N K-edge spectra of the N-functionalised samples (Figs 2(c, d)), the most 

significant difference observed is the peak III (attributed to pyrrolic nitrogen), thus indicating higher pyrrole-

like bonding for FLG:N (PECVD) samples. It has also been reported that the pyrrolic N atoms bonds with the 

sp3 C atoms, forming five-membered heterocylic rings which lead to a reduction in the Raman 2D band 

intensity.50 This correlates well with the observed reduction in the Raman 2D band for the FLG:N(PECVD) 

samples (Fig. 1(a) and Table 1), thus further confirming the enhanced formation of pyrrolic bonding for 

FLG:N(PECVD) samples.50 In their study, Zhao et al.51 have utilised low-energy nitrogen bombardment (25-

150 eV) followed by high temperature annealing (~ 900 K) to produce nitrogen doped graphene. It was 

revealed from their work, that a variation of the ion-beam energy not only resulted in the variation of nitrogen 

doping content but also in the preferential bonding, wherein, at increased ion energies and time, a relative 

increase in the pyridinic nitrogen was observed. Sakulsermsuk et al. too have reported that at higher ion 

energy, nitrogen ions prefer forming pyridinic-N rather than pyrrolic-N groups.52 It must be emphasised that 

during the course of this work, the ion energy during the plasma bombardment was not measured; however 

previous work has established that the ECR systems typically generate high density plasma at much lower 

potentials due to the resonance heating of the electrons. In fact, the magnetic field induced electron 
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confinement in the ECR configuration generates high temperature electron distribution tails of nearly 30 eV 

which lead to a relatively high degree of N2 dissociation without a significant increase in the potential or ion 

bombardment energies.53 Considering that for both set of samples, the treatment time was kept the same; the 

ECR process produced significantly higher pyridinic nitrogen as compared to the rf-PECVD process and as 

such corroborates the results presented by Zhao et al.51 Using molecular dynamics, Åhlgren et al. have 

reported on the possible events occurring during the plasma functionalisation of graphene, including the 

formation of vacancy defects and substitution of carbon by nitrogen.54 It is understood that the most stable N-

dopant configuration in graphene is associated with the strain generated from structural defects as well as 

vacancy defects.52,54 The structural vacancies themselves are introduced into the graphene structure during the 

growth process as well as under the plasma functionalisation process. In the case of edge defect, dominated 

FLG samples (Fig. 1(a), Table 1), the most typical defects which appear upon plasma functionalisation include 

the mono and di-vacancy. From the calculations carried out Ahlgren et al., it was observed that lower ion 

energies tend to produce mono-vacancies whereas higher ion energy induces di-vacancies.54 Moreover, DFT 

simulations show that pyridinic-N provides the most stable N-dopant configuration for mono-vacancy defects, 

whereas, for di-vacancy, it is pyrrolic-N configuration which is the most stable.52,54 Thus, for FLG:N(PECVD) 

and FLG:N(ECR) samples, a higher pyrrolic and pyridinic content are expected and indeed observed. 

However, further experimental studies are required to study the effect of the ion energy on the stable nitrogen 

configuration in FLGs.  

Figures 3(a-h) shows the C, O and N 1s core-level XPS spectra for the individual chemical binding 

environment in pristine and nitrogen functionalized FLG samples. In Fig. 2(a), the wide-width asymmetric C 

1s complex band of FLG shows three deconvoluted peaks viz. 284.5 (C1), 285.4 (C2) and 287.4 eV (C3), 

respectively corresponding to C=C, C-OH/C-H and C=O, respectively. Fig. 2(b, c) shows the three convoluted 

characteristics peaks viz. 284.6 (C1), 285.0 (C2), 286.9 (286.4) (C3) and are assigned as C=C, C=N and CN 

respectively for the FLG:N (PECVD/ECR) samples, respectively.55 It is also observed that the C=C peak is 

reduced for FLG:N samples, confirming the formation of C=N and CN bonding after nitrogen 

functionalization. The oxygen-functionalized groups are gradually reduced from the FLG to N-FLG structure 

with N-doping. This change of oxygen functional groups is observed from the O 1s XPS spectra as shown in 
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Fig. 3(d-f). Figure 2(d-f) shows wide asymmetric O 1s core-level XPS spectrum complex band composed of 

different oxygen-related bonds for FLG transform into less intense features in N-FLG. After well-convoluted 

into two peaks, we have C-OH at ~532.4 (0.1) eV and C-OOH at ~533.2 (0.2) eV, which are at the edge of 

aromatic structure.56 In Fig. 3(g,h), the intensity of N 1s XPS spectrum is increased at higher nitrogen 

concentration. The N 1s spectra of ECR (PECVD) N-FLGs are deconvoluted into three (four)-peaks and are 

centred at peak I: ~398.3 (397.9) eV, peak II, ~399.7 (399.4) eV, Peak III 401.1 (400.5) eV; which are assigned 

to  the pyridinic N at the edge of six-member ring, pyrrolic N structure at the edge of five-member ring and 

quaternary N structure, respectively.57 In addition, peak IV at ~ 402.0 eV is observed in N 1s spectra of N-

FLGs functionalized in PECVD process and is assigned as graphitic-N. It is observed that the pyrrolic-N 

content is higher in rf-PECVD samples than ECR- nitrogen functionalized FLG samples.57 However, it is also 

observed from the above results that the intensity of oxygen-related functional groups in C 1s/O 1s XPS 

spectra are decreased; whereas the intensity of N 1s XPS spectra is increased with increase of nitrogen content 

in the N-FLG. These results suggest clearly that the removal of oxygen functional groups (C=O and C-OH) 

and increase of nitrogen-related pyrrolic, pyridinic, quaternary-N and graphitic-N groups in the N-FLG 

samples. 

Ultraviolent photoemission spectroscopy (UPS) scans of pristine and nitrogen functionalized FLGs along with 

Ag (as reference) are shown in Figure 4(a); wherein the Fermi edge is clearly visible. The valence band 

maximum (VBM) of pristine FLG and nitrogen functionalized FLGs are estimated from the extrapolation at 

the edge of UPS (He-I) spectra. It was observed that the VBM of pristine FLG is 4.2 eV, while for the FLG:N 

samples functionalized by ECR and rf-PECVD processes, the VBM values are 4.0 and 3.8 eV, respectively. 

This reduction in the VBM upon nitrogenation occurs owing to the n-type doping and formation of N-lone-

pair electron, -electrons of C-N bonds, -electrons of C-N bonds and the consequential structural 

rearrangement inside the pristine FLG structure.58 To further study the electronic density of states (DOS) of 

these samples; we have studied the total DOS below the Fermi level (Ef) by using UPS (He-II). As shown in 

Fig. 4(b), both the FLG:N samples shows higher DOS than the pristine FLGs. Figure 4(c-e) shows the 

deconvolution of UPS He-II spectre into  five distinct hybridized bands: C 2p-π at ~4.3 eV (I), C 2p σ+π at 

6.0 eV (II), C 2p-σ at 8.4 eV (III), C 2s-2p at 10.8 eV (IV) and C 2s- σ at 13.9 eV (V) for both pristine and 
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nitrogen functionalized FLG.59 The features at 8.4, and 6.0 eV are considered as the π bonding of C=O and O 

lone pair [60] that overlaps with C 2p-(σ+π) and C 2p-σ aromatic features of FLG.57 It is observed that after 

the nitrogen plasma treatment, while the peak I is reduced for both rf-PECVD and ECR processes,  the peak 

II is reduced (enhanced) for the PECVD (ECR) process. This peak II at ~7.0 (6.4) eV can be attributed to the 

combination of nitrogen-bands, C=N and N lone pair for FLG:N.61,62  

The magnetic properties of the FLG and FLG:N samples were measured in the range of -2kOe<H<2kOe at 

temperatures of 300 K and 40 K, respectively. The measured magnetic hysteresis loops are shown in Fig. 5, 

with the FLG:N (ECR) samples (Fig. 5(c)) showing the most expressed ferromagnetic behaviour with lowest 

field hysteretic features (Hc = 40 Oe) and highest saturation magnetisation (Ms = 118.62 x 10-4 emu g-1); 

whereas the rf-PECVD samples shows the lowest saturation magnetisation (Ms = 0.39 x 10-4 emu g-1 and Hc 

= 80.3 Oe). As compared to the pristine FLGs (Ms = 3.47 x 10-4 emu g-1), the magnetic moment values of 

FLG:N(ECR) (Fig. 5(c)) are the highest owing to the incorporation of nitrogen in the graphitic structure of 

FLG as observed in C K-edge and N K-edge XANES spectrum. This enhanced magnetism is due to the extra 

-electron from nitrogen making the structure electron-rich, thereby, enhancing the magnetic coupling 

between magnetic moments.21 In their recent work, Miao et al. observed enhanced ferromagnetism in N-doped 

graphene with an increase in the saturation magnetisation and coercive field with an increase in the nitrogen 

content, especially pyrrolic groups of the samples which can induce a net magnetic moment of 0.95 B/N.63 

In contrast, Ito et al. have observed that the presence of pyrrolic groups lead to a reduction in the magnetisation 

values.64 Previously, He et al., reported that the magnetisation of the 12C+ implanted highly oriented pyrolytic 

graphite was found to be closely correlated with the density of defects and an almost linear relationship 

between the ID/IG ratio and saturation magnetisation was observed.65 As the FLG:N(ECR) graphene shows the 

highest ID/IG ratio, it is expected and indeed observed that the N-graphene displays highest magnetization 

values. For N-graphene, the Fermi level shifts upwards due to the extra  electron making graphene electron-

rich.66 The shift of C K-edge and formation of different carbon–nitrogen bonds observed in the N K-edge 

XANES spectra clearly indicated the formation of p electron and Fermi level shift. The high value of ID/IG 

ratio of N-graphene also implies defect rich N-graphene. The result suggests that the magnetic properties of 

these structures are entirely determined by the graphitic region due to the  character of the spin density. Thus, 
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N-doping enhances the direct type of magnetic coupling between the magnetic moments due to the decrease 

in the distance between the magnetic moments. Moreover, the presence of magnetic exchange or coupling 

between the localized magnetic moments is a necessary ingredient for the magnetic cooperative behaviour 

such as ferromagnetic ordering. It is noted that the specific contribution made by each specific type of two N 

types (pyridinelike and cyanide-like) is complicated, and it is difficult to clarify the specific contribution in 

N-graphene.  

It is expected that at higher nitrogen concentrations, the defect formation along with the incorporation of 

nitrogen atoms in the graphitic phases can give rise to the presence of lone pair electron spin leading to the 

possibility of ferromagnetic ordering and increased saturation magnetisation.67 Why the FLG:N(PECVD) 

samples with higher nitrogen content (see table 1) show anomalously lower magnetisation than even the 

pristine FLG is still not entirely clear as yet. As discussed above, in their recent report Ito et al.64, observed 

that upon pyrolysis of nitrogen containing pre-halogenated carbon precursor, a reduction in the magnetic 

properties of graphene domains occurred. In their study, the decrease in the magnetism was attributed to 

multiple factors, including appearance of diamagnetic features and disappearance of magnetic edge states i.e. 

radical-type edge states in six-membered heteroatom ring structure occurring due to the additional electron 

density supplied by nitrogen atoms on pyridinic and graphitic positions. Furthermore, invoking the stability 

influence of various bonding states, it incorporation of nitrogen into a 5-membered ring structure i.e. pyrrole 

type structure, led to a stable non-radical type defects reducing the overall magnetism via a reduction in the 

ferromagnetically active defect density. In their work on ferromagnetism in nitrogen doped graphene, Błoński 

et al too have considered the effects of pyrrolic nitrogen in introducing magnetism in graphene.68 In their DFT 

studies, it was observed that introduction of pyrrolic nitrogen into the graphene lattice had no effect and the 

subsequent coupling between pyridinic nitrogen moieties did not result in any long-range magnetic ordering. 

In the present study, for the FLG:N(PECVD) samples, it was indeed observed that the amount of pyrrolic 

nitrogen was significantly higher than the FLG:N(ECR) sample which may contribute to the reduction of 

magnetism to even lower levels than that of the pristine FLGs.61  

Further detection of the magnetic domains in the pristine and FLG:N(ECR) samples was carried out using 

magnetic force microscopy (MFM) measurements employing low magnetic moment probes with Co/Cr 
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coating. The magnetized Co/Cr coated probe interacts with magnetic field gradients generated by magnetic 

domains within the synthesised FLGs resulting in observable changes in the phase and amplitude of the 

oscillating cantilever. Fig. 5 (d-f)/(g-i) and Fig. 5 (j-l)/(m-o) show the topographic (height), amplitude and 

phase signals imaged simultaneously for both tapping mode AFM and magnetic force microscopy (MFM) 

mode to assess the correlation of surface features, identify and eliminate possible artifacts and to assess the 

effects of nitrogenation on magnetization. To assess the correlation of surface features and the effects of 

magnetization, the topographic (height), amplitude and phase signals were imaged simultaneously for both 

conventional topographical imaging and magnetic measurements. MFM data were acquired while maintaining 

a constant “lift scan height” of ~10 nm above the topography (height) data to reduce the coupling between van 

der Waals and magnetic forces and to demonstrate the field strength generated by the magnetic domains. In 

the “lift-scan” mode, the topography is measured in the dynamic amplitude modulation mode after which the 

tip is then moved at a constant distance above the surface during which the magnetic component of the data 

is recorded.33 In theory, the topographic contributions should get eliminated in the second image. Comparing 

the AFM scans of the samples with the MFM scans, while no significant changes are observed in the 

topographic signal; significant differences are observed in the phase and amplitude scans. For the conventional 

AFM scans, the phase signal is essentially a map of how the phase of the cantilever oscillation is affected by 

its interaction with the sample surface and is affected highly by topography among other factors such as 

chemical nature, relative hardness/softness of the sample. Since the MFM signal represents the phase shift 

between the probe oscillation and the driving signal due to magnetic force acting on the tip, therefore by 

visualising/measuring the changes occurring in the amplitude and phase images, the existence of magnetic 

domains in the samples can be ascertained. For a true quantitative interpretation of the MFM images, it is 

necessary to have precise knowledge of the geometry, magnetic properties of the tip and the tip-sample 

interactions to express the force acting on the tip, which has only been achieved in special cases.10 

Nevertheless, a qualitative analysis can be carried out by considering the phase and amplitude changes 

observed in the MFM images as shown in Figure 5(j-l)/(m-o). It should be noted that an attractive interaction 

between the between the tip and the sample leads to a negative phase shift (dark contrast), while a repulsive 

interaction will lead to a positive phase shift (bright contrast). In fact, the MFM phase and amplitude images 
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show a very good correlation in the formation of the magnetic domains. For all the FLG samples, the magnetic 

domains appear as dark and bright-localized regions in the phase and amplitude images respectively. 

Considering Figure 5(j-l)/(m-o), representing amplitude images of pristine FLG and ECR N-graphene, it can 

be clearly observed that the magnetic domains in the ECR N-graphene are more localized than in the case of 

pristine FLG. A simple visual scaling of MFM phase data suggests that the ECR N-graphene the strongest 

magnetization effect, which is consistent with the M–H magnetization results discussed above. 

 

• CONCLUSIONS  

In summary, we have observed room-temperature ferromagnetism for both pristine and nitrogen plasma 

functionalised FLGs. The dependence of the magnetic properties on the electronic and chemical bonding 

nature of nitrogenated species was elucidated using X-ray based spectroscopic techniques. The XANES 

measurements suggest that the magnetic properties of the FLGs are entirely determined by the graphitic region 

due to the  character of the spin density wherein the N-doping enhances the direct type of magnetic coupling 

between the magnetic moments due to the decrease in the distance between the magnetic moments. More 

specifically, considering the various bonding states, the incorporation of nitrogen into pyrrolic structure leads 

to the formation of stable non-radical type defects, which, as compared to the pristine FLGs, reduced the 

magnetism for rf-PECVD nitrogen functionalised samples. For the ECR nitrogen functionalised samples, the 

enhanced magnetism is due to the extra -electron from nitrogen making the structure electron-rich, thereby, 

enhancing the magnetic coupling between magnetic moments alongside the increased defect density as 

measured from Raman spectroscopy. The intrinsic room-temperature ferromagnetic character of the materials, 

but without the constraint of spontaneous magnetization, combined with its semi-conductivity and 

functionalization capability, should have wide-reaching implications in material science, and these collective 

properties could make graphene-based materials a competent choice for many important device applications, 

including spintronics, magneto-resistance, and magnetic memory devices, among others.  
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• FIGURE CAPTIONS 

Figure 1 (a) Deconvoluted Raman spectra of pristine and functionalised FLG samples showing the variation 

of the peak positions of the D and G bands, (b) electron field emission behaviour showing current density (J) 

as a function of applied electric field (EA) with the inset showing the Fowler–Nordheim plot obtained from 

EFE measurements. 

 

Figure 2: (a) C K-edge XANES spectra of the pristine and nitrogenated FLGs with the lower inset showing 

the signatures of C–H bonds and interlayer graphite states. The inset above shows the changes in the C 1s core 

level XPS spectra, (b) N K-edge XANES spectra of the ECR and rf-PECVD functionalised with their 

respective deconvolutions in (c) and (d) respectively.  

 

Figure 3: C1s, O1s core level XPS spectra of (a, d) pristine FLG, (b, e) rf-PECVD nitrogenated FLG, (c, f) 

ECR nitrogenated FLG. (g) deconvoluted N1s core level spectra of ECR nitrogenated FLG with the 

corresponding spectra for rf-PECVD sample shown in (h). 

 

Figure 4: (a) UPS He-I and (b) He-II spectra for the measurement of work function and density of states 

below the Fermi level, respectively. The change of the chemical composition and arising bonding modification 

as observed in the distinct hybridised bands observed for deconvoluted spectra for (c) FLG, (d) rf-PECVD 

nitrogenated FLG and (e) ECR functionalised FLG, respectively. 

 

Figure 5: Magnetic hysteresis loops obtained for (a) FLG, (b) rf-PECVD nitrogenated FLG and (c) ECR 

nitrogenated FLG at 40K and 300K, respectively. AFM scans for pristine FLG and ECR nitrogenated FLG 

with the corresponding MFM scans shown in (j-l) and (m-o), respectively. The significant increase and 

localisation of the magnetic domains in the ECR N-graphene is clearly visible in the amplitude scans.  
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Table 1: Elemental Quantification, magnetic parameters and Raman parameters 

 

Samples Element and 

quantification (at%) 

Electron field emission Magnetic parameters Raman 

Parameters 

 C O N E
0 

 (V/m) 

(TOE) 

J
 
(mA/cm2)  

@ 32 V/m 

Temperature 

(K) 

Hc (Coercivity) 

(Oe) 

Ms (Saturation 

magnetisation) 

(emu/gm) 

Mr (Remnant 

magnetisation) 

(emu/gm) 

(ID/IG) (I2D/IG) 

FLG 78.78 21.22 -- 26.5 0.18 40 

300 

112.37 

62.98 

3.47 x 10-4 

2.60 x 10-4 

0.52 x 10-4 

0.42 x 10-4 

0.62 1.04 

FLG:N 

(PECVD) 

78.41 18.53 4.06 40.0 1.16 40 

300 

80.30 

80.41 

0.39 x 10-4 

0.42 x 10-4 

0.09 x 10-4 

0.12 x 10-4 

0.70 0.70 

FLG:N 

(ECR) 

78.05 19.77 2.18 20 2.97 40 

300 

40.00 

25.42 

118.62 x 10-4 

111.91 x 10-4 

9.74 x 10-4 

6.04 x 10-4 

1.02 0.79 
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