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Abstract

We calculate the k-point generating function of the correlated Jacobi ensemble using
supersymmetric methods. We use the result for complex matrices for k = 1 to derive a
closed-form expression for eigenvalue density. For real matrices we obtain the density in
terms of a twofold integral that we evaluate numerically. For both expressions we find
agreement when comparing with Monte Carlo simulations. Relations between these
quantities for the Jacobi and the Cauchy-Lorentz ensemble are derived.

1 Introduction

The Jacobi ensemble, like the Wishart ensemble, has its roots in the field of multivariate
statistics. To quantify the empirically estimated canonical correlation coefficients between
two sets of time series, they are compared to a null hypothesis, i.e. to a Gaussian distribution.
Assuming for both sets Gaussian statistics with a non-trivial correlation structure, the null
hypothesis becomes the Jacobi model [1–3]. Besides the canonical correlation analysis it
applies also to other aspects of high-dimensional inference such as analysis of variances,
regression analysis and the test of equality of covariance matrices [1–5]. Consequently, they
are also referred to as MANOVA (Multivariate ANalysis Of VAriance) ensembles.

Along with the Gaussian (Wigner) and the Laguerre (uncorrelated-Wishart) ensembles,
the Jacobi ensemble constitutes the family of classical random matrix ensembles. Just as
the eigenvalue statistics for Wigner and Wishart ensembles respectively involve Hermite
polynomials and associated Laguerre polynomials, the eigenvalue statistics of Jacobi en-
sembles involve Jacobi polynomials. Together they complete the random matrix ensemble
picture in connection with the theory of classical orthogonal, and skew-orthogonal polyno-
mials [6–9]. Closely related to these classical ensembles is the less known Cauchy-Lorentz
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ensemble [10, 11]. It exhibits a Levy tail and therefore finds important applications in the
spectral statistics of covariance matrices in finance [12].

Besides their crucial role in multivariate statistics and the intimate connection with the
theory of classical polynomials, Jacobi ensembles find interesting applications in the fields
of quantum transport and optical fibre communication. In the context of quantum trans-
port, they describe the statistics of transmission (or reflection) eigenvalues for disordered
mesoscopic systems with ideal leads, see [13] and references therein. The knowledge of these
eigenvalues, in turn, gives access to important observables such as Landauer conductance,
shot-noise power and Wigner delay time [14–19]. This connection of Jacobi ensembles with
the transmission eigenvalues stems from their relationship with the scattering matrices which
are modelled using Dyson’s circular ensembles [13,14]. More recently Jacobi ensembles have
been used in the ergodic capacity analysis of multiple-input-multiple-output optical fibre
communication [20–22]. In this case the Jacobi structure emerges from the channel matrix
which happens to be a block of a bigger transfer matrix which is unitary in nature.

In all these applications listed above one can ask about intrinsic correlations of the
channels or time series which result in correlated random matrix ensembles. Thus one has
to relax the condition of the empirical correlation matrix being proportional to the identity
matrix. This correlation can be attributed to different reasons depending on the context.
For instance, in time-series analysis data are in general mutually correlated, e.g. see [23].
In the context of multiple antenna communication, this correlation arises because of spatial
correlation between closely spaced antennas [24] as it is the case in any cellphone. To handle
these situations matrix models with correlations between different time series [24–28], even
with double correlations [29, 30], have been introduced; see also Refs. [1, 2] and references
therein. In the Wishart case the level density of the model correlation matrix was computed
by various techniques. We pursue the ideas of Refs. [26,30] where supersymmetry techniques
were employed.

In the case of the Jacobi and the Cauchy-Lorentz ensemble not much progress has been
made in a similar direction as for the Gaussian because of their non-Gaussian form. Nonethe-
less both models can be traced back to a combination of two random matrices both drawn
from Wishart ensembles, as explained in detail in sections 2 and 3.1. To each of the two
Wishart matrices one can associate an empirical covariance matrix. However, we show in
section 2 that effectively only one empirical correlation matrix is involved.

In section 2 we briefly review the Jacobi ensemble before showing the relation to the
Cauchy-Lorentz ensemble in section 3. The latter is more convenient to apply the projection
formula [10] and the supersymmetry approach. Nevertheless we present in appendix A an
alternative approach which is a direct way from the integral over the Jacobi ensemble to
an integral over superspace. The resulting supersymmetric integral is more involved than
the one resulting from the first approach because it involves two supermatrices instead of
only one. However the second approach exhibits an intrinsic symmetry of the model which
is not obvious in the more compact result presented in section 3. In section 4 we calculate
the whole eigenvalue statistics of the correlated complex Jacobi and the correlated complex
Cauchy-Lorentz ensemble. This is possible due to an underlying determinantal point process.
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Such an integrable structure is not available for the real case discussed in section 5. For this
case we need the supersymmetric representation and compute the level density with the help
of the generalized Hubbard-Stratonovich transformation. Some details of this calculation
are presented in appendix B. In section 6, we discuss the level density for the real and
the complex ensemble in the limit of large matrix sizes in a unified way. Our results are
summarized in section 7.

2 Correlated Jacobi Ensemble

This section is devoted to introduce the theoretical background. The correlated Jacobi
ensemble is a two-matrix model for a Hermitian matrix H which is composed of two inde-
pendently distributed correlated Wishart matrices FF † and BB†, i.e.

H =
FF † −BB†

FF † +BB†
. (1)

The rectangular matrices F and B have the same number of rows p (the number of time
series) but may have a different number of columns n1 and n2 (the number of time steps),
respectively. We assume that n1 ≥ p and n2 ≥ p. In a realistic situation for time series
analysis both dimensions n1 and n2 are indeed larger than p since the number of time
steps is usually larger than the number of time series. Moreover the matrix entries Fij are
distributed as Gaussians with variances [CF ]ji such that the distribution reads

P (F |CF ) =
exp

(
− trFF †C−1

F /γ
)

(γπ)n1p/γ detn1p/γ1 CF
, (2)

and likewise for B, where we introduce γ = 1 for β = 2 and γ = 2 for β = 1. The parameter
β is the Dyson index meaning that β = 1 corresponds to real matrices whereas β = 2 denotes
complex matrices. The case of quaternion matrices (β = 4) is not considered here but can
be in general worked out in a similar way.

The empirical correlation matrices CF and CB are fixed as in the discussions of [24–30].
Because of the distribution (2) the random matrices F and B have upon average the same
covariances as the sample,

1

n1

〈
FF †

〉
= CF ,

1

n2

〈
BB†

〉
= CB (3)

The angular brackets denote the average over the random matrices F and B.
We note that instead of the matrix model (1) one can also consider the matrix model

FF †(FF † +BB†)−1. In that case the eigenvalues lie in the interval [0, 1]. These two matrix
models are related by a scaling and a shift transformation. We work here with the matrix
model (1) and thus relate directly to the Jacobi weight. Because of the involvement of two
Wishart matrices in the Jacobi model, it is also known as the double Wishart model.
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The spectral statistics of H can be studied via partition functions which are averages
over products and ratios of characteristic polynomials, see e.g. [31, 32],

Z
k1|k2
p,β (κ) =

∫
d[F,B]

∏k2
a=1 det (H − κa211p)∏k1
b=1 det (H − κb111p)

P (F |CF )P (B|CB). (4)

Those partition functions are related to the k-point correlation functions as

Rk
p,β(x) =

〈
k∏
j=1

(
1

p
tr δ(H − xj11p)

)〉
(5)

= lim
ε→0

∑
Lj=±1

(
k∏
j=1

Lj
2πıp

∂

∂x′j

)
Z
k|k
p,β (x1 + ıL1ε, . . . , xk + ıLkε, x

′
1, . . . , x

′
k)

∣∣∣∣∣∣
x′=x

with x1, . . . , xk ∈ R. We underline that this definition of the k-point correlation function
comprises self-energy terms, in particular terms proportional to δ(xi − xj). Despite those
terms the definition (5) is very helpful when the joint probability density of the eigenvalues is
not explicitly known as it is in the case of the correlated real ensembles discussed in section 5.

In the case when the joint probability density is known one can apply another definition
of the k-point correlation function, e.g. see [33],

R̂k
p,β(x) =

〈
k∏
j=1

δ(Ej − xj)

〉
=

(p− k)!pk

p!
Rk
p,β(x)− self-energy terms, (6)

where E1, . . . , Ek are the eigenvalues of H. This definition is employed to the correlated
complex ensembles studied in section 4. Both definitions are normalized in such a way that∫
dxkR

k
p,β(x) = Rk−1

p,β (x) and
∫
dxkR̂

k
p,β(x) = R̂k−1

p,β (x). The eigenvalue density of H is given
by the case k = 1, i.e.

Sβ(x) :=

〈
1

p
tr δ(H − x11p)

〉
= R1

p,β(x) = R̂1
p,β(x). (7)

It is computed in sections 4 and 5.
The partition function (4) is normalized as limκ→∞ Z

k1|k2
p,β (κ)detp(−κ1)/detp(−κ2) → 1.

Note that in the case CF = CB, the partition function and, hence, the spectral statistics of
H become independent of the empirical covariance matrices such that the joint eigenvalue
distribution of H is given by the uncorrelated Jacobi ensemble [2,4,8]. Indeed we can rescale
the matrices F →

√
CFF and B →

√
CFB such that the partition function only depends on

Ceff = C
−1/2
F CBC

−1/2
F , i.e.

Z
k1|k2
p,β (κ) =

∫
d[F,B]

∏k2
a=1 det (H − κa211p)∏k1
b=1 det (H − κb111p)

P (F |11p)P (B|Ceff). (8)

Thus in the case CF 6= CB, the eigenvalue statistics become non-trivial, even in the complex
case (β = 2), see section 4. Thus, it is reasonable to apply other methods than the standard
Jack or Zonal polynomial approach [2, 34,35].
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3 Correlated Cauchy-Lorentz Ensemble

The correlated Jacobi ensemble is also related to the correlated Cauchy-Lorentz ensemble.
This relation is established in subsection 3.1. With the help of this relation we express
the partition function (8) in terms of integrals over supermatrices in subsection 3.2. The
advantage of the supersymmetric integrals is the drastic reduction of integration variables.
The parameters n1, n2, and p only appear as external parameters in those expressions. This
fact allows an asymptotic study when these parameters are large which is considered in
section 6.

3.1 Relation between Jacobi and Cauchy-Lorentz

To see the relation between the Jacobi and the Cauchy-Lorentz ensembles we take advantage
of the fact that FF † is generically invertible because n1 > p. Then we can rewrite F = F̂Π
as a product of a p× p square matrix F̂ which can be either real (β = 1) or complex (β = 2)
and a random projection Π ∈ O(n1)/[O(p) × O(n1 − p)] for β = 1 and Π ∈ U(n1)/[U(p) ×
U(n1 − p)] for β = 2. The measure transforms as d[F ] = det(n1−p)/γF̂ F̂ †d[F̂ ]dµ(Π) where
dµ(Π) is the Haar measure induced from those on the groups O(n1) or U(n1), respec-
tively. The projection drops out and the integral over it yields a constant. The same
procedure can be applied for the matrix B yielding a p × p matrix B̂ with the weight
exp[− trC−1

eff B̂B̂
†/γ]det(n2−p)/γB̂B̂†d[ widehatB]

Since F̂ is generically invertible we can rewrite any average of an observable O of H in
the following way〈

O
(
FF † −BB†

FF † +BB†

)〉
=

〈
O

(
F̂ F̂ † − B̂B̂†

F̂ F̂ † + B̂B̂†

)〉
=

〈
O

(
11p − F̂−1B̂B̂†F̂−1 †

11p + F̂−1B̂B̂†F̂−1 †

)〉
. (9)

Note that the observable O has to be invariant under the group action of O(p) and U(p),
respectively. Due to the invariance of the probability weight P (F |11p) the average (9) over

F̂ , only, depends on the singular values of B̂ such that it is also true〈
O
(
FF † −BB†

FF † +BB†

)〉
=

〈
O

(
11p − F̂−1B̂†B̂F̂−1 †

11p + F̂−1B̂†B̂F̂−1 †

)〉
. (10)

This identity is reminiscent of the weak-commutation relation proven in [36]. When rescaling

B̂ → B̂F̂ † the integral over F̂ becomes a deformed Gaussian and reads∫
d[F̂ ]det(n1+n2−p)/γF̂ F̂ † exp

(
−1

γ
tr F̂

[
B̂†C−1

eff B̂ + 11p

]
F̂ †
)

∝ det−(n1+n2)/γ
(
B̂†C−1

eff B̂ + 11p

)
. (11)

Thus the spectral statistics of H is equal to the statistics of

H ′ =
11p −B′B′†

11p +B′B′†
, (12)
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where the p× n2 matrix B′ is drawn from the correlated Cauchy-Lorentz distribution

PCL
n1+n2

(B′|Ceff) = πn2p/γ

(
n−1∏
j=0

Γ[(n1 − p+ j + 1)/γ]

Γ[(n1 + n2 − p+ j + 1)/γ]

)
detn1/γCeff

×det−(n1+n2)/γ
(
B′B′† + Ceff

)
. (13)

Indeed the factorization B′ = B̂Π′ in a square matrix B̂ and a projection Π′ ∈ O(n2)/[O(p)×
O(n2 − p)] for β = 1 and Π′ ∈ U(n2)/[U(p)×U(n2 − p)] for β = 2 is still possible. Then we

would have the additional term det(n2−p)/γB̂B̂† in the weight (13).
Note that the eigenvalue statistics of H ′ is completely determined by the eigenvalue

statistic of B′. This means when we calculate the k-point correlation function of B′B′† then
the k-point correlation function of H ′ is given by the substitution b = (1− x)/(1 + x) where
b is an eigenvalue of B′B′† and x is an eigenvalue of H ′. Therefore we consider the partition
function

Z ′
k1|k2
p,β (κ) =

∫
d[B′]

∏k2
a=1 det

(
B′B′† − κa211p

)∏k1
b=1 det (B′B′† − κb111p)

PCL
n1+n2

(B′|Ceff). (14)

From this point on everything works analogously to the correlated Wishart ensemble studied
in [26, 27]. When plugging Eq. (12) into Eq. (8) we obtain an explicit relation of Z ′

k1|k2
p,β (κ)

to the partition function of the Jacobi ensemble which is

Z
k1|k2
p,β (κ) = (−1)(k1−k2)p

∏k2
a=1(1 + κb2)p∏k1
b=1(1 + κb1)p

Z ′
k1+k2|k2+k1
p,β

(
1− κ1

1 + κ1

,−11k2 ;
1− κ2

1 + κ2

,−11k1

)
. (15)

Especially the k-point correlation function remains effectively unaffected since in this case
we have k1 = k2 = k and the additional characteristic polynomials cancel. The k-point
correlation function with self-energy terms is then

R′
k
p,β(b)

k∏
j=1

dbj =

〈
k∏
j=1

(
1

p
tr δ(B′B′† − bj11p)dbj

)〉
(16)

= R′
k
p,β

(
1− x
1 + x

) k∏
j=1

2dxj
(1 + xj)2

= Rk
p,β (x)

k∏
j=1

dxj

and similar for the definition (6). We have written the differentials to underline the transfor-
mation properties under changes of coordinates. In the particular case of the level density
we have

S ′β(b)db =

〈
1

p
tr δ(B′B′† − b11p)db

〉
= S ′β

(
1− x
1 + x

)
2dx

(1 + x)2
= Sβ(x)dx. (17)

Establishing this relation between the correlated Jacobi model and the correlated Cauchy-
Lorentz ensemble is the first main result of our work.
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3.2 Projection Formula

Before we come to supersymmetry let us refer the reader who is not familiar to superanalysis
and superalgebra to the textbook by Berezin [37]. A general introduction to the supersym-
metry method in random matrix theory is given in [31,38,39] and references therein.

To apply the projection formula introduced for chiral ensembles in Ref. [10] we rescale
the matrix B′ →

√
CeffB

′. Then the partition function (14) is

Z ′
k1|k2
p,β (κ) = detk2−k1Ceff

∫
d[B′] sdet−1(B′B′† ⊗ 11k1|k2 − C−1

eff ⊗ κ)PCL(B′|11p). (18)

We use the short-hand notation of the superdeterminant which only encodes the products
and ratios of determinants. Moreover we understand κ = diag(κ11, . . . , κk11, κ12, . . . , κk22) as
a (k|k) × (k|k) diagonal supermatrix. The representation (18) directly reflects the duality
between the ordinary matrix space and the supermatrix space.

Let L = sign Imκ be the sign of the imaginary increment in the source. Then we can
apply the projection formula [10,11] to the partition function (18) which reads

Z ′
k1|k2
p,β (κ) = K1 detk2−k1Ceff

∫
d[χ] sdet−1/γ(11p ⊗ χχ† − C−1

eff ⊗ (κ⊗ 11γ)) (19)

× sdet−µ/γ(χχ† + 11γk1|γk2)

= K2 detk2−k1Ceff

∫
dµ(U) sdetn2/γ U sdet−1/γ(11p ⊗ U − C−1

eff ⊗ (Lκ⊗ 11γ))

× sdet−µ/γ((L⊗ 11γ)U + 11γk1|γk2)

= K3 detk2−k1Ceff

∫
d[σ]In2(σ) sdet−1

(
11p ⊗ σ − C−1

eff ⊗ (κ⊗ 11γ)
)

× sdet−µ/γ
(
σ + 11γk1|γk2

)
with µ = n1 + n2 − p+ k1 − k2. The normalization constants are

K−1
1 =

∫
d[χ] sdet−µ/γ(χχ† + 11γk1|γk2),

K−1
2 =

∫
dµ(U) sdet−µ/γ((L⊗ 11γ)U + 11γk1|γk2) sdetn2/γ U, (20)

K−1
3 =

∫
d[σ]In2(σ) sdet−µ/γ

(
σ + 11γk1|γk2

)
.

The rectangular supermatrix χ has dimension (γk1|γk2)× n2 and it satisfies the symmetry

χ∗ = diag(11γk1 , τ2 ⊗ 11k2)χ, (χ†)∗ = χ†diag(11γk1 ,−τ2 ⊗ 11k2) (21)

in the real case (β = 1) where τ2 is the second Pauli matrix, i.e. χ consists of a (γk1) × n2

real or complex matrix depending on β and a (γk2) × n2 matrix comprising independent
Grassmann variables.
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In the second equality of Eq. (19) we have used the superbosonization formula [40–42].
We use this representation in sections 4 and 6. In the present situation the matrix

U =

[
UBB UBF

UFB UFF

]
(22)

satisfies the following symmetries:

• (L⊗ 11γ)UBB = [(L⊗ 11γ)UBB]† positive definite for both β = 1, 2 and UBB = U∗BB only
for β = 1,

• U †FF = U−1
FF unitary for both β = 1, 2 and UFF = τ2U

T
FFτ2 self-dual only for β = 1,

• UBF = U †FB for both β = 1, 2 and UT
FB = UBFτ2 only for β = 1.

The set of supermatrices U is a particular case of the co-set Gl(k|k)/U(k − r, r|k) for β = 2
and UOSP(2k−2r, 2r|2k)/U(2k−2r, 2r|2k) for β = 1 (r is the number of minus signs in L),
see [43]. Note that we have chosen the non-compact group symmetries due to the non-trivial
signs L.

Alternative to the superbosonization formula one can also choose the generalized Hubbard-
Stratonovich transformation [42, 44, 45], see third equality of Eq. (19), which we employ in
section 5. The superbosonization formula and the generalized Hubbard-Stratonovich trans-
formation are equivalent [42]. The first can be understood as the contour representation
of the latter which is some kind of a high dimensional residue theorem. The distribu-
tion In2(σ) in the generalized Hubbard-Stratonovich transformation is the supersymmetric
Ingham-Siegel integral [44,45],

In2(σ) =

∫
d[ρ] sdet−n2/γ(ρ− ıε11γk1|γk2) exp

[
ı str(ρ− ıε11γk1|γk2)σ

]
(23)

with ε > 0. It encodes derivatives of Dirac delta functions in the fermion-fermion block, σFF,
and the positivity condition in the boson-boson block, σBB. Therefore the supermatrices
σ and ρ are elements of another realizations of the cosets Gl(k|k)/U(k|k) for β = 2 and
UOSP(2k|2k)/U(2k|2k) for β = 1. They are of the form

σ =

[
σBB σ†FB

σFB ıσFF

]
and ρ =

[
ρBB ρ†FB

ρFB ıρFF

]
, (24)

where σFB and ρFB comprise independent Grassmann variables, only, and satisfy σ∗FB =
ıτ2σFB and ρ∗FB = ıτ2ρFB for β = 1. The blocks σBB, σFF, ρBB, and ρFF are Hermitian.
Additionally the submatrices σBB and ρBB are real symmetric while σFF and ρFF are self-
dual for β = 1.

4 Eigenvalue Spectrum for β = 2

In the case of complex matrices (β = 2) we first calculate the joint probability density before
applying supersymmetry. This simplifies the whole calculation a lot. In particular we show
in subsection 4.1 that the joint probability density follows a determinantal point process.
The corresponding kernel is expressed in terms of a supermatrix integral in subsection 4.2.
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4.1 Determinantal Point Process

We start from the weight (13). Let b = diag(b1, . . . , bp) > 0 be the eigenvalues of B′B′† =
UbU † with U ∈ U(p). The computation of the joint probability density of b is possible
because the integral∫

U(p)

dµ(U)det−n1−n2
(
UbU † + Ceff

)
(25)

= (−1)p(p−1)/2

(
p−1∏
j=0

j!(n1 + n2 − p− j − 1)!

(n1 + n2 − p− 1)!

)
det[(bi + Λj)

p−n1−n2−1]1≤i,j≤p
∆p(b)∆p(Λ)

is well-known [46, 47]. The matrix Λ = diag(Λ1, . . . ,Λp) > 0 are the eigenvalues of the
empirical matrix Ceff. The measure dµ(U) is the normalized Haar measure on the group
U(p) and ∆p(b) =

∏
1≤i<j≤p(bj − bi) = det[bj−1

i ]1≤i,j≤p is the Vandermonde determinant.
Thus the joint probability density is

pjpd
p,2 (b) = Kjpd detn1Λ

∆p(b)

∆p(Λ)
det[bn2−p

i (bi + Λj)
p−n1−n2−1]1≤i,j≤p, b > 0, (26)

with the normalization constant

Kjpd =
1

p!

p−1∏
j=0

(n1 + n2 − p)!
(n2 − p+ j)!(n1 − j + 1)!

. (27)

The normalization can be readily checked when applying Andréief’s integration theorem [48].
The k-point correlation function of the correlated Lorentz-ensemble without self-energy

terms is

R′
k
p,2(b1, . . . , bk) =

p∏
j=k+1

∫ ∞
0

dbj p
jpd
p,2 (b). (28)

We employ a modification of Andréief’s integration theorem derived in [49] and find a de-
terminantal point process

R′
k
p,2(b1, . . . , bk) =

(−1)k(p− k)!Kjpd

∆p(Λ)
det

 0 bn2−p
m (bm + Λj)

p−n1−n2−1Λn1
j

bi−1
l

(n2 − p+ i− 1)!(n1 − i)!
(n1 + n2 − p)!

Λi−1
j


1≤l,m≤k
1≤i,j≤p

=
(p− k)!pk

p!
det [K(bl, bm; Λ)]1≤l,m≤k . (29)

We emphasize that the case k = p is the joint probability density. The kernel is

K(bl, bm; Λ) =
1

p

p∑
i,j=1

(−1)p−i
(n1 + n2 − p)!

(n2 − p+ i− 1)!(n1 − i)!
ep−1
p−i (Λ 6=j)

det(Λj11p−1 − Λ 6=j)
Λn1
j

9



×bi−1
l bn2−p

m (bm + Λj)
p−n1−n2−1 (30)

with

epk(Λ) =
∑

1≤j1<...<jk≤p

Λj1 . . .Λjk (31)

the elementary polynomial of degree k with p arguments and Λ 6=j the set of (p−1) eigenvalues
Λ where Λj is excluded. Deriving the determinantal point process (29) for the complex case
is our second main result we have been aiming at.

The result (29) immediately yields the k-point correlation function of the correlated
Jacobi ensemble via the explicit relation

R̂k
p,2(x) =

k∏
j=1

2

(1 + xj)2
R′

k
p,2

(
1− x
1 + x

)
. (32)

The prefactor is the Jacobian from the change of coordinates b = (1−x)/(1+x), cf. Eq. (16).
In particular the level density (7) reads

S2(x) =
2

p

p∑
i,j=1

(−1)p−i
(n1 + n2 − p)!

(n2 − p+ i− 1)!(n1 − i)!
ep−1
p−i (Λ6=j)

det(Λj11p−1 − Λ 6=j)
Λn1
j

× 1

(1 + x)2

(
1− x
1 + x

)n2−p+i−1(
1− x
1 + x

+ Λj

)p−n1−n2−1

(33)

This closed-form expression for the level density is plotted in Fig. 1 where we compare the
result with a Monte-Carlo simulation. The structure of Eq. (33) is reminiscent to the result
found for the correlated complex Wishart ensemble [24,29].

Despite the fact that the kernel (30) is very explicit it is unsuitable for studying its
asymptotics, see section 6. This is the reason why we want to rewrite this expression in the
next subsection.

4.2 Supersymmetry and the Kernel

Let us point out that the kernel (30) is independent of k. This is quite convenient since we
can express the kernel as an integral which is very similar to the one we started from, see
Eqs. (26) and (28). Thus the kernel is

K(x1, x2; Λ) = Kjpddetn1Λ

p−1∏
j=1

∫ ∞
0

dbj
∆p(b, x1)

∆p(Λ)
det

[
bn2−p
i (bi + Λj)

p−n1−n2−1

xn2−p
2 (x2 + Λj)

p−n1−n2−1

]
1≤i≤p−1

1≤j≤p

.

(34)
The normalization constant is fixed via the asymptotics of the kernel in the variables x1 and
x2.
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Figure 1: Comparison of the analytical expression (33) (solid curve) with Monte Carlo
simulations (histogram). The random matrices have the sizes p = 3, n1 = 5, n2 = 7 and
the empirical eigenvalues are Λ = diag(1/3, 2, 9/2). We have generated 50 000 complex
correlated Jacobi matrices.

Note that we now integrate only over p − 1 variables instead of p. The missing integral
can be introduced by a Dirac delta function δ(bp − x2) = limε→0 Im 1/[π(bp − x2 − ıε)]. The
symmetrization in all b1, . . . , bp reads

K(x1, x2; Λ) =
1

πp
lim
ε→0

Im
1

x2 − x1

Kjpddetn1Λ

p∏
j=1

∫ ∞
0

dbj
∆p(b)

∆p(Λ)

det(b− x111p)

det(b− (x2 + ıε)11p)

× det
[
bn2−p
i (bi + Λj)

p−n1−n2−1
]

1≤i,j≤p . (35)

What did we gain from rewriting the kernel? We can now identify the integral on the
right hand side with a partition function (14), i.e.

K(x1, x2; Λ) =
1

πp
lim
ε→0

Im
1

x2 − x1

Z ′
1|1
p,2(x2 + ıε, x1). (36)

This allows us to apply the result (19) of the projection formula,

K(x1, x2; Λ) = lim
ε→0

1

2πıp

∑
L=±1

L

x2 − x1

∫
dµ(U) sdet−1(11p ⊗ U − Λ−1 ⊗ diag(x2 + ıLε, x1))

× sdetp−n1−n2(LU + 111|1) sdetn2 U. (37)

11



The explicit parametrization of U is

U =

[
Leϑ η∗

η eıϕ

]
(38)

with η and η∗ two independent Grassmann variables and ϑ ∈ R and ϕ ∈ [0, 2π]. The Haar
measure is dµ(U) = Leϑ+ıϕdϑdϕdη∗dη/(2π) where we choose the convention

∫
ηdη = 1. The

expression (37) is exactly what we are aiming at. The integral is over a small fixed number
of variables and the “large” dimensions n1, n2 and p appear as external parameters. Thus
the result (37) invites for a saddle point approximation. This is the main idea behind the
supersymmetry method [38,39].

The diagonal elements of the determinant (29) are the level density at positions x1, . . . , xk
whereas the kernel becomes

S ′2(b) = lim
ε→0

∑
L=±1

L

4πıp

∫
dµ(U) str(11p ⊗ U − (b+ ıLε)Λ−1 ⊗ 111|1)−1

[
11p 0
0 −11p

]
× sdet−1(11p ⊗ U − (b+ ıLε)Λ−1 ⊗ 111|1) sdetp−n1−n2(LU + 111|1) sdetn2 U

(39)

due to L’Hôspital’s rule.

5 Eigenvalue Density in the Real Ensemble

In the case of the real correlated Jacobi ensemble the computation of an arbitrary k-point
correlation function is highly non-trivial since the corresponding group integral (25) is un-
known. Hence we concentrate on the calculation of the level density (7). Already computing
the level density with the help of the projection formula is quite involved. The dimension
of the supermatrix model is (2|2) × (2|2) and thus twice as large as for the kernel of the
complex matrices.

We apply the generalized Hubbard-Stratonovich transformation [42, 44, 45] for k = 1,
third equality of Eq. (19), which explicitly reads in this case

Z ′
1
p,1(κ) =

1

(4π)2

∫
d[σ]In2(σ) sdet−µ/2

(
σ + 112|2

)
sdet−1/2

(
Λ−1 ⊗ κ− 11p ⊗ σ

)
. (40)

The exponent is µ = n1+n2−p and In2(σ) is the supersymmetric Ingham-Siegel integral (23)
for k1 = k2 = 1. Furthermore we have κ = diag(b± ıε, b± ıε, b1, b1) and

σ =

(
σ1 ζ
−ζ† iσ2112

)
, ζ =

(
α α∗

β β∗

)
σ1 =

(
a b
b c

)
. (41)

The normalization has been calculated by choosing b1 = b±ıε where Cauchy-like integral the-
orems [50–55] apply. In the parametrization of σ, the variables a, b, c, σ2 are real commuting
whereas α, β are complex Grassmann variables. The measure is

d[σ] = dadbdcdσ2dαdα
∗dβdβ∗. (42)
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Let us first consider the diagonal blocks. Since the boson-boson as well as the fermion-
fermion block of κ are proportional to 112, we can diagonalize the boson-boson block of
σ without any problems. Accordingly, we write σ1 = OrOT , where r = diag(r1, r2) and
O ∈ O(2). This change of coordinates yields a decomposition of the differential

d[σ1] = |r1 − r2| dr1dr2dµ(O). (43)

Because of the structure of the integrand (40), the integral over O(2) factorizes and yields a
factor of π/2.

In the next step, we expand the superdeterminants of σ+112|2 in the Grassmann variables
α, α, β and β∗,

sdet−µ/2
(
σ + 112|2

)
=

(1 + ıσ2)µ

(1 + r1)µ/2(1 + r2)µ/2
(44)

×
(

1 +
µ

(1 + ıσ2)(1 + r1)
α∗α +

µ

(1 + ıσ2)(1 + r2)
β∗β +

µ(µ− 1)

(1 + ıσ2)2(1 + r1)(1 + r2)
α∗αβ∗β

)
and

sdet−1/2
(
Λ−1 ⊗ κ− 11p ⊗ σ

)
=

det(κ2Λ−1 − ıσ211p)√
det(κ1Λ−1 − r111p) det(κ1Λ−1 − r211p)

×
(

1 +

p∑
j=1

1

(κ2Λ−1
j − ıσ2)(κ1Λ−1

j − r1)
α∗α +

p∑
j=1

1

(κ2Λ−1
j − ıσ2)(κ1Λ−1

j − r2)
β∗β

+
∑

1≤i 6=j≤p

1

(κ2Λ−1
i − ıσ2)(κ2Λ−1

j − ıσ2)(κ1Λ−1
i − r1)(κ1Λ−1

j − r2)
α∗αβ∗β

)
. (45)

The expansion in the Grassmann variables of the supersymmetric Ingham-Siegel integral for
β = 1 was done in Ref. [26] and is

In2(r) =
4π

(n2 − 2)!
Θ(r1)Θ(r2)(r1r2)(n2−1)/2

(
ı
∂

∂σ2

)n2−2

×
(

1− ı
(
α∗α

r1

+
β∗β

r2

)
∂

∂σ2

− α∗αβ∗β

r1r2

∂2

∂σ2
2

)
δ(σ2), (46)

where Θ is the Heaviside step function.
When performing the integrals over the Grassmann variables we only keep the leading or-

der terms in the four Grassmann variables, in particular those terms proportional to α∗αβ∗β.
Moreover we evaluate the Dirac delta function and apply the derivative in κ2. In the end we
set κ2 = κ1 = κ. Then the partition function is

∂Z ′1p,1
∂κ2

(κ, κ) =
1

8

[
µ(µ− 1)Cp

n2−2,µ−2(κ; Λ)N0
n2−1,µ,+1,+1(κ; Λ)− 2µ(n2 − 1)Cp

n2−1,µ−1(κ; Λ)

×N0
n2−1,µ,+1,−1(κ; Λ) + n2(n2 − 1)Cp

n2,µ
(κ; Λ)N0

n2−1,µ,−1,−1(κ; Λ)
]
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+
1

4

p∑
j=1

[
µCp−1

n2−2,µ−1(κ; Λ6=j)N
1
n2−1,µ,+1(κ; Λ; Λj)− (n2 − 1)Cp−1

n2−1,µ(κ; Λ6=j)N
1
n2−1,µ,−1(κ; Λ; Λj)

]
+

1

4

∑
1≤i<j≤p

Cp−2
n2−2,µ(κ; Λ6=i,j)N

2
n2−1,µ(κ; Λ; Λi,Λj) (47)

with Λ 6=j the diagonal p−1 dimensional sub-matrix of Λ removing Λj and Λ6=i,j the diagonal
p− 2 dimensional sub-matrix removing Λi and Λj. The functions Cc

a,b(κ;E1, . . . , Ec) are the
integrals over σ2. The derivatives of the Dirac delta functions can be written as contour
integrals and as a finite sum

Cc
a,b(κ;E1, . . . , Ec) =

∂

∂κ

∫ 2π

0

dϕ

2π
e−ıaϕ(1 + eıϕ)b

c∏
j=1

(κE−1
j − eıϕ)

=
c∑
j=1

(−1)c−j
b! j

(c− a− j)!(a+ b− c+ j)!
κj−1ecj(E

−1). (48)

The resulting sum involves the elementary polynomials (31) which already appeared for the
correlated complex ensembles. The function

N0
a,b,d1,d2

(κ; Λ) =

∫
R2
+

dr1dr2|r1 − r2|∏p
l=1

√
κΛ−1

l − r1

√
κΛ−1

l − r2

r
(a−1+d1)/2
1 r

(a−1+d2)/2
2

(1 + r1)(b+1+d1)/2(1 + r2)(b+1+d2)/2
(49)

appears for any term in the expansion of the Grassmann variables as long as we take the
first term in the superdeterminant (45). The second and third term in the expansion (45)
yields the two-fold integrals

N1
a,b,d(κ; Λ; Λj) =

∫
R2
+

dr1dr2|r1 − r2|∏p
l=1

√
κΛ−1

l − r1

√
κΛ−1

l − r2

1

κΛ−1
j − r1

r
a/2
1 r

(a−1+d)/2
2

(1 + r1)b/2(1 + r2)(b+1+d)/2

(50)
and

N2
a,b(κ; Λ; Λi,Λj) =

∫
R2
+

dr1dr2|r1 − r2|∏p
l=1

√
κΛ−1

l − r1

√
κΛ−1

l − r2

1

(κΛ−1
i − r1)(κΛ−1

j − r2)

× r
a/2
1 r

a/2
2

(1 + r1)b/2(1 + r2)b/2
, (51)

respectively. These two integrals are principal value integrals at the non-integrable singular-
ities r1 = κΛ−1

j and r2 = κΛ−1
i . We discuss the numerical evaluation of these two integrals

in appendix B.
The structure of Eq. (47) is very similar to that obtained for the ordinary and the doubly

correlated Wishart model computed in Refs. [26, 30]. The full expression can be separated
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into three parts; a part with only square root singularities in r1 and r2, a part including an
additional 3/2-singularity in r1, and a part with two 3/2-singularities, one for r1 and one for
r2. The latter two terms in Eq. (47) correspond to the single and double sum. They have to
be regularized by Cauchy principal value integrals which is done in appendix B.

The ε → 0 limit of the imaginary part is taken from the integrals (49), (50), and (51),
only. Thereby we adapt the analysis from Refs. [26, 30] and concentrate on the product of
the square roots. We choose the branch cut of each square root along the negative real line.
Then for any y ∈ R we have

lim
ε→0

1√
y − ıLε

=
Θ(y) + LıΘ(−y)√

|y|
. (52)

Recall that L is the sign of the imaginary increment. Thus the imaginary part of Eq. (47)
is only non-vanishing in the limit ε→ 0 if det(bΛ−1 − r111p) det(bΛ−1 − r211p) has a negative
real part. We recall that κ = b + ıε. Let us assume that 0 < Λ1 < Λ2 < · · · < Λp < ∞.
Then we can divide the integration domain [0,∞) into disjoint subsets

[0,∞) =

p⋃
i=0

Vi (53)

where

V0 =
[
0, bΛ−1

p

)
, Vp =

(
bΛ−1

1 ,∞
)
, and Vi =

(
bΛ−1

p−i+1, bΛ
−1
p−i
)

for i = 1, . . . , p− 1. (54)

This decomposition implies det(bΛ−1 − r11p) = (−1)l| det(bΛ−1 − r11p)| for r ∈ Vl.
We plug the decomposition (54) into the integrals (49), (50), and (51) and keep only

those terms which yield an imaginary part. Then the double integral becomes a sum of
decoupled one-fold integrals∫ ∞

0

dr1

∫ ∞
0

dr2|r1 − r2| →
∑

0≤l1,l2≤p
l1+l2∈2N0+1

sign(l1 − l2)

∫
Vl1

dr1

∫
Vl2

dr2(r1 − r2). (55)

Moreover, we get an additional sign in the sum from the square roots. Assuming r1 ∈ Vl1

and r2 ∈ Vl2 , we have

Im lim
ε→0

p∏
k=1

1√(
(b+ ıε)Λ−1

k − r1

)√(
(b+ ıε)Λ−1

k − r2

)
=


p∏

k=1

(−1)(l1+l2+1)/2√∣∣bΛ−1
k − r1

∣∣ ∣∣bΛ−1
k − r2

∣∣ , l1 + l2 ∈ 2N + 1,

0, otherwise.

(56)

We also obtain for each additional term 1/(κΛ−1
j − r) in the integrals (50) and (51) a sign

sign(p − l − j + 1/2) if r ∈ Vl. The term 1/2 in the sign function guarantees that the sign
is positive if j = p− l.
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Summarizing everything the level density (17) of the correlated Cauchy-Lorentz ensemble
is

S ′1(b) =
∑

0≤l1,l2≤p
l1+l2∈2N0+1

∫
Vl1×Vl2

dr1dr2
(−1)(l1+l2−1)/2

p∏
k=1

√∣∣bΛ−1
k − r1

∣∣ ∣∣bΛ−1
k − r2

∣∣
×

f1(r1, r2; b,Λ) +

p∑
l=1

f2,l(r1, r2; b,Λ)(
bΛ−1

l − r1

) +

p∑
i,l=1
i 6=l

f3,l,i(r1, r2; b,Λ)(
bΛ−1

l − r1

) (
bΛ−1

i − r2

)
 ,

(57)

where f1(r1, r2; b,Λ), f2,l(r1, r2; b,Λ), and f3,l,i(r1, r2; b,Λ) are some functions that can be
read off from Eq. (47). As already said the integrals with the 3/2 singularities have to be
regularized which is done in appendix B. Finally we obtain a finite sum where each summand
is a product of the three integrals Cc

a,b(κ;E1, . . . , Ec) (see Eq. (48)), g0
a,c,l(b; Λ) (see Eq. (84)),

and g1
a,c,l(b; Λ; Λi) (see Eq. (85)),

S ′1(b) =
1

8π

∑
0≤l1,l2≤p

l1+l2∈2N0+1

(−1)(l1+l2+1)/2sign(l1 − l2) (58)

×
(
µ det

 0 g0
n2+1,µ+2,l1

(b; Λ) g0
n2−1,µ+2,l1

(b; Λ)
(n2 − 1)Cp

n2−1,µ−1(b; Λ) g0
n2+1,µ+2,l2

(b; Λ) g0
n2−1,µ+2,l2

(b; Λ)
(µ− 1)Cp

n2−2,µ−2(b; Λ) g0
n2−1,µ,l2

(b; Λ) g0
n2−3,µ,l2

(b; Λ)


+(n2 − 1) det

 0 g0
n2−1,µ,l1

(b; Λ) g0
n2−3,µ,l1

(b; Λ)
µCp

n2−1,µ−1(b; Λ) g0
n2−1,µ,l2

(b; Λ) g0
n2−3,µ,l2

(b; Λ)
n2C

p
n2,µ

(b; Λ) g0
n2+1,µ+2,l2

(b; Λ) g0
n2−1,µ+2,l2

(b; Λ)


+2

p∑
j=1

det

 0 g1
n2+1,µ,l1

(b; Λ; Λj) g1
n2−1,µ,l1

(b; Λ; Λj)

(n2 − 1)Cp−1
n2−1,µ(b; Λ6=j) g0

n2+1,µ+2,l2
(b; Λ) g0

n2−1,µ+2,l2
(b; Λ)

µCp−1
n2−2,µ−1(b; Λ6=j) g0

n2−1,µ,l2
(b; Λ) g0

n2−3,µ,l2
(b; Λ)


+2

∑
1≤i<j≤p

Cp−2
n2−2,µ(b; Λ6=i,j) det

[
g1
n2+1,µ,l1

(b; Λ; Λi) g1
n2−1,µ,l1

(b; Λ; Λi)
g1
n2+1,µ,l2

(b; Λ; Λj) g1
n2−1,µ,l2

(b; Λ; Λj)

])
.

The integrals g0
a,c,l(b; Λ) and g1

a,c,l(b; Λ; Λi) are one-fold integrals over the compact interval Vl
which is numerically more advantageous than the original two-fold integral.

The level density (7) of the correlated Jacobi ensemble readily follows from (58) via the
relation

S1(x) =
2

(1 + x)2
S ′1

(
1− x
1 + x

)
. (59)

This third main result is compared to Monte Carlo simulations in Fig. 2. The excellent
agreement validates our calculation.
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Figure 2: Comparison between the result (59) (solid curve) and Monte Carlo simulations
(histogram) for n1 = 5, n2 = 5 and p = 2 with Λj = 1, 4. The sample size consists of 50 000
real correlated Jacobi matrices.

We emphasize that the integrals drastically simplify when the spectrum of Ceff and thus
Λ is doubly degenerate. Then the limit ε → 0 in combination with taking the imaginary
part yields Dirac delta functions such that one of the integrals over r1 and r2 can be exactly
performed. The remaining integral can be easily performed, too, by employing the idea
of [49] where the term 1/ det(bΛ − r11p) can be written as a quotient of a Vandermonde
determinant and a Cauchy-Vandermonde determinant. The degeneracy of the spectrum is
not that academic. Such a degeneracy was proposed for the correlated real Wishart ensemble
in [27] to calculate explicit analytical results. It was shown that in the limit of large matrix
dimensions such an artificially introduced degeneracy has no effect on the spectral properties
like the level density and the k-point correlation function. The open question is if this
statement carries over to the Cauchy-Lorentz and the Jacobi ensemble. For the level density
we answer this question in the next section.

6 Asymptotics of the Level Density

To obtain the asymptotic behavior of the level density for both, the real and the complex
correlated Jacobi models, we perform a saddle point approximation of the supersymmetric
expression (19) for k = 1. Particularly we first consider the level density of the correlated
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Cauchy-Lorentz ensemble

S ′β(b) =
1

πp
lim
ε→0

Im
∂

∂J

∣∣∣∣
J=0

Z ′
1
p,β(b+ ıε, b− J + ıε)

=
K

πpγ
lim
ε→0

Im

∫
dµ(U) exp

[
−p
γ
L(U)

] p∑
j=1

str(b+ ıε− ΛjU)−1

[
11γ 0
0 0

]
. (60)

The normalization constant K is

K−1 =

∫
dµ(U) exp

[
−p
γ
L(U)

]
, (61)

where we used an apparent b-dependent version which is more convenient in the saddle
point approximation. The b-dependence is indeed only apparent because of the Cauchy-like
integration theorems in superspaces [50–55].

The “Lagrangian” in the exponential function is

L(U) = str

(
n1 + n2 − p

p
ln
(
U + 11γ|γ

)
− n2

p
lnU +

1

p

p∑
k=1

ln
(
(b+ ıε)Λ−1

k 11γ|γ − U
))

. (62)

This Lagrangian has to be minimized if n1 ∝ n2 ∝ p � 1, meaning that its first derivative
has to vanish,

L′(U0) =
n1 + n2 − p

p
(U0 + 11γ|γ)

−1 − n2

p
U−1

0 −
1

p

p∑
k=1

(
bΛ−1

k 11γ|γ − U0

)−1
= 0. (63)

Since this equation is invariant under the supergroup UOSp(2|2) for β = 1 and U(1|1) for
β = 2 we may diagonalize U0 such that each of its eigenvalues satisfies

L′(q0) =
n1 + n2 − p

p

1

q0 + 1
− n2

p

1

q0

− 1

p

p∑
j=1

Λj

b− q0Λj

= 0. (64)

We perform the same asymptotic analysis as in [27, 56] and count p + 2 poles at q0 =
−1, 0, bΛ−1

p , . . . , bΛ−1
1 . The asymptotic behavior of L′(q0) at q0 = bΛ−1

p , . . . , bΛ−1
1 implies

that p− 1 of the p+ 1 solutions of the saddle point equation (64) are real. When taking the
imaginary part in Eq. (60) we recognize that the real solutions do not contribute. Thus we
are looking for the complex conjugate pair which solves Eq. (64).

To find a closed form of the saddle point solution we underline that all poles and all
zero points, apart from the complex conjugate pair, of L′(q0) lie on the real line. Thus an
integral along an appropriate contour CR of its logarithmic derivative yields the solution via
Cauchy’s integration theorem, i.e.

q0 = lim
R→∞

∫
CR

z
∂ lnL′

∂z
(z)

dz

2πı
. (65)
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The contour is chosen as follows

CR =
{
Reıϕ +

ı

R

∣∣∣ϕ ∈ [0, π]
}
∪
{
r +

ı

R

∣∣∣ r ∈ [−R,R]
}

(66)

and we integrate clockwise. In this way we obtain either the unique complex solution in the
complex upper half-plane or zero. The latter implies S ′β(b) = 0, too.

The fermion-fermion block encircles the pole at the origin but the other poles of the
Lagrangian are purely zero points of the integrand. Hence this contour can be deformed to
go through both complex solutions q0 and q∗0. However the boson-boson block is hindered
to reach both solutions since the poles of L are apart from the one at origin poles of the
bosonic integrand. The sign in front of the imaginary increment ıε dictates which pole can
be reached and which not. By a contour deformation we can include the saddle point in
the upper or lower complex half-plane. In Ref. [57] it was shown that the leading order in p
is given by those saddle points where the boson-boson block and the fermion-fermion block
share the same saddle point. Thus, in the vicinity of the saddle point we have

U = (Re q0 + LıIm q0)

(
11γ̃|γ̃ +

δU
√
p

)
(67)

with δU a Hermitian (γ|γ) × (γ|γ) supermatrix satisfying certain symmetries in the case
β = 1, see [42,45]. We plug this expansion into Eq. (60) and integrate over δU . We arrive at

S ′β(b) ≈ 1

π
Im

1

p

p∑
j=1

1

b+ ıε− Λjq0(b)
=

1

πp

p∑
j=1

ΛjIm q0(b)

(b− ΛjRe q0(b))2 + (ΛjIm q0(b))2
, (68)

where we already fixed the normalization by the integration
∫
S ′β(b)db = 1. As in Ref. [27],

we can simplify the expression (68) with the help of the saddle point equation (64). Then
we find our fourth main result for the correlated Cauchy-Lorentz ensemble

S ′β(b) ≈ n1 + n2 − p
πp

1

b
Im

q0(b)

q0(b) + 1
=
n1 + n2 − p

πp

1

b

Im q0(b)

(Re q0(b) + 1)2 + (Im q0(b))2
(69)

and for the correlated Jacobi ensemble

Sβ(x) ≈ 2(n1 + n2 − p)
πp

1

1− x2

Im q0([1− x]/[1 + x])

(Re q0([1− x]/[1 + x]) + 1)2 + (Im q0([1− x]/[1 + x]))2
(70)

This solution is slightly more involved compared to the correlated Wishart ensemble [27].
Nevertheless it is a closed form in combination with the saddlepoint solution (65).

We compared the result (70) with Monte Carlo simulations in Fig. 3. We find a perfect
agreement for a matrix size p = 32. Due to the weaker level repulsion of real matrices
compared to complex ones the agreement is in the bulk better for β = 1 than for β = 2 while
it is worse in the tails at the edges. Indeed the strong oscillations for the complex ensembles
is a direct result of the stronger level repulsion which is quadratic. Even the positions of
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Figure 3: Comparison of the analytical expression (70) for the limiting eigen-
value density (solid black curve) with numerical simulations with correlated
real Jacobi matrices (blue histogram) and correlated complex Jacobi matrices
(red histogram). Each ensemble consists of 105 matrices with the parameters
p = 32, n1 = 71, n2 = 68. The empirical eigenvalues were independently and ran-
domly drawn from a Gaussian, in the present case the diagonal correlation matrix is
Λ = diag(294.845, 34.679, 30.311, 11.612, 10.733, 9.468, 8.232, 5.307, 4.144, 2.443, 2.429, 2.218,
2.083, 1.986, 1.406, 1.382, 1.102, 1.001, 0.889, 0.707, 0.693, 0.684, 0.665, 0.63, 0.594, 0.591, 0.576,
0.574, 0.562, 0.467, 0.463, 0.455). The largest eigenvalues are three outliers which can be
seen in the vicinity of x = −1, see the inset.

the outliers are astoundingly good predicted and the shape of their distributions moderately
approximated.

We want to emphasize that we obtain the well-known results [12] for the uncorrelated
case. Then the distribution of the Jacobi ensemble has either square root zeros or square
root singularities at the boundaries of the support depending on if the edges detach from the
generic bounds x = ±1 or not. This can be easily checked by our results. For the Cauchy-
Lorentz ensemble we obtain a Levy-tail with an algebraic decay of b−3/2 if the corresponding
Jacobi ensemble does not detach from the lower bound x = −1 which was also found in [12].

Finally, let us come back to the case of a degeneracy of Ceff and, hence, Λ. When taking
p→ lp, n1 → ln1, n2 → ln2, and Λ→ Λ⊗11l, we immediately notice that the number of copies
l ∈ N drops out in the saddle point equation (64). Thus the saddlepoint is independent of l.
Also in the level densities (69) and (70) the number l does not appear. Hence the asymptotic
result is independent. We expect that the local statistics remain unaffected, too, as it is the
case for the correlated Wishart ensemble, see [27]. For the complex case this can be readily
checked via the kernel (37).
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7 Conclusions

We considered the correlated Jacobi and Cauchy-Lorentz ensemble. Our first result is the
map of the correlated Jacobi ensemble to the correlated Cauchy-Lorentz ensemble. The
eigenvalue statistics of the first is completely determined by the latter and vice versa. This
is impressive since the first ensemble exhibits a spectrum on a compact interval namely
[−1, 1] while the second one has a Levy tail which drops off in the uncorrelated case with the
algebraical behavior x3/2. The uncorrelated Cauchy-Lorentz ensemble was tried to apply to
finance [12] because of the known heavy tail behavior in the statistics.

We also derived a supersymmetric integral for the k-point generating function of the
correlated Jacobi ensemble and the correlated Cauchy-Lorentz ensemble via the projec-
tion formula [10, 11] in combination with generalized Hubbard-Stratonovich transforma-
tion [42, 44, 45] and the superbosonization formula [40–42]. The resulting integral over the
supermatrices looks similar to the one of the correlated Wishart ensemble [26]. This repre-
sentation is ideal for studying the asymptotic limit (p ∼ n1 ∼ n2 →∞) due to its small and
fixed number of integration variables. For example we calculate a closed expression for the
limit of the macroscopic level density. The approximation is already very good for moder-
ate matrix size p ∼ 30 and generic empirical fixed correlations which is confirmed by Monte
Carlo simulations. We underline that even the outliers are predicted by the asymptotic limit.

The level densities at finite matrix dimensions were explicitly calculated for both the
correlated real and complex random matrix ensembles. As in the Wishart case the real en-
sembles are more involved. Nevertheless we could simplify the result to a finite sum where
each summand is a product of three integrals and one of the integrals can be performed
exactly. Both technical properties resemble the results for the Wishart ensemble, see [26].
The remaining one-fold integrals can be numerically evaluated. In the case of double de-
generacy of the spectrum of the empirical covariance matrix all integrals can be analytically
performed. This generic degeneracy was proposed in [27] where it was shown that the asymp-
totic spectral statistics of correlated Wishart ensembles do not differ from the case without
degeneracy. We also observed that the degeneracy has no influence on the asymptotic statis-
tics of the correlated Jacobi ensemble and the correlated Cauchy-Lorentz ensemble. Thus
we propose also to study the case with a doubly degenerated covariance matrix artificially
introduced by taking two copies of the covariance matrix in the case of real ensembles due
to its analytical advantage.

In the real case we had to restrict our explicit calculation to the level density. Higher
order correlations are not analytical feasible for finite matrix dimensions at the moment due
to the lack of knowledge about certain group integrals. This is not the case for the complex
ensembles where we took a different approach as for the real matrices. For the correlated
complex Jacobi ensemble and Cauchy-Lorentz ensemble we first derived the joint probability
density of their eigenvalues. This was possible due to an Itzykson-Zuber-Harish-Chandra-
like group integral derived in [46,47]. The joint probability density satisfies a determinantal
point process and the corresponding kernel resembles the result of the correlated Wishart
ensemble [24, 29]. Nonetheless we derived also for this kernel a supersymmetric integral
which is much more suitable to study the behavior at large matrix sizes.
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Our analysis can be extended into various directions: First of all, the supersymmetric
expression for the k-point correlation function is a perfect starting point to derive also for k >
1 closed expressions. The distributions of the largest and the smallest eigenvalues are other
important quantities which were already studied for the correlated Wishart ensemble [25,
28,59]. Also the case of double correlations, as discussed in Ref. [30] for Wishart ensembles,
could be considered. Another generalization could be the investigation of other correlated
heavy tailed ensembles instead of the Cauchy-Lorentz one. Product matrices, see [58] for a
recent review, yield a new and analytical feasible approach to such heavy tailed ensembles.
The combination of the approach applied in the present work with product matrices and the
projection formula [10,11] may provide a unique and ideal tool to study the macroscopic as
well as the local spectral statistics of Levy tailed ensembles.
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A Supersymmetric two-Matrix Model

Let us derive another supersymmetric integral which consists of two supermatrices entering
in a symmetric way. This integral explicitly shows the symmetry of the correlated Jacobi
ensemble under n1 ↔ n2, Λ → Λ−1, and x → −x. This symmetry is not immediate in the
expression (19) where we have to substitute b = (1 − x)/(1 + x) since it is given for the
correlated Cauchy ensemble. However the supersymmetric integral (19) is certainly simpler
to compute than the one we present in this section since we have to deal with only one
supermatrix in Eq. (19).

We start from Eq. (4). To apply the same approach as in [26] we have to linearize the
arguments of the characteristic polynomials in the FF † and BB†. This can be achieved by
multiplying the matrices in the determinants from the right with (FF † +BB†) yielding

det
(
(FF † −BB†)(FF † +BB†)−1 − κa211p

)
det ((FF † −BB†)(FF † +BB†)−1 − κb111p)

=

(
1 + κa2

1 + κb1

)p det
(
FF †κ̂a2 −BB†

)
det (FF †κ̂b1 −BB†)

. (71)

with κ̂ = (1 − κ)/(1 + κ). In the next step we plug Eq. (71) into Eq. (4) and express the
determinants as a Gaussian integral over a rectangular supermatrix

A =
[
zja z

∗
ja ζjb ζ

∗
jb

]
, β = 1, (72)

A = [zja ζjb] , β = 2, (73)
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of dimension p× (γk|γk), i.e.

k∏
a=1

det
(
FF †κ̂a2 −BB†

)
det (FF †κ̂a1 −BB†)

=

∫
d[A] exp

(
ı trFF †AjA† + ı trBB†AA†

)
. (74)

Here we assume for simplicity that the imaginary parts of κ̂1 = diag(κ̂11, . . . , κ̃k1) are on the
complex upper half-plane. The source matrix is

j = diag (κ̂11, . . . , κ̃k1, κ̂12, . . . , κ̃k2)⊗ 11γ. (75)

We substitute the integral (74) into the generating function (4) and exchange the F and B
with the A integral. The resulting F and B integrals are Gaussian and yield∫

d[F ]

∫
d[B]P (F |11p)P (B|Λ) exp

(
ı trFF †AjA† + ı trBB†AA†

)
(76)

= det−n1/γ
(
11p − ıAjA†

)
det−n2/γ

(
11p − ıΛAA†

)
.

Then the generating function becomes

Z
k|k
p,β (κ) ∝ sdet−p (11k + κ)

∫
d[A]det−n1/γ

(
11p − ıAjA†

)
det−n2/γ

(
11p − ıΛAA†

)
. (77)

The normalization constant is independent of κ and Λ. The next step is known as the duality
between ordinary and superspace. Due to the invariance of the integrand in Eq. (77) under
A → UA for an arbitrary U ∈ O(p) for β = 1 and U ∈ U(p) for β = 2, the integrand
only depends on the invariants tr

(
AA†

)m
for m ∈ N. These invariants are equal to the

superinvariants tr
(
AA†

)m
= str

(
A†A

)m
, see [38, 39, 44, 45]. Employing this duality in the

generating function (77), we arrive at

Zk
p,β(κ) ∝ sdet−p (11k + κ)

∫
d[A]sdet−n1/γ1

(
11γk|γk − ıA†Aj

)
sdet−n2/γ1

(
11γk|γk − ıA†ΛA

)
.

(78)

The main difference of Eq. (78) to most models discussed in the literature so far is that
this one includes two different products of A and A†. Namely, A†A which arises naturally if
invariant matrix models are considered and A†ΛeffA appearing due to a non-trivial correlation
structure. We cannot replace both products by one supermatrix, but we can apply the gen-
eralized Hubbard-Stratonovich transformation [42, 44, 45] independently for both products.
It yields the following supersymmetric two-matrix model

Zk
p,β(κ) ∝ sdet−p (11k + κ)

∫
d[σ]d[%]In2(%)In1(σ) exp (− str %− strσ)

× sdet−1/γ
(
11p ⊗ σ − Λ−1 ⊗ %j

)
,

(79)

where the function Ini
(%), i = 1, 2, is the supersymmetric Ingham-Siegel integral (23). The

(γk|γk) × (γk|γk) dimensional supermatrices ρ and σ have the same symmetries as the
supermatrix in the third equality of Eq. (19).
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We can completely symmetrize the integral in ρ and σ by going back to the sources κ̂→ κ
and the empirical matrix Λ→ C

−1/2
F CBC

−1/2
F . Then we have the final result

Zk
p,β(κ) ∝

∫
d[σ]d[%]In1(%)In2(σ) exp (− str %− strσ)

× sdet−1/γ (CB ⊗ σ[(1 + κ)⊗ 11γ]− CF ⊗ %[(1− κ)⊗ 11γ]) .

(80)

This expression is completely invariant under the original symmetry n1 ↔ n2, Λ→ Λ−1, and
κ→ −κ because the symmetry is achieved by the change ρ↔ σ.

We again underline that the supermatrix model (79) can be in principal computed by
expanding the integrand in the Grassmann variables and performing the remaining integrals.
However we have now two supermatrices such that this calculation can be a highly non-trivial
task. This is the reason why we use more advanced techniques which involve the relation
to the correlated Cauchy-Lorentz ensemble, see section 3.1. The supersymmetry result (19)
can be obtained from Eq. (79) by rescaling σ → ρσ and then integrating over ρ which yields
the superdeterminant sdet−µ/γ(σ + 11γk|γk).

B Regularizations of the Integrals in Section 5

The numerical evaluation of the integrals (50) and (51) suffer by the non-integrable singu-
larities of order 3/2 at the boundaries, in particular they are of the two forms

J1 =

bΛ−1
j∫

bΛ−1
j+1

dr
f(r)∣∣bΛ−1
j − r

∣∣3/2 , J2 =

bΛ−1
j−1∫

bΛ−1
j

dr
f(r)∣∣bΛ−1
j − r

∣∣3/2 (81)

for certain real valued functions f(r) without singularities in the interval [bΛ−1
j+1, bΛ

−1
j ]. As

already said the integrals are taken via Cauchy’s principal value because of the original
imaginary increment ıε. Thus we can effectively regularize the integral as follows 1

J1 = lim
ε→0

Re

bΛ−1
j +ε∫

bΛ−1
j+1

dr
f(r)(

(b+ ıε)Λ−1
j − r

)3/2

= lim
ε→0

Re

bΛ−1
j +ε∫

bΛ−1
j+1

dr
f(r)− f(bΛ−1

j )(
(b+ ıε)Λ−1

j − r
)3/2

+ lim
ε→0

Re

 2f(bΛ−1
j )√

(b+ ıε)Λ−1
j − r

bΛ
−1
j +ε

r=bΛ−1
j+1

=

bΛ−1
j∫

bΛ−1
j+1

dr
f(r)− f(bΛ−1

j )∣∣bΛ−1
j − r

∣∣3/2 − 2f(bΛ−1
j )√

|bΛ−1
j − bΛ−1

j+1|

(82)

1We thank Petr Braun for showing us this technical trick.
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and similar for the other integral (then the imaginary part is needed)

J2 =

bΛ−1
j−1∫

bΛ−1
j

dr
f(r)− f(bΛ−1

j )∣∣bΛ−1
j − r

∣∣3/2 − 2f(bΛ−1
j )√

|bΛ−1
j − bΛ−1

j−1|
. (83)

The minus sign in Eq. (83) in front of the second term results from taking the imaginary
part despite it is evaluated at the upper boundary. The cut-off of the intervals can be also
chosen independently of ε. The reason is that the other boundary term of the integration
by parts vanishes due to taking the real or imaginary part, respectively.

We define the following two one-fold integrals

g0
a,c,l(b; Λ) =

∫
Vl

ra/2dr

(1 + r)c/2
√
| det(bΛ−1 − r11p)|

(84)

and

g1
a,c,l(b; Λ; Λi) (85)

=



sign(p− l − i)
∫
Vl

ra/2dr

(1 + r)c/2|bΛ−1
i − r|

√
| det(bΛ−1 − r11p)|

,

l 6= p− i, p− i+ 1,

− 2(bΛ−1
i )a/2

(1 + bΛi)c/2
√
|bΛ−1

i − bΛ−1
i+1|
√
| det(bΛ−1

6=i − bΛ
−1
i 11p−1)|

+

∫
Vp−i

dr

|bΛi − r|3/2

×

 ra/2

(1 + r)c/2
√
| det(bΛ−1

6=i − r11p−1)|
− (bΛ−1

i )a/2

(1 + bΛ−1
i )c/2

√
| det(bΛ−1

6=i − bΛ
−1
i 11p−1)|

 ,
l = p− i,

2(bΛ−1
i )a/2

(1 + bΛi)c/2
√
|bΛ−1

i − bΛ−1
i−1|
√
| det(bΛ−1

6=i − bΛ
−1
i 11p−1)|

−
∫
Vp−i+1

dr

|bΛi − r|3/2

×

 ra/2

(1 + r)c/2
√
| det(bΛ−1

6=i − r11p−1)|
− (bΛ−1

i )a/2

(1 + bΛ−1
i )c/2

√
| det(bΛ−1

6=i − bΛ
−1
i 11p−1)|

 ,
l = p− i+ 1.

Then we can combine the discussion about the splitting of the integral over R2
+ into disjoint

sets and the regularization of the 3/2-singularities. Therefore we explicitly have for the
imaginary parts of the integrals (49), (50), and (51)

1

π
lim
ε→0

ImN0
a,c,d1,d2

(b+ ıε; Λ) =
1

π

∑
0≤l1,l2≤p

l1+l2∈2N0+1

(−1)(l1+l2+1)/2sign(l1 − l2) (86)
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× det

[
g0
a+d1+1,c+d1+1,l1

(b; Λ) g0
a+d1−1,c+d1+1,l1

(b; Λ)
g0
a+d2+1,c+d2+1,l2

(b; Λ) g0
a+d2−1,c+d2+1,l2

(b; Λ)

]
,

1

π
lim
ε→0

ImN1
a,c,d(κ; Λ; Λj) =

1

π

∑
0≤l1,l2≤p

l1+l2∈2N0+1

(−1)(l1+l2+1)/2sign(l1 − l2) (87)

× det

[
g1
a+2,c,l1

(b; Λ; Λj) g1
a,c,l1

(b; Λ; Λj)
g0
a+d+1,c+d+1,l2

(b; Λ) g0
a+d−1,c+d+1,l2

(b; Λ)

]
,

1

π
lim
ε→0

ImN2
a,c(κ; Λ; Λi,Λj) =

1

π

∑
0≤l1,l2≤p

l1+l2∈2N0+1

(−1)(l1+l2+1)/2sign(l1 − l2) (88)

× det

[
g1
a+2,c,l1

(b; Λ; Λi) g1
a,c,l1

(b; Λ; Λi)
g1
a+2,c,l2

(b; Λ; Λj) g1
a,c,l2

(b; Λ; Λj)

]
.

These results can be combined with Eq. (47) to find the level density S ′1(b) of the correlated
Lorentz ensemble, see Eq. (58).
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[48] C. Andréief, Mém. de la Soc. Sci., Bordeaux 2, 111 (1883).

[49] M. Kieburg and T. Guhr, J. Phys. A 43, 075201, (2010) [arXiv: 0912.0654 [math-ph]].

[50] G. Parisi and N. Sourlas, Phys. Rev. Lett. 43, 744 (1979).

[51] F. Wegner, unpublished notes (1983).

[52] K. Efetov, Adv. Phys. 32, 53 (1983).

[53] F. Constantinescu, J. Stat. Phys. 50, 1167 (1988).

[54] F. Constantinescu and H. de Groote, J. Math. Phys. 30, 981 (1989).

[55] M. Kieburg, H. Kohler and T. Guhr, J. Math. Phys. 50, 013528, (2009) [arXiv:0809.2674
[math-ph]].

[56] G. Akemann, J. Ipsen, and M. Kieburg, Phys. Rev. E 88, 052118 (2013) [arXiv:
1307.7560 [math- ph]].

[57] J. Verbaarschot, M. Zirnbauer and H. A. Weidenmüller, Phys. Rep. 129, 367 (1985).

[58] G. Akemann and J. R. Ipsen, [arXiv:1502.01667 [math-ph]].

[59] T. Wirtz and T. Guhr, Phys. Rev. Lett. 111, 094101 (2013) [arXiv: 1306.4790 [math-
ph]]; J. Phys. A 47, 075004 (2014) [arXiv: 1310.2467 [math-ph]].

29

http://arxiv.org/abs/math-ph/0512056
http://arxiv.org/abs/0809.2674
http://arxiv.org/abs/1502.01667

	1 Introduction
	2 Correlated Jacobi Ensemble
	3 Correlated Cauchy-Lorentz Ensemble
	3.1 Relation between Jacobi and Cauchy-Lorentz
	3.2 Projection Formula

	4 Eigenvalue Spectrum for =2
	4.1 Determinantal Point Process
	4.2 Supersymmetry and the Kernel

	5 Eigenvalue Density in the Real Ensemble
	6 Asymptotics of the Level Density
	7 Conclusions
	8 Acknowledgments
	A Supersymmetric two-Matrix Model
	B Regularizations of the Integrals in Section ??

