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Abstract

A new model of supersymmetry between bosons and fermions is proposed. Its rep-

resentation space is spanned by states with PT symmetry and real energies but the

inter-related partner Hamiltonians themselves remain complex and non-Hermitian.

The formalism admits vanishing Witten index.
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1 Introduction

Supersymmetry (SUSY, [1]) offers a chance of unification of bosons with fermions

in various branches of physics [2]. Mathematically, it mixes the commutators and

anticommutators in a single (so called graded) Lie algebra. In its simplest form

sl(1/1) this symmetry algebra is generated by two superchargesQ, Q̃ and aHermitian

Hamiltonian H. These three generators are related by the anticommutation rules

{Q, Q̃} = H, {Q,Q} = {Q̃, Q̃} = 0 (1)

and commutativity

[H,Q] = [H, Q̃] = 0. (2)

SUSY finds an enormous appeal in particle physics and field theory [3]. In this

application, unfortunately, there exists the strong conflict between the theory and

experiment. Due to the continuing absence of observation of any bosonic-fermionic

degenerate multiplets, any form of SUSY must be badly broken as a consequence [4].

Attempts to resolve the latter physical problem encounter nontrivial mathemat-

ical difficulties [5]. Possible mechanisms of SUSY breaking are currently being ex-

posed to an intensive research [6]. One of the most feasible ways of their analysis

is offered by the representation of SUSY algebras in a zero-dimensional field theory,

i.e., in quantum mechanics [7, 8]. We intend to contribute to this effort by weakening

certain assumptions concerning, first of all, the hermiticity of H .

2 PT symmetric non-Hermitian models

Conventional supersymmetric quantum mechanics does not immediately admit com-

plex potentials. Only recently, the first attempts in this direction have been made

[9, 10]. A significant improvement of our understanding of the underlying complex

dynamics has been offered by Bender and Boettcher [11]. Within their so called
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PT symmetric quantum mechanics [12] they proposed a replacement of the usual

hermiticity of the Hamiltonian H by its mere commutativity with the product of the

parity P and the time reversal T ,

H PT = PT H .

It has been shown by several methods that one may get real energy spectrum in

many different systems of this type [13]. Similar analytic assumptions made in

connection with quantized systems is not so unusual in the mathematically oriented

literature [14]. Its appeal in physical applications is also undeniable and ranges

from perturbative [15] and semiclassical methods and considerations [16] up to the

practical computation of resonances [17]. In such a setting, the construction of

representations of SUSY algebras encounters several new challenges. Some of them

will be addressed in what follows.

2.1 Facilitated normalization

For a concise exposition of some of the related open questions let us first recall a

quartic partially solvable potential

V1(r) = −r4 + 2 i r

of ref. [18]. Its one-dimensional Schrödinger equation

−
d2

dr2
Ψ(r) + V1(r) Ψ1(r) = E1Ψ1(r), r ∈ (−∞,∞)

possesses a formal solution at zero energy E1 = 0. Forgetting, for the time being,

that this solution is not normalizable in the usual sense,

Ψ
(0)
1 (r) = exp

(

i r3

3

)

/∈ L2(−∞,∞) (3)

we can construct its superpotential

W1(r) = −

[

d

dr
Ψ

(0)
1 (r)

]

/Ψ
(0)
1 (r) = −i r2
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and derive formally the supersymmetric partner potential [7]

V2(r) =W 2
1 (r) +W ′

1(r) =W 2
2 (r)−W ′

2(r) = −r4 − 2 i r, r ∈ (−∞,∞)

as well as the parallel ground-state-like solution

Ψ
(0)
2 (r) = exp

(

−i r3

3

)

/∈ L2(−∞,∞). (4)

Obviously, in such a model the formal SUSY transformation 1 → 2 degenerates to

the mere time reversal represented, for our present purposes, by the above-mentioned

operator T which replaces i by −i [11],

T Ψ
(0)
2 (r) = Ψ

(0)
1 (r), T V2(r)T = V1(r).

Within the less naive framework of the PT symmetric quantum mechanics the latter

example proves better understood. Firstly, in the light of the analyticity of our model

we can restore the normalizability of its wave functions (3) and (4) by suitable

deformations of the coordinate axis in complex plane [12]. This can be achieved by

the mere shifts

r = r1,2(x) = x± i ε, ε > 0, x ∈ (−∞,∞)

of the respective integration paths. This guarantees that the wave functions become

asymptotically vanishing as required, Ψ
(0)
j [rj(±∞)] → 0. Unfortunately, we have to

pay a high price. After one verifies that

V2 = W 2
2 −W ′

2 = −x4 + 4 i ε x3 + . . . 6= W 2
1 +W ′

1 = −x4 − 4 i ε x3 + . . . ,

we have to conclude that our two new, PT symmetrized interactions V1,2 cease to

be inter-related by a supersymmetry.

In what follows we intend to re-solve the puzzle. In essence, we shall generalize

the original Witten’s quantum mechanical construction [4]. Our attention will be

paid to situations where the above-exemplified loss of a SUSY partnership could be
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re-established anew. In brief, we shall propose an entirely new representation of

the supersymmetric algebra within the framework of the PT symmetric quantum

mechanics.

2.2 A toy model without SUSY

We intend to introduce our proposal via a few explicit examples. Particular attention

will be paid to the two manifestly PT symmetric potentials

V (−)(x) = −4i(x− iε)− (x− iε)4, (5)

V (+)(x) =
2

(x+ iε)2
− (x+ iε)4. (6)

Their doublet resembles the previous pair by the similar choice of the respective

domains r(±)(x) = x ± i ε. Conveniently, both their shifts are equal and given by

the same positive constant ε > 0. Our new examples (5) and (6) also exhibit the so

called quasi-exact solvability revealed in refs. [18] and [19], respectively. Meaning

just that a few exact bound states remain at our disposal in an elementary form [20],

this property offers us the two exact zero-energy bound-state solutions

ψ(−)(x) = (x− iε) exp

(

−i
(x− iε)3

3

)

∈ L2(−∞,∞),

ψ(+)(x) =
1

x+ iε
exp

(

+i
(x+ iε)3

3

)

∈ L2(−∞,∞)

representing, presumably, ground states. Both these wave functions are bounded

and normalizable if and only if their common real parameter ε is positive. This is

similar to our previous illustration while, in contrast, the new superpotentials

W (±)(x) = −

[

d

dx
ψ(±)(x)

]

/ψ(±)(x) = ±
[

1

x± iε
− i (x± iε)2

]

. (7)

differ more than just by an overall sign.

In the unphysical extreme of the vanishing parameter ε → 0 we would arrive at

the standard SUSY connecting our two Hamiltonians H(±) but no serious progress
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seems to have been achieved. We again “stumble” over the normalizability of our

wave functions which would be lost in the SUSY limit. Still, there is a difference. We

are going to show below that our new doublet of models can be supersymmetrized

after one modifies the usual recipe.

3 PT symmetric supersymmetry

A key observation of our present proposal is that many PT symmetric systems are

defined off the real axis. Boundary conditions lim|r|→∞ ψ(r) = 0 are in general located

within wedges bounded by Stokes’ lines [18]. Locally, the paths of integration can

be deformed whenever necessary. In contrast to our introductory examples V1,2, the

mere “time-reflection” conjugation T itself does not now map our new Hamiltonians

H(±) upon each other. Still, an active use of T will be a key ingredient in our

forthcoming construction.

3.1 Innovated factorization of Hamiltonians

With our functions (7) taken just as a particular illustration, let us now assume their

arbitrary form and introduce the four related operators

A(±) =
d

dx
+W (±)(x), B(±) = −

d

dx
+W (±)(x)

which induce the traditional Riccati-equation formulae

H(±) = B(±)A(±) = −∂2x + [W (±)(x)]2 −
[

W (±)(x)
]′
.

We have to fit these two Hamiltonians into a generalized SUSY scheme of the type

(1) + (2). In the first step, we explored reordered products. Returning to our explicit

examples V (±) for inspiration, we did not succeed in the (+)−superscripted case at

all. Fortunately, in the second case we were able to verify by immediate insertions
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the strict validity of the only slightly nonstandard rule

H(+) = T A(−)B(−)T . (8)

This formula is, in a way, our central point. Indeed, once we arrange our doublet of

Hamiltonians into the following two-dimensional array

H =







H(−) 0

0 H(+)





 =







B(−)A(−) 0

0 T A(−)B(−)T







we recover immediately all the necessary SUSY rules (1) and (2), provided only that

we introduce the following modified representation of the supercharges,

Q =







0 0

T A(−) 0





 , Q̃ =







0 B(−)T

0 0





 . (9)

In contrast to the usual SUSY constructions our new supercharges are not correlated

by any Hermitian conjugation anymore. This is our main methodological gain. A

new hope is created that some “no-go” theorems of the traditional Hermitian theories

could be overcome within our new SUSY framework.

A key technical difficulty with this hope lies in its dependence on the spe-

cific choice of our example. Fortunately, one can re-analyze our fundamental re-

arrangement in the more general context where the explicit form

[

W (+)
]2

−
[

W (+)
]′
=
{

[

W (−)
]2

+
[

W (−)
]′
}∗

of eq. (8) may be called a ladder equation. It glues superpotentials in the language

of the higher order SUSY [21]. An explicit solution of the latter equation exists and

can be expressed in the parametric form using an arbitrary complex function f(x),

W (+) =
f ′

2f
− f, W (−) = −

f ′∗

2f ∗
− f ∗ (10)

It is worth noticing that with the shape invariant f(x) = −i λ sech µx, one re-

discovers the amazing though very special relationship between the non-Hermitian
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and Hermitian exactly solvable models of ref. [22]. In the latter class of exam-

ples with the purely imaginary f(x) our “new SUSY” coincides with the ordinary,

“classical SUSY” since the lower Hamiltonian remains real, H(+) = T H(+)T . With

arbitrary f(x) equation (10) suggests that a certain modified Darboux transforma-

tion [23] is at work for H(+) 6= T H(+)T . In this way, also another, “fully complex”

illustration f(x) = i(x+iε)2 returns us back to our “new-SUSY” example V (±) which

manifestly breaks the standard SUSY at ε > 0.

3.2 Intertwining relations

Much in the same spirit as when one seeks possible interwinings of operators in the

context of higher-order SUSY let us now return to their present realization, starting

from the assumption of reality of the energies in the Schrödinger equation

H(−) ψ(−)
n (x) = B(−)A(−) ψ(−)

n (x) = E(−)
n ψ(−)

n (x).

In the light of its possible re-factorization (8) let us now pre-multiply it by a suitable

operator from the left,

[T A(−)] [B(−) T ] [T A(−)ψ(−)
n (x)] ≡ H(+) ψ(+)

m (x) = E(−)
n [T A(−)ψ(−)

n (x)].

This correspondence can be accompanied by the second Schrödinger equation

H(+) ψ(+)
m (x) = B(+)A(+) ψ(+)

m (x) = E(+)
m ψ(+)

m (x).

A comparison results in the general relationship

ψ(+)
m (x) = T A(−)ψ(−)

n (x), E(+)
m = E(−)

n .

In parallel, we can also re-write H(−) ψ
(−)
k (x) in the re-factorized form

[B(−) T ] T A(−) [B(−) T ψ(+)
m (x)] = E(+)

m [B(−) T ψ(+)
m (x)] ≡ E

(−)
k ψ

(−)
k (x)
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and deduce that

ψ
(−)
k (x) = B(−) T ψ(+)

m (x), E
(−)
k = E(+)

m .

One has to be careful with a quick assignment of the labels. In general, one cannot

be sure about the ordering of the levels. In accord with several explicit examples

[24] their various permutations could occur here in general. Fortunately, many rules

concerning the ordering of levels in real potentials find their direct analogues in the

complexified Sturm Liouville oscillation theorems [25]. Moreover, their “almost stan-

dard” form applies in the case of the present “asympotically almost real” examples

(5) and (6). For them it is possible to show that m = n = k. In such a case the

current rules of reconstruction of the partner spectra (the variety of constructive

examples of which can be found in refs. [7]) can be restored in their full strength.

4 Discussion

We have seen that a core of applicability of our new form of the SUSY transforma-

tion to a complex force lies in our understanding of the normalizability of the wave

functions in the PT symmetric formalism. Still, even in this context many formal

questions remain open. For example, due to a spontaneous breakdown of the PT

symmetry the energies can sometimes coalesce in the complex conjugated pairs [11].

The rigorous foundations of the reality of the spectra must be always scrutinized

anew.

Mathematically, a key feature of the present construction lies in a difference in

the arguments x ± i ε = r(±)(x) of our model potentials, i.e., in the domains of

definition of the Hamiltonians. This freedom admits a further generalization to all

the integrations paths r(±)(x) which are coupled by the reflection with respect to the

real axis or, in the present language, by the time reversal. In this sense the operator

T plays a double role: To its original meaning of a reflection of the complex plane
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(for coordinates) one has to add its use in our innovated hypercharges and in the

alternative factorization of H(+).

The relevance of the present proposal is enhanced by several unexpected observa-

tions. Firstly we notice that our supersymmetric mapping does not seem to require

the current complementary comment about the missing partner of the zero energy

bound state itself. This means that the Witten index [5] vanishes, nB−nF = 0. Still,

due to the broken hermiticity of our Hamiltonians, both zero-energy states remain

normalizable so that the supersymmetry itself remains unbroken.

We may conclude that the present PT symmetric formalism is quite different from

its current Hermitian predecessors. It resembles the models with periodic potentials

[26] and the higher order SUSY quantum mechanics in the irreducible case. Let us

recall that in the latter context one also cannot express the intermediate Hamiltonian

as a Hermitian operator [21].

Undoubtedly, the immediate relationship to the vanishing Witten index makes

our construction very appealing. In a summary, we could now distinguish between the

three different forms of SUSY. Firstly, one defines the standard one in a formalism

using the real potentials and superpotentials [4]. Secondly, a use of the complex

superpotentials and charges which are not Hermitian conjugate of each other forms

simply an opposite extreme [27]. Thirdly, our present formalism stays somewhere

in between. It constrains the latter unrestricted freedom by the fairly nontrivial

PT symmetry but, in contrast to the current Witten’s SUSY it is not restricted to

non-negative Hamiltonian operators.
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