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We investigate a 6D Dirac fermion on a rectangle. It is found that the 4D spectrum is governed

by N = 2 supersymmetric quantum mechanics. Then we demonstrate that the supersymmetry

is very useful for classifying all the allowed boundary conditions and to expand the 6D Dirac

field in Kaluza–Klein modes. A striking feature of the model is that even though the 6D Dirac

fermion has non-vanishing bulk mass, the 4D mass spectrum can contain degenerate massless

chiral fermions, which may provide a hint to solve the problem of the generation of quarks

and leptons. It is pointed out that zero-energy solutions are not affected by the presence of

the boundaries, while the boundary conditions work well for determining the positive-energy

solutions. We also provide a brief discussion on possible boundary conditions in the general

case, especially those on polygons.
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1. Introduction

The standard model has been completely established by the discovery of the Higgs boson [1,2],

and describes well the low-energy physics below the weak scale. Despite the great success of the

standard model, it will be natural to regard the standard model as a low-energy effective theory of

some more fundamental theories defined at higher energy scales. This is because the standard model

leaves various problems to be solved.

Promising candidates beyond the standard model are the models on higher-dimensional space-

times with compact extra dimensions. These models could solve the generation problem [3–9] and

the fermion mass hierarchy one [10–16], and naturally explain the quark and lepton flavor structure

[17–20] of the standard model. Many proposals have been made to explain the quark and lepton

mass hierarchies and their flavor structures naturally from an extra-dimensional point of view.

Although extra-dimensional models will be expected to solve the generation problem, phenomeno-

logically realistic models that solve the problem are very limited.A possible mechanism for producing

degenerate massless chiral fermions is to put extra dimensions in a homogeneous magnetic field

[18,20–29]. Another mechanism is to put point interactions on an extra dimension [30–33]. It would

be desirable to find a new mechanism that solves the above problems of the standard model and that

can lead to phenomenologically realistic models with a simple setup.

In the context of a five-dimensional (5D) gauge theory, it has been shown that a 4D massless chiral

fermion appears from a 5D Dirac fermion with a suitable boundary condition (see, e.g., Ref. [34]).

Furthermore, the 5D Dirac mass term plays an important role in the localization of zero-mode

functions. Thereby, it can become a source of the observed fermion mass hierarchy. Unfortunately,
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however, in the case of 5D, only one 4D chiral fermion appears from a 5D Dirac field. On the other

hand, it would be expected that several 4D massless chiral fermions may emerge in the case of a

higher-dimensional Dirac fermion more than 5D that contains more degrees of freedom than those

in 5D. Our goal is to solve the generation problem as well as other problems in the standard model

from a higher-dimensional Dirac action point of view.

In Ref. [35], the 4D mass spectrum of a 6D Dirac fermion was investigated. An interesting obser-

vation is that two 4D massless chiral fermions can appear, even though the 6D Dirac action contains

a non-zero bulk mass M . The results strongly suggest that higher-dimensional Dirac fermions can

provide more than two 4D massless chiral fermions and could solve the generation problem. Unfor-

tunately, it is not straightforward to extend the analysis given in Ref. [35] to the higher-dimensional

Dirac action, because the origin of the degeneracy of the 4D mass spectrum (four for the massive

modes, and two for the massless modes) has been obscure, and it is especially unclear how to expand

Dirac fields into Kaluza–Klein modes for general higher dimensions.

In this paper, we revisit the 6D Dirac fermion and reveal hidden structures in the 4D mass spectrum

from a symmetry point of view, in great detail. We show that the 4D mass spectrum is governed by

an N = 2 quantum-mechanical supersymmetry, and the degeneracy of the 4D mass spectrum can be

explained by the supersymmetry (with an additional symmetry of the action). This supersymmetric

structure makes it clear why the 4D massless zero modes become chiral. This is because 4D massive

modes always form supermultiplets and then become Dirac fermions, but each massless zero mode

does not form a supermultiplet and hence has no chiral partner to form a Dirac fermion. We further

find that the supersymmetry is very powerful for analyzing the Kaluza–Klein mode expansions

and determining the class of allowed boundary conditions on extra dimensions. We expect that

our analysis can apply for general higher-dimensional Dirac fermions and hence hope to answer

the question of whether or not Dirac fermions with more than two extra dimensions can solve the

generation and fermion mass hierarchy problems.

It is interesting to note that the supersymmetric structure is a common feature in extra dimensions.

This is because similar supersymmetric structures have been found in higher-dimensional gauge and

gravity theories [36–43] (see also Refs. [44,45]). Thus, it would be of great interest to understand

the role of the supersymmetry in extra dimensions thoroughly.

This paper is organized as follows. We first give the setup of our model in Sect. 2, and then show,

in Sect. 3, that N = 2 supersymmetric quantum mechanics is hidden in the 6D Dirac equation.

In Sect. 4, we classify the allowed boundary conditions with the help of the supersymmetry. In

Sects. 5 and 6, we explicitly construct positive energy eigenfunctions and point out a problem

in determining zero-energy solutions. The degeneracy of positive energy states is explained from

symmetry transformations in Sect. 7. In Sect. 8, we provide a brief discussion on possible boundary

conditions in the general case, especially those on polygons. Section 9 is devoted to conclusions and

discussions.

2. Six-dimensional Dirac fermion on a rectangle

Let us start with the 6D Dirac action

S =
∫

d4x

∫ L1

0

dy1

∫ L2

0

dy2�(x, y)
[
iŴA∂A − M

]
�(x, y), (2.1)

where �(x, y) is an eight-component Dirac spinor in six dimensions and M is the bulk mass of the

Dirac fermion. The 6D space-time is taken to be the direct product of the 4D Minkowski space-time
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and the 2D rectangle. The coordinates of the 4D Minkowski space-time and the 2D rectangle are

denoted by xµ (µ = 0, 1, 2, 3) and yj (j = 1, 2), respectively. The domain of the rectangle is set as

0 ≤ y1 ≤ L1 and 0 ≤ y2 ≤ L2.

The Dirac action (2.1) leads to the Dirac equation

[
iŴµ∂µ + iŴy1∂y1 + iŴy2∂y2 − M

]
�(x, y) = 0. (2.2)

The 6D gamma matrices ŴA (A = 0, 1, 2, 3, y1, y2) are required to satisfy

{ŴA, ŴB} = −2ηAB I8, (A, B = 0, 1, 2, 3, y1, y2),

(ŴA)† =
{

+ŴA A = 0,

−ŴA A �= 0,
(2.3)

with the 6D metric diag ηAB = (−1, 1, 1, 1, 1, 1). Here, In denotes the n × n identity matrix. The

Dirac conjugate � is defined by � = �†Ŵ0, as usual.

In order to extract a quantum-mechanical supersymmetric structure from the Dirac equation (2.2),

it may be necessary to drive the equation without including the gamma matrices Ŵy1 and Ŵy2 . For

this purpose, it turns out to be convenient to introduce the matrices Ŵ5 and Ŵy such as

Ŵ5 ≡ iŴ0Ŵ1Ŵ2Ŵ3, (2.4)

Ŵy ≡ iŴy1Ŵy2 , (2.5)

where Ŵy is an analogue of γ 5 in the extra dimensions.

Since Ŵy commutes with Ŵ5, we can introduce simultaneous eigenstates of Ŵ5 and Ŵy defined by

Ŵ5�R± = +�R±, Ŵ5�L± = −�L±, (2.6)

Ŵy�R± = ±�R±, Ŵy�L± = ±�L±. (2.7)

By use of the projection matrices, �R± and �L± can be constructed from � as

�R± ≡ PRP±�, �L± ≡ PLP±�, (2.8)

where

PR = 1

2
(I8 + Ŵ5), PL = 1

2
(I8 − Ŵ5), (2.9)

P± = 1

2
(I8 ± Ŵy). (2.10)

In terms of the eigenstates of Ŵ5 and Ŵy, the Dirac equation (2.2) can be decomposed as

iŴµ∂µ�R+ = −iŴy1(∂y1 − i∂y2)�L− + M�L+,

iŴµ∂µ�R− = −iŴy1(∂y1 + i∂y2)�L+ + M�L−,

iŴµ∂µ�L+ = −iŴy1(∂y1 − i∂y2)�R− + M�R+,

iŴµ∂µ�L− = −iŴy1(∂y1 + i∂y2)�R+ + M�R−. (2.11)
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Furthermore, in order to remove iŴy1 from the above equations, we may redefine the fields �R± and

�L± as

�R1 ≡ �R+, �R2 ≡ iŴy1�R−,

�L1 ≡ �L+, �L2 ≡ iŴy1�L−. (2.12)

Then, we have succeeded in eliminating the gamma matrix Ŵy1 from Eq. (2.11) and in rewriting

Eq. (2.11) into the form

iŴµ∂µ

⎛
⎜⎜⎜⎝

�R1(x, y)

�R2(x, y)

�L1(x, y)

�L2(x, y)

⎞
⎟⎟⎟⎠ = (Q ⊗ I2)

⎛
⎜⎜⎜⎝

�R1(x, y)

�R2(x, y)

�L1(x, y)

�L2(x, y)

⎞
⎟⎟⎟⎠, (2.13)

where I2 acts on two-dimensional spinors �R1, �R2, �L1, �L2, and the 4 × 4 matrix Q is defined by

Q ≡

⎛
⎜⎜⎜⎝

0 0 M −(∂y1 − i∂y2)

0 0 ∂y1 + i∂y2 −M

M −(∂y1 − i∂y2) 0 0

∂y1 + i∂y2 −M 0 0

⎞
⎟⎟⎟⎠. (2.14)

It should be emphasized that Q does not act on spinor indices but on the “flavor” space displayed in

Eq. (2.13), and satisfies the relation

Q2 =
[
−∂2

y1
− ∂2

y2
+ M 2

]
I4. (2.15)

Thus, the differential operator Q2 turns out to correspond to a Laplacian on the extra dimensions.

In the following sections, we will show that Q can be regarded as a supercharge of N = 2

supersymmetric quantum mechanics, and that the 4D mass spectrum of the 6D Dirac fermion system

is governed by the supersymmetry.

3. Hidden N = 2 supersymmetry

Since we would like to regard Q as a supercharge in supersymmetric quantum mechanics, we may

introduce a Hamiltonian H by

H = Q2. (3.1)

In order for the system to be supersymmetric, we further need to introduce the “fermion” number

operator F which should satisfy the relation [46]

(−1)F Q = −Q(−1)F ,

[
(−1)F

]2
= I4. (3.2)

Then, the operator H , Q, and (−1)F are assumed to act on four-component wavefunctions

�(y) =

⎛
⎜⎜⎜⎝

f1(y)

f2(y)

g1(y)

g2(y)

⎞
⎟⎟⎟⎠ (3.3)

that depend only on y1 and y2.
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The operator (−1)F obeying the relations (3.2) is found to be of the form

(−1)F =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎠. (3.4)

In the context of supersymmetry, we might call the (−1)F = +1 (−1) eigenstates “bosonic”

(“fermionic”) states, though they do not literally mean bosonic or fermionic states in our model.

It is worth noting that the eigenstates of (−1)F = +1 (−1) rather correspond to those of Ŵ5 = +1

(−1) from Eq. (2.13), so that (−1)F may be regarded as a counterpart of the 4D chiral operator.

The Hamiltonian system equipped with Q and (−1)F is called an N = 2 supersymmetric quantum

mechanics1 or a Witten model [46–48] if Q and (−1)F are Hermitian, i.e.

Q† = Q, (3.5)

[
(−1)F

]†
= (−1)F . (3.6)

It should be emphasized that the above Hermiticity property of Q is not trivial because the extra

dimensions have boundaries. In fact, we will see in the next section that the Hermiticity requirement

(3.5) and the compatibility condition with (−1)F severely restrict the allowed boundary conditions

for the wavefunctions (3.3) at the boundaries of the rectangle.

4. Classification of allowed boundary conditions

4.1. Requirement of Hermiticity for Q

Since we have taken the extra dimensions to be a rectangle, the requirement for Hermiticity for the

supercharge Q is not trivial. In fact, we will see below that the Hermiticity requirement severely

restricts the class of allowed boundary conditions for �(y) at y1 = 0, L1 and y2 = 0, L2.

To be more precise, we require that the supercharge Q is Hermitian under the inner product

〈�′, �〉 ≡
∫ L1

0

dy1

∫ L2

0

dy2

(
�′(y)

)†
�(y)

=
∫ L1

0

dy1

∫ L2

0

dy2

{(
f ′
1(y)

)∗
f1(y) +

(
f ′
2(y)

)∗
f2(y) +

(
g′

1(y)
)∗

g1(y) +
(

g′
2(y)

)∗
g2(y)

}
,

(4.1)

where

�(y) =

⎛
⎜⎜⎜⎝

f1(y)

f2(y)

g1(y)

g2(y)

⎞
⎟⎟⎟⎠ , �′(y) =

⎛
⎜⎜⎜⎝

f ′
1(y)

f ′
2(y)

g′
1(y)

g′
2(y)

⎞
⎟⎟⎟⎠ . (4.2)

Then, in order for Q to be Hermitian, Q has to satisfy

〈Q�′, �〉 = 〈�′, Q�〉 (4.3)

for arbitrary four-component wavefunctions �(y) and �′(y) with appropriate boundary conditions.

1 If we want to have two supercharges, we may introduce them by Q1 ≡ Q and Q2 ≡ −iQ(−1)F . Then, we

can show that they form the N = 2 supersymmetry algebra, i.e. {Qi, Qj} = 2Hδij (i, j = 1, 2).
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To make our analysis tractable, we assume that the probability current in the directions of the extra

dimensions terminates at each point of the boundaries of the rectangle. Then, Eq. (4.3) turns out to

reduce to the conditions
(

f ′
1(y)

)∗
g2(y) −

(
f ′
2(y)

)∗
g1(y) +

(
g′

1(y)
)∗

f2(y) −
(

g′
2(y)

)∗
f1(y) = 0 at y1 = 0, L1, (4.4)

(
f ′
1(y)

)∗
g2(y) +

(
f ′
2(y)

)∗
g1(y) +

(
g′

1(y)
)∗

f2(y) +
(

g′
2(y)

)∗
f1(y) = 0 at y2 = 0, L2. (4.5)

4.2. Allowed boundary conditions in the y1-direction

Let us first investigate condition (4.4). To solve condition (4.4), we first restrict our considerations

to the case of �′(y) = �(y), i.e. f ′
j (y) = fj(y) and g′

j(y) = gj(y) (j = 1, 2). This restriction would

give a necessary condition for (4.4). We will, however, verify that the derived boundary conditions

are sufficient as well as necessary.

For f ′
j (y) = fj(y) and g′

j(y) = gj(y) (j = 1, 2), condition (4.4) can be written in the form

ρ1(y)
†λ1(y) + λ1(y)

†ρ1(y) = 0 at y1 = 0, L1, (4.6)

where ρ1(y) and λ1(y) are two-component vectors defined by

ρ1(y) =
(

f1(y)

f2(y)

)
, λ1(y) = i

(
−g2(y)

g1(y)

)
. (4.7)

A crucial observation is that the condition (4.6) can be rewritten as

|ρ1(y) + L0λ1(y)|2 = |ρ1(y) − L0λ1(y)|2 at y1 = 0, L1, (4.8)

where L0 is a non-zero real constant whose value is irrelevant unless L0 is non-vanishing. General

solutions to Eq. (4.8) are easily found in the form

ρ1(y) + L0λ1(y) = U1

(
ρ1(y) − L0λ1(y)

)
at y1 = 0, L1,

or equivalently

(
I2 − U1

)
ρ1(y) = −L0

(
I2 + U1

)
λ1(y) at y1 = 0, L1, (4.9)

where U1 is an arbitrary 2 × 2 unitary matrix.

We have required the Hermiticity of the supercharge Q in order for the system to be supersymmetric.

The Hermiticity of Q is, however, not enough to preserve the supersymmetry. We should further

require that the boundary conditions are compatible with the fermion number operator (−1)F .

Since (−1)F commutes with the Hamiltonian H , (−1)F can be regarded as a conserved charge.

Hence, the eigenvalues of (−1)F should be conserved, otherwise the supersymmetric structure would

be destroyed. Since ρ1(y) = (f1(y), f2(y))
T and λ1(y) = (−g2(y), g1(y))

T correspond to (−1)F =
+1 and −1, respectively, ρ1(y) should not be related to λ1(y) at the boundaries in order for eigenvalues

of (−1)F to be conserved.2 Therefore, the condition (4.9) has to reduce to

(
I2 − U1

)
ρ1(y) = 0, at y1 = 0, L1, (4.10)

2 It is worth noting that this requirement will correspond to that of the 4D Lorentz invariance in the original

6D action, as discussed in Ref. [35].

6/30

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
te

p
/a

rtic
le

/2
0
1
7
/7

/0
7
3
B

0
3
/4

0
0
4
6
9
9
 b

y
 g

u
e

s
t o

n
 0

3
 A

u
g
u
s
t 2

0
2
1



PTEP 2017, 073B03 Y. Fujimoto et al.

(
I2 + U1

)
λ1(y) = 0, at y1 = 0, L1. (4.11)

In other words, only a class of U1 that (4.9) reduces to Eqs. (4.10) and (4.11) is permitted.

It is not difficult to show that the condition (4.9) can reduce to Eqs. (4.10) and (4.11) only if the

eigenvalues of U1 are equal to +1 or −1. This implies that the diagonalized form of U1 can be

categorized into three types:3

Type I: U
diag
1 =

(
1 0

0 1

)
, (4.12)

Type II: U
diag
1 =

(
−1 0

0 −1

)
, (4.13)

Type III: U
diag
1 =

(
1 0

0 −1

)
. (4.14)

In the following, we will derive a general form of U1 associated with each of Eqs. (4.12), (4.13), and

(4.14).

Type I boundary condition: The unitary matrix U1 can be diagonalized by a unitary matrix V such

that

VU1V −1 = U
diag
1 . (4.15)

Since U
diag
1 is the identity matrix for the Type I case of Eqs. (4.12), (4.15) implies that U1 is also

identity matrix, i.e.

U1 = I2. (4.16)

Then, condition (4.10) is trivially satisfied, and (4.11) reduces to

g1(y) = g2(y) = 0 at y1 = 0, L1. (4.17)

It will be convenient to rewrite the boundary condition (4.17) in terms of the original four-

component wavefunction �(y) as

P(−1)F=−1�(y) = 0 at y1 = 0, L1 (4.18)

for the Type I boundary condition. Here, P(−1)F=−1 denotes the projection matrix defined by

P(−1)F=±1 ≡ 1

2

(
I4 ± (−1)F

)
. (4.19)

3 One might add the case of U
diag

1 =
(

−1 0

0 1

)
to the list, but it turns out that this case leads to the same

results as for the Type III boundary conditions.
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Type II boundary condition: Since U
diag
1 given in Eq. (4.13) is proportional to the identity matrix,

the unitary matrix U1 is given by

U1 = V −1U
diag
1 V =

(
−1 0

0 −1

)
(4.20)

for Type II. Then, the condition (4.11) is trivially satisfied, while (4.10) reduces to

f1(y) = f2(y) = 0 at y1 = 0, L1. (4.21)

In terms of �(y), the above boundary condition can be expressed as

P(−1)F=+1�(y) = 0 at y1 = 0, L1 (4.22)

for the Type II boundary condition.

Type III boundary condition: For Type III, the unitary matrix U1 can generally be written as

U1 = V −1

(
1 0

0 −1

)
V = V −1σ3V . (4.23)

Since V can be any element of U (2), V could be parameterized as

V = eia I2+ib σ3ei
θ1
2 (− sin φ1 σ1+cos φ1 σ2). (4.24)

However, eia I2+ib σ3 trivially acts on σ3 in Eq. (4.23), so that the relevant part of V in the unitary

transformation (4.23) will be given by

V = ei
θ1
2 (− sin φ1 σ1+cos φ1 σ2). (4.25)

Then, we find that

U1 = V −1σ3V = 
n1 · 
σ =
(

cos θ1 e−iφ1 sin θ1

eiφ1 sin θ1 − cos θ1

)
, (4.26)

where 
σ = (σ1, σ2, σ3) are the Pauli matrices and 
n1 is a unit vector pointing at the position of a

unit two-sphere S2 defined by


n1 = (cos φ1 sin θ1, sin φ1 sin θ1, cos θ1). (4.27)

The above result shows that the parameter space of the Type III boundary condition is given by

S2 = U (2)/(U (1) × U (1)). Therefore, the Type III boundary condition is expected to possess

rich physical implications, because the parameter space is topologically non-trivial [49].

It follows from (4.26) that (4.10) and (4.11) become

(I2 − 
n1 · 
σ)

(
f1(y)

f2(y)

)
= 0,

(I2 + 
n1 · 
σ)

(
−g2(y)

g1(y)

)
= 0, at y1 = 0, L1. (4.28)
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It will be more convenient to express the above boundary condition in terms of the original

four-component wavefunction �(y). To this end, we may use the relation

(
−g2(y)

g1(y)

)
= −iσ2

(
g1(y)

g2(y)

)

and combine the two conditions of Eq. (4.28) into a single one as

P
n1· 
�1=−1�(y) = 0 at y1 = 0, L1, (4.29)

where P
n1· 
�1=−1 is defined by

P
n1· 
�1=±1 ≡ 1

2

(
I4 ± 
n1 · 
�1

)
, (4.30)


�1 ≡
(


σ 0

0 −σ2 
σσ2

)
. (4.31)

Since (
n1 · 
�1)
2 = I4 with 
n1 · 
n1 = 1, P
n1· 
�1=−1 can be regarded as the projection matrix on a

subspace of 
n1 · 
�1 = −1.

It is interesting to note that every boundary condition of Type I, II, and III can be expressed by

use of the projection matrices P(−1)F=−1, P(−1)F=+1, and P
n· 
�1=−1, respectively, and that those

representations become important in Sect. 4.4 to verify the sufficiency of the conditions obtained

above.

4.3. Allowed boundary conditions in the y2-direction

Let us next investigate the condition (4.5), whose solutions will give possible boundary conditions
AQ2

in the y2-direction. As before, by taking �′(y) = �(y), (4.5) is found to be written as

|ρ2(y) + L0λ2(y)|2 = |ρ2(y) − L0λ2(y)|2 at y2 = 0, L2, (4.32)

where

ρ2(y) =
(

f1(y)

f2(y)

)
, λ2(y) =

(
g2(y)

g1(y)

)
. (4.33)

Here, L0 is a non-zero real constant whose value is irrelevant unless L0 is non-vanishing. General

solutions to Eq. (4.32) are given by

(
I2 − U2

)
ρ2(y) = −L0

(
I2 + U2

)
λ2(y) at y2 = 0, L2, (4.34)

where U2 is an arbitrary 2 × 2 unitary matrix.

Requiring that the boundary conditions have to be compatible with the eigenvalues of (−1)F , we

find that (4.34) should reduce to

(
I2 − U2

)
ρ2(y) = 0, (4.35)

(
I2 + U2

)
λ2(y) = 0 at y2 = 0, L2. (4.36)
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This implies that the eigenvalues of U2 have to be +1 or −1. As before, we can then show that the

form of U2 is classified into three categories:

Type 1: U2 = I2, (4.37)

Type II: U2 = −I2, (4.38)

Type III: U2 = 
n2 · 
σ =
(

cos θ2 e−iφ2 sin θ2

eiφ2 sin θ2 − cos θ2

)
,


n2 = (cos φ2 sin θ2, sin φ2 sin θ2, cos θ2). (4.39)

It follows that allowed boundary conditions are given by:

Type I boundary condition:

P(−1)F=−1�(y) = 0 at y2 = 0, L2. (4.40)

Type II boundary condition:

P(−1)F=+1�(y) = 0 at y2 = 0, L2. (4.41)

Type III boundary condition:

P
n2· 
�2=−1�(y) = 0 at y2 = 0, L2, (4.42)

where P
n2· 
�2=−1 is a projection matrix defined by

P
n2· 
�2=±1 ≡ 1

2
(I4 ± 
n2 · 
�2), (4.43)


�2 ≡
(


σ 0

0 −σ1 
σσ1

)
. (4.44)

4.4. Verification of the sufficient condition

We have succeeded in classifying the allowed boundary conditions into three categories that satisfy

(4.4) or (4.5) with the restriction of �′(y) = �(y). In the following, we show that the boundary

conditions derived in Sects. 4.2 and 4.3 in fact satisfy (4.4) and (4.5) even for independent �(y) and

�′(y). For our purpose, it will be convenient to rewrite Eqs. (4.4) and (4.5) into the form

(
�′(y)

)†
Ŵ̃1�(y) = 0 at y1 = 0, L1, (4.45)

(
�′(y)

)†
Ŵ̃2�(y) = 0 at y2 = 0, L2, (4.46)

where

Ŵ̃1 ≡
(

0 −σ2

−σ2 0

)
, Ŵ̃2 ≡

(
0 σ1

σ1 0

)
. (4.47)
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Type I boundary condition in the y1-direction: We first investigate the Type I boundary condition

in the y1-direction, i.e.

P(−1)F=−1�(y) = P(−1)F=−1�
′(y) = 0 at y1 = 0, L1. (4.48)

Important properties for proving the condition (4.45) are

P(−1)F=+1 + P(−1)F=−1 = I4,

(
P(−1)F=±1

)2
= P(−1)F=±1, P(−1)F=±1P(−1)F=∓1 = 0,

(
P(−1)F=±1

)†
= P(−1)F=±1,

P(−1)F=±1Ŵ̃1 = Ŵ̃1P(−1)F=∓1, (4.49)

where the last relation follows from (−1)F Ŵ̃1 = −Ŵ̃1(−1)F . With a shorthand notation of

�±(y) ≡ P(−1)F=±1�(y), the condition (4.45) can be verified as follows:

(
�′(y)

)†
Ŵ̃1�(y) =

(
�′

+(y) + �′
−(y)

)†
Ŵ̃1

(
�+(y) + �−(y)

)

=
(
�′

+(y)
)†

Ŵ̃1�−(y) +
(
�′

−(y)
)†

Ŵ̃1�+(y)

= 0 at y1 = 0, L1, (4.50)

where we have used the relations (4.48) and (4.49).

Type II boundary condition in the y1-direction: The above analysis for the Type I boundary condi-

tion clearly shows that if �′(y) and �(y) satisfy the Type II boundary condition in the y1-direction,

i.e.

P(−1)F=+1�
′(y) = P(−1)F=+1�(y) = 0 at y1 = 0, L1, (4.51)

then the condition (4.45) is satisfied for arbitrary wavefunctions �(y) and �′(y) with Eq. (4.51).

Type III boundary condition in the y1-direction: In order to prove that the Type III boundary con-

dition in the y1-direction satisfies the condition (4.45), we need the following properties of

P
n1· 
�1=±1:

P
n1· 
�1=+1 + P
n1· 
�1=−1 = I4,

(
P
n· 
�1=±1

)2
= P
n· 
�1=±1, P
n· 
�1=±1P
n· 
�1=∓1 = 0,

(
P
n· 
�1=±1

)†
= P
n· 
�1=±1,

P
n· 
�1=±1Ŵ̃1 = Ŵ̃1P
n· 
�1=∓1, (4.52)

where the last relation follows from the property 
�1Ŵ̃1 = −Ŵ̃1

�1. The above relations are enough

to show that if �(y) and �′(y) obey the Type III boundary condition in the y1-direction, they satisfy

the condition (4.45).

The above analysis can also apply to Type I, II, and III boundary conditions in the y2-direction.

In order to verify the condition (4.46) for Type I, II, and III in the y2-direction, we only need the
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properties that P(−1)F=±1 and P
n2· 
�2=±1 can be regarded as projection matrices and that Ŵ̃2 changes

the sign of the eigenvalues of (−1)F and 
n2 · 
�2. The proof can be done in a similar way as the case

of y1-direction.

5. Energy spectrum for Type II boundary conditions

In this section, we investigate the energy spectrum of the theory for the Type II boundary condition

with the help of supersymmetry.4 We will show that the Type II boundary condition is enough to

determine the positive-energy spectrum completely, but not to determine zero-energy solutions.

5.1. Supersymmetry relations and boundary conditions

In this subsection, we summarize the general properties of N = 2 supersymmetric quantum

mechanics to determine the energy spectrum.

Let �E±(y) be simultaneous eigenstates of H and (−1)F , i.e.

H�E±(y) = E�E±(y), (5.1)

(−1)F�E±(y) = ±�E±(y). (5.2)

Since the supercharge Q commutes with H and anticommutes with (−1)F , Q�E± turns out to have

the same energy E but opposite eigenvalues of (−1)F if Q�E± are non-vanishing. This implies that

Q�E± should be proportional to �E∓,5 i.e.

Q�E+(y) =
√

E�E−(y), (5.3)

Q�E−(y) =
√

E�E+(y). (5.4)

Then, {�E+, �E−} turns out to form a supermultiplet (for E > 0), and Eqs. (5.3), (5.4) are called the

supersymmetry relations or simply SUSY relations. The factor
√

E on the right-hand-sides ensures

that 〈�E+, �E+〉 = 〈�E−, �E−〉.
We should emphasize that zero-energy solutions with E = 0 do not form supermultiplets, as

suggested by the SUSY relations because zero-energy solutions have to satisfy the zero-energy

equation6

Q�E=0(y) = 0. (5.5)

In this section, we impose the Type II boundary condition on the wavefunction �(y) in both the y1-

and y2-directions, i.e.

�+(y) = 0 at y1 = 0, L1 and y2 = 0, L2. (5.6)

One might think that Eq. (5.6) is not enough to specify the boundary condition for all the components

of �(y) because Eq. (5.6) seems to give no constraint on �−(y) at the boundaries. This is, however,

not the case. The boundary condition for �−(y) can be obtained through the SUSY relation (5.4). In

4 The analysis for the Type I boundary condition is almost the same as for Type II.
5 If the energy spectrum has another kind of degeneracy, we may replace �E± by �

(i)
E± with the index i to

distinguish degenerate states.
6 Since the Hamiltonian takes the form H = Q2, the equation H�E=0 = 0 becomes identical to Q�E=0 = 0.
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order for the boundary condition (5.6) to be consistent with the SUSY relation (5.4), the wavefunction

�−(y) with (−1)F = −1 has to obey the following boundary condition7

Q�−(y) = 0 at y1 = 0, L1 and y2 = 0, L2, (5.7)

otherwise the supersymmetry would be lost due to the breakdown of the SUSY relation (5.4). As we

will see in the next subsection, the boundary conditions (5.6) and (5.7) work well to determine the

positive-energy spectrum.

5.2. Positive-energy spectrum

In the following, we clarify the positive-energy spectrum for the Type II boundary condition with

the help of supersymmetry.

In terms of the component fields �(y) = (f1(y), f2(y), g1(y), g2(y))
T, the Type II boundary

condition (5.6) for f1(y) and f2(y) is given by

f1(y) = f2(y) = 0 at y1 = 0, L1 and y2 = 0, L2, (5.8)

and the boundary condition (5.7) for g1(y) and g2(y) is given by

Mg1(y) − (∂y1 − i∂y2)g2(y) = 0,

(∂y1 + i∂y2)g1(y) − Mg2(y) = 0,
at y1 = 0, L1 and y2 = 0, L2. (5.9)

Let �E+(y) be an energy eigenstate with (−1)F = +1. In components, the relation H�E+(y) =
E�E+(y) is rewritten as

[
−(∂y1)

2 − (∂y2)
2 + M 2

]( f1E(y)

f2E(y)

)
= E

(
f1E(y)

f2E(y)

)
. (5.10)

Then, the energy eigenfunctions satisfying the Type II boundary condition (5.8) are easily found to

be of the form

�
(1)
En1n2+(y) =

⎛
⎜⎜⎜⎝

fn1n2(y)

0

0

0

⎞
⎟⎟⎟⎠ , �

(2)
En1n2+(y) =

⎛
⎜⎜⎜⎝

0

fn1n2(y)

0

0

⎞
⎟⎟⎟⎠ , (5.11)

where

fn1n2(y) = 2√
L1L2

sin
(n1π

L1
y1

)
sin

(n2π

L2
y2

)
, (5.12)

En1n2 =
(n1π

L1

)2
+
(n2π

L2

)2
+ M 2, (5.13)

for n1, n2 = 1, 2, 3, . . . The eigenfunctions fn1n2(y) satisfy

〈fm1m2 , fn1n2〉 = δm1,n1δm2,n2 , (5.14)

fn1n2(y) = 0 at y1 = 0, L1 and y2 = 0, L2, (5.15)

7 The same situation has been observed in the 5D fermion system on an interval [30,32,34] and also in

supersymmetric quantum mechanics with boundaries [49,50].
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for m1, m2, n1, n2 = 1, 2, 3, . . . It should be noticed that the energy eigenfunctions (5.11) give a

complete set of the function �+(y), since the set of {fn1n2(y); n1, n2 = 1, 2, 3, . . .} forms a complete

set of the function satisfying the boundary condition f (y) = 0 at y1 = 0, L1 and y2 = 0, L2.

As was explained in Sect. 5.1, the energy eigenfunctions for �E− can be obtained through the

SUSY relation (5.3), i.e.

�
(1)
En1n2−(y) = 1√

En1n2

Q�
(1)
En1n2+(y) = 1√

En1n2

⎛
⎜⎜⎜⎝

0

0

Mfn1n2(y)

(∂y1 + i∂y2)fn1n2(y)

⎞
⎟⎟⎟⎠ ,

�
(2)
En1n2−(y) = 1√

En1n2

Q�
(2)
En1n2+(y) = 1√

En1n2

⎛
⎜⎜⎜⎝

0

0

−(∂y1 − i∂y2)fn1n2(y)

−Mfn1n2(y)

⎞
⎟⎟⎟⎠ , (5.16)

except for zero-energy solutions. We note that the above eigenfunctions satisfy the boundary

conditions (5.7) or (5.9), as they should.

5.3. Zero-energy solutions

In the previous analysis, we have succeeded in constructing positive-energy solutions, completely.

The analysis is, however, insufficient to obtain the whole set of energy eigenfunctions. This is because

zero-energy solutions do not form supermultiplets and hence we have to investigate them separately.

As was explained in Sect. 5.1, any zero-energy solution should satisfy the zero-energy equation

Q�E=0(y) = 0. Since �+(y) has no zero-energy solution due to the Dirichlet boundary condition

(i.e., the Type II boundary condition), zero-energy eigenfunctions will come only from �−(y) [or

g1(y) and g2(y)] satisfying Q�E=0−(y) = 0, or in components,

Mg1E=0(y) − (∂y1 − i∂y2) g2E=0(y) = 0,

(∂y1 + i∂y2) g1E=0(y) − Mg2E=0(y) = 0. (5.17)

It is worth pointing out that a strange situation happens here. We have already found that the boundary

condition (5.9) for g1(y) and g2(y) works properly for positive-energy eigenstates. The boundary

condition (5.9), however, gives no restriction on zero-energy solutions because any zero-energy

solutions trivially satisfy the “boundary condition” (5.9), not only at the boundaries but also on the

whole space of the rectangle. In fact, the condition (5.9) can be regarded as part of the zero-energy

equation (5.17).8 This implies that the determination of zero-energy solutions might be ambiguous,

as we will see below.

A zero-energy solution to (5.17) is found to be of the form

�
(1)
E=0−(y) =

⎛
⎜⎜⎜⎝

0

0

Ne−i θ
2 eM (cos θ y1+sin θ y2)

Nei θ
2 eM (cos θ y1+sin θ y2)

⎞
⎟⎟⎟⎠ , (5.18)

8 A similar situation has been observed in the 5D fermion system on an interval [30,32,34].
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where θ is an arbitrary real constant9 and N stands for a normalization constant. We will comment

on general zero-energy solutions later.

We would like to know how many independent zero-energy solutions exist in the model. To this

end, we may assume a second zero-energy solution to be of the form

�
(2)
E=0−(y) =

⎛
⎜⎜⎜⎜⎝

0

0

N ′e−i θ ′
2 eM (cos θ ′ y1+sin θ ′ y2)

N ′ei θ ′
2 eM (cos θ ′ y1+sin θ ′ y2)

⎞
⎟⎟⎟⎟⎠

. (5.19)

In order for �
(1)
E=0− and �

(2)
E=0− to be independent, we require that they are orthogonal, i.e.

〈�(1)
E=0−, �

(2)
E=0−〉 = 0. (5.20)

It follows that the above orthogonality relation is satisfied only if

θ ′ = θ + π (mod 2π). (5.21)

Then, the second zero-energy solution orthogonal to �
(1)
E=0− is found to be

�
(2)
E=0−(y) =

⎛
⎜⎜⎜⎝

0

0

N ′e−i θ
2 e−M (cos θ y1+sin θ y2)

−N ′ei θ
2 e−M (cos θ y1+sin θ y2)

⎞
⎟⎟⎟⎠ , (5.22)

with an appropriate normalization constant N ′.
Since there are no more independent zero-energy solutions of the type (5.19), we may conclude that

the number of the degeneracy of the zero-energy solutions is two. This result seems to be consistent

with the degeneracy of the positive-energy solutions �
(i)
En1n2− with i = 1, 2.

Before closing this subsection, we would like to comment on a general form of zero-energy

solutions. We first note that the wavefunction (5.18) satisfies the zero-energy equation (5.17) even

for an arbitrary complex number θ . Then, we can show that a general form of zero-energy solution

to (5.17) is given by the superposition of the solution (5.18) with respect to θ ∈ C. It follows

from this observation that additional conditions (for instance, additional boundary conditions like

∂y2g1(y) = ∂y2g2(y) = 0 at y1 = 0, L1 and y2 = 0, L2) seem to be necessary to determine

independent zero-energy solutions definitely.

5.4. Four-dimensional mass spectrum

In the previous subsections, we have succeeded in obtaining the energy spectrum of the Hamiltonian

system H = Q2, though we have not yet arrived at a definite conclusion for zero-energy solutions.

We can use those results to expand the original 6D Dirac field �(x, y) in the 4D Kaluza–Klein modes,

and then rewrite the action (2.1) into the four-dimensional effective action that consists of an infinite

number of 4D massive fermions and a finite number of 4D massless chiral ones.

9 It has been shown in Ref. [35] that the origin of the parameter θ in Eq. (5.18) comes from the rotational

invariance of the extra dimensions.
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As discussed in Sect. 2, the 6D Dirac field �(x, y) can be decomposed into the eigenfunctions of

Ŵ5 and Ŵy as

�(x, y) = �R+(x, y) + �R−(x, y) + �L+(x, y) + �L−(x, y), (5.23)

where the subscripts ± of �R± and �L± denote the eigenvalues of Ŵy (but not (−1)F ).10 The results

given in the previous subsections suggest that �R±(x, y) and �L±(x, y) may be expanded, in terms

of the energy eigenfunctions, as

�R±(x, y) =
∞∑

n1=1

∞∑

n2=1

ψ
(n1,n2)
R± (x)fn1n2(y),

�L±(x, y) = �
(0)
L±(x, y)

+
∞∑

n1=1

∞∑

n2=1

{
iŴy1η

(n1,n2)
L± (x)

1√
En1n2

(∂y1∓i∂y2)fn1n2(y) + M√
En1n2

η
(n1,n2)
L± (x)fn1n2(y)

}
, (5.24)

where

�
(0)
L+(x, y) = ξ

(0)
L1 (x)Ne−i θ

2 eM (cos θ y1+sin θ y2) + ξ
(0)
L2 (x)N ′e−i θ

2 e−M (cos θ y1+sin θ y2),

�
(0)
L−(x, y) = iŴy1ξ

(0)
L1 (x)Nei θ

2 eM (cos θ y1+sin θ y2) − iŴy1ξ
(0)
L2 (x)N ′ei θ

2 e−M (cos θ y1+sin θ y2). (5.25)

Here, ψ
(n1,n2)
R± (x), η

(n1,n2)
L± (x), and ξ

(0)
Li (x) (i = 1, 2) denote 4D chiral spinors as depicted by the

subscripts R and L. We would like to note that the form of the mode expansion of �L±(x, y) is

not trivial and that the mode expansions of �R±(x, y) and �L±(x, y) have to be arranged such that

ψ
(n1,n2)
R± (x), η

(n1,n2)
L± (x), and ξ

(0)
Li (x) give the 4D mass eigenstates.

By inserting the expansions (5.24) and (5.25) into the original action (2.1) and integrating over y1

and y2, we find that the action (2.1) becomes11

S =
∫

d4x

{
2∑

i=1

ξ
(0)

Li (x) iŴµ∂µξ
(0)
Li (x)

+
∞∑

n1=1

∞∑

n2=1

[
ψ

(n1,n2)

1 (x)
(

iŴµ∂µ − mn1,n2

)
ψ

(n1,n2)
1 (x) + ψ

(n1,n2)

2 (x)
(

iŴµ∂µ − mn1,n2

)
ψ

(n1,n2)
2 (x)

]⎫⎬
⎭ ,

(5.26)

where ψ
(n1,n2)
i (x) are 4D Dirac spinors defined by

ψ
(n1,n2)
1 (x) ≡ ψ

(n1,n2)
R+ (x) + η

(n1,n2)
L− (x),

ψ
(n1,n2)
2 (x) ≡ ψ

(n1,n2)
R− (x) + η

(n1,n2)
L+ (x), (5.27)

and

mn1n2 ≡
√

En1n2 =
√(

n1π

L1

)2

+
(

n2π

L2

)2

+ M 2. (5.28)

10 We hope that readers do not confuse the meanings of the subscripts ± for �R±, �L± in Eq. (5.23) with

�E±(y) in Eq. (5.2).
11 The results are consistent with those given in Ref. [35].
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Thus, we conclude that the 4D mass spectrum of the 6D Dirac fermion for the Type II boundary

condition consists of infinitely many massive Dirac fermions ψ
(n1,n2)
i (x) (n1, n2 = 1, 2, 3, . . . ; i =

1, 2) with mass mn1n2 and two massless left-handed chiral fermions ξ
(0)
Li (x) (i = 1, 2). It should be

emphasized that the appearance of the degenerate massless chiral fermions in the 4D mass spectrum

could have important implications for phenomenology to solve the generation problem of the quarks

and leptons.

6. Energy spectrum for Type III boundary conditions

In this section, we investigate the energy spectrum for the Type III boundary condition in a slightly

different way than in the previous section.

6.1. Type III boundary conditions and reformulation of SUSY

The Type III boundary condition has the S2 parameters at each boundary of y1 = 0, L1 and y2 = 0, L2.

For simplicity in the following, we restrict our considerations to the simple case of


n1 = 
n2 = (0, 0, −1) ≡ 
n (6.1)

for the S2 parameters. Then, the boundary condition considered in this section is given by

�
n· 
�1=−1(y) = �
n· 
�2=−1(y) =

⎛
⎜⎜⎜⎝

f1(y)

0

g1(y)

0

⎞
⎟⎟⎟⎠ = 0 at y1 = 0, L1 and y2 = 0, L2. (6.2)

Although we could follow the previous analysis for the Type II boundary condition, it will be

convenient to reformulate the Hamiltonian with a different supercharge. By decomposing �(x, y)

into the eigenstates of Ŵy as �(x, y) = �+(x, y)+�−(x, y), we may rewrite the Dirac equation (2.2)

into the form
(

iŴµ∂µ − M 0

0 iŴµ∂µ + M

)(
�+(x, y)

�̃+(x, y)

)
=
(

0 −(∂y1 − i∂y2)

∂y1 + i∂y2 0

)(
�+(x, y)

�̃+(x, y)

)
,

(6.3)

where �̃+(x, y) ≡ iŴy1�−(x, y).

We can then define a new Hamiltonian H̃ by

H̃ ≡ Q̃2 =
[
−(∂y1)

2 − (∂y2)
2
]
I2, (6.4)

with a new supercharge

Q̃ ≡
(

0 −(∂y1 − i∂y2)

∂y1 + i∂y2 0

)
. (6.5)

Here, H̃ and Q̃ are represented by 2 × 2 matrices, instead of 4 × 4. The differential operators H̃ and

Q̃ act on the two-component wavefunction

�̃(y) =
(

f̃ (y)

g̃(y)

)
(6.6)
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with the boundary condition

f̃ (y) = 0 at y1 = 0, L1 and y2 = 0, L2, (6.7)

which will correspond to (6.2). It should be stressed that the above boundary condition (6.7)

guarantees that the supercharge Q̃ is Hermitian.

The “fermion” number operator F̃ can be introduced as

(−1)F̃ =
(

1 0

0 −1

)
, (6.8)

which satisfies all the desired relations discussed in the previous sections.

6.2. Energy spectrum

In order to construct the energy spectrum, it will be convenient to introduce the eigenfunctions of

(−1)F̃ , such that

(−1)F̃�̃±(y) = ±�̃±(y), (6.9)

where

�̃+(y) =
(

f̃ (y)

0

)
, �̃−(y) =

(
0

g̃(y)

)
. (6.10)

With the boundary conditions (6.7), we can easily find the energy eigenfunctions for �̃+(y). The

result is

H̃�̃Ẽn1n2
+(y) = Ẽn1n2�̃Ẽn1n2

+(y),

�̃Ẽn1n2
+(y) =

(
fn1n2(y)

0

)
(n1, n2 = 1, 2, 3, . . .), (6.11)

where fn1n2(y) are defined in Eq. (5.12) and

Ẽn1n2 =
(

n1π

L1

)2

+
(

n2π

L2

)2

(n1, n2 = 1, 2, 3, . . .). (6.12)

In order to obtain the positive-energy spectrum for �̃−(y), we use the SUSY relations

√
Ẽn1n2�̃Ẽn1n2

∓(y) = Q̃�̃Ẽn1n2
±(y). (6.13)

It follows that the positive-energy eigenfunctions �̃Ẽn1n2
−(y) are given by

�̃Ẽn1n2
−(y) =

⎛
⎝

0
1√

Ẽn1n2

(∂y1 + i∂y2)fn1n2(y)

⎞
⎠ . (6.14)

The SUSY relations (6.13) also imply that �̃−(y) should satisfy the boundary condition

Q̃�̃−(y) = 0 at y1 = 0, L1 and y2 = 0, L2,
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or equivalently

(∂y1 − i∂y2 )̃g(y) = 0 at y1 = 0, L1 and y2 = 0, L2. (6.15)

This is not the end of the story. The set of {�̃Ẽn1n2
±(y); n1, n2 = 1, 2, 3, . . .} gives a complete

spectrum for the positive-energy state, but we have not yet obtained zero-energy eigenfunctions for

�̃E=0−(y).

Since �̃+(y) obeys the Dirichlet boundary condition, it cannot possess any zero-energy state.

Therefore, any zero-energy solution to H̃ = Q̃2 should appear from an eigenstate of (−1)F̃ = −1

and satisfies Q̃�̃E=0−(y) = 0, i.e.

(∂y1 − i∂y2 )̃gE=0(y) = 0. (6.16)

A general solution to Eq. (6.16) is given by

g̃E=0(y) = ρ(z), (6.17)

where ρ(z) is an arbitrary anti-holomorphic function of z = y1 − iy2.

Here, we face a strange situation again. The Type III boundary condition (6.7) for �̃+(y) and

(6.15) for �̃−(y) turns out to work well to determine the positive-energy solutions. On the other

hand, the boundary condition (6.15) for �̃−(y) or g̃(y) does not work properly for zero-energy

solutions because any zero-energy solution to Eq. (6.16) trivially satisfies the boundary condition

(6.15), and in fact the boundary condition does not give any restriction on zero-energy solutions.

It is worth commenting on a general form of zero-energy solutions (6.17). The zero-energy equation

Q̃�̃E=0(y) = 0 possesses two-dimensional conformal invariance because Q̃ includes no massive

parameter. Therefore, it is reasonable that a general solution to the conformal invariant equation

Q̃�̃(y) = 0 is given by any anti-holomorphic function (without specifying non-trivial boundary

conditions).

7. Mapping between degenerate states

In Sect. 5, we have found that positive-energy eigenfunctions are four-fold degenerate for the Type

II boundary condition. The purpose of this section is to understand the degeneracy of the energy

eigenfunctions, especially for the positive-energy states. In the following analysis, we will restrict

our considerations to the energy spectrum for the Type II boundary condition.

As already discussed, every pair of positive-energy eigenfunctions �E+ and �E− forms a super-

multiplet. This implies that the positive-energy solutions �
(i)
En1n2

+ (n1, n2 = 1, 2, 3, . . . ; i = 1, 2) are

related to �
(i)
En1n2

− by supersymmetry, i.e.

�
(1)
En1n2

+
Q←−−→ �

(1)
En1n2

−,

�
(2)
En1n2

+
Q←−−→ �

(2)
En1n2

−. (7.1)

To clarify the relations between �
(1)
En1n2

± and �
(2)
En1n2

±, let us consider the C transformation defined

by

�(y)
C−−→ C�(y) ≡ C

(
�(y)

)∗
, (7.2)
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where C is the 4 × 4 matrix

C ≡
(

σ1 0

0 −σ1

)
. (7.3)

Interestingly, we can show that the C transformation satisfies the following relations:

C(−1)F = (−1)F
C,

CQ = QC,

CH = HC,

(C)2 = 1. (7.4)

It follows from Eq. (7.4) that if �E±(y) are any eigenfunctions of H = E and (−1)F = ±1, then

the states C�E±(y) also have the same eigenvalues as �E±(y), i.e.

H
(
C�E±(y)

)
= E

(
C�E±(y)

)
, (7.5)

(−1)F
(
C�E±(y)

)
= ±

(
C�E±(y)

)
. (7.6)

If C�E± are not proportional to �E± themselves, �E±(y) and C�E±(y) can be independent of each

other with the same energy eigenvalue E. This observation implies that the set of {�E±, C�E±} gives

four-fold degenerate eigenstates of H = E. In fact, the eigenfunctions {�(1)
En1n2

±, �
(2)
En1n2

±} turn out

to be related as

�
(1)
En1n2

+
Q←−−→ �

(1)
En1n2

−
�⏐⏐! C

�⏐⏐! C

�
(2)
En1n2

+
Q←−−→ �

(2)
En1n2

−

(7.7)

For the zero-energy eigenfunctions �
(1)
E=0− and �

(2)
E=0− given in Eqs. (5.18) and (5.22), we find

C

�

�
(1)
E=0−

Q−−→ 0
Q←−− �

(2)
E=0− � C, (7.8)

where �
(1)
E=0− and �

(2)
E=0− are found to be eigenfunctions of C = −1 and C = +1, respectively.

In the following part, we show that this C transformation for mode functions originates from a CP

transformation in a 6D sense. Let us consider a CP transformation that consists of the 6D charge

conjugation C and parity transformation P with (t, x, y) → (t, −x, y). The 6D charge conjugation

is given by

C : �(x, y) → �(C)(x, y) = C�
T
(x, y), (7.9)

where C is an 8 × 8 unitary matrix. The concrete definition and properties of 6D charge conjugation

are given in Appendix B. This transformation flips both the 4D chirality R/L and the inner chirality

± (see Appendix A) as

�
(C)
R/L,± ∼ �∗

L/R,∓. (7.10)
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Since components with the same 4D chiralities (but opposite inner chiralities) are related by the

C transformation, the 6D charge conjugation C itself cannot be the origin of the C transformation.

Here, we focus on the fact that the parity transformation P,12

P : �(t, x, y) → �(P)(t, x, y) = Ŵ0Ŵy�(t, −x, y), (7.11)

flips only the 4D chirality R/L as

�
(P)
R/L,± ∼ �L/R,±, (7.12)

so that the 6D CP transformation, which is the combination of the 6D charge conjugation C and the

parity transformation P, flips only the inner chirality ± and can correspond to the C transformation,13

CP : �(t, x, y) → �(CP)(t, x, y) = Ŵ0ŴyC�
T
(t, −x, y). (7.13)

In fact, multiplying Ŵ5 and Ŵy and using the properties of the 6D charge conjugation given in

Appendix B, we can easily check that the 6D CP transformation only flips the inner chirality ±:

�
(CP)
R/L,± ∼ �∗

R/L,∓. (7.14)

We should mention that the action (2.1) is invariant under the 6D CP transformation (7.13), and

the CP-transformed Dirac fermion �(CP)(t, x, y) satisfies the same 6D Dirac equation (2.2) as the

original Dirac fermion �(x, y). This implies that the 6D CP transformation does not change the

spectrum and could connect the degenerate solutions of the Dirac equation if they exist, as the C

transformation. In the chiral representation of 6D Gamma matrices (see Appendix A for details), the

6D CP transformation (7.13) is represented in the following concrete form by regarding ξR/L,±(x, y)

as two-component spinors:

⎛
⎜⎜⎜⎜⎜⎜⎝

ξ
(CP)
R+

ξ
(CP)
L+

ξ
(CP)
R−

ξ
(CP)
L−

⎞
⎟⎟⎟⎟⎟⎟⎠

(t, x, y) = C

⎛
⎜⎜⎜⎜⎜⎝

ξR+

ξL+

−ξR−

−ξL−

⎞
⎟⎟⎟⎟⎟⎠

∗

(t, −x, y), (7.15)

where

C = iσ2 ⊗ C(4D). (7.16)

C(4D) = iγ 2γ 0 is the (ordinary) 4D charge conjugation. We can see from Eq. (7.15) that the 6D CP

transformation contains the 4D CP transformation to connect �R,+ (�L,+) and �R,− (�L,−) without

changing the 4D chirality as the 4D CP transformation. In the basis defined in Eq. (2.12), rearranging

12 The gamma matrix Ŵy in the parity transformation (7.11) plays the role of the π -rotation in the y1y2-plane.

The C transformation does not change the sign of the extra dimension coordinates; we multiplied Ŵy instead

of the replacement y → −y.
13 Note that this CP transformation is not equal to the “modified” CP transformation which is useful for

discussing CP violation from the 4D point of view [51–53] in 4 + 2n (n = 1, 2, . . .) dimensions.
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the order of the components in Eq. (7.15), we can rewrite it in the form
⎛
⎜⎜⎜⎜⎜⎜⎝

−ξ
(CP)
R+

ξ
(CP)
R−

ξ
(CP)
L+

ξ
(CP)
L−

⎞
⎟⎟⎟⎟⎟⎟⎠

(t, x, y) =
[(

σ1 0

0 −σ1

)
⊗(−I2)

]
⎛
⎜⎜⎜⎜⎜⎝

iσ2ξ
∗
R+

iσ2(−ξR−)∗

−iσ2(ξL+)∗

−iσ2(ξL−)∗

⎞
⎟⎟⎟⎟⎟⎠

(t, −x, y), (7.17)

where iσ2ξ
∗
R± and −iσ2ξ

∗
L± are CP-transformed fields in the 4D sense. The above transformation

with respect to the extra dimensions is found to correspond to the C transformation (7.2). Thus, we

can understand that the 4×4 C matrix originates from the 6D CP transformation, where (−I2) shows

the trivial rotation of two-component spinors with an unphysical overall minus sign.

8. Six-dimensional Dirac fermion on arbitrary flat surfaces with boundaries

So far, we have restricted our considerations to the rectangle as a two-dimensional extra space. For

phenomenological applications, it will be useful to extend our analysis to arbitrary flat surfaces S with

boundaries like polygons, a disk, etc. To this end, we introduce the inner product for four-component

wavefunctions �′(y) and �(y) on S as

〈�′, �〉S =
∫

S

dy1dy2

(
�′(y)

)†
�(y). (8.1)

The requirement is that the supercharge Q is given by

〈Q�′, �〉S = 〈�′, Q�〉S . (8.2)

By expressing the supercharge Q defined in Eq. (2.14) in the form

Q = i∂yj Ŵ̃j + M Ŵ̃M (j = 1, 2) (8.3)

with

Ŵ̃1 =
(

0 −σ2

−σ2 0

)
, Ŵ̃2 =

(
0 σ1

σ1 0

)
, Ŵ̃M =

(
0 σ3

σ3 0

)
, (8.4)

we have found that the condition (8.2) leads to
∮

∂S

dy//

(
�′(y)

)†
(

n
χ
j Ŵ̃j

)
�(y) = 0, (8.5)

where ∂S denotes the boundary of the surface S, (n
χ
1 , n

χ
2 ) = (cos χ , sin χ) is a unit normal vector

orthogonal to the boundary ∂S, and dy// is a line element along ∂S, as depicted in Fig. 1.

Since it is hard to solve the non-local equation (8.5) in general, we will here restrict our

considerations to the case that the local condition

(
�′(y)

)†
(

n
χ
j Ŵ̃j

)
�(y) = 0 at (y1, y2) ∈ ∂S (8.6)

is satisfied at each point of the boundary ∂S, as was done in Sect. 4.

Although the condition (8.6) should be satisfied for arbitrary four-component wavefunctions �′(y)
and �(y), it is actually sufficient to solve Eq. (8.6) for �′(y) = �(y), as was shown in Sect. 4.

Inserting

(
n
χ
1 , n

χ
2

)
= (cos χ , sin χ) (8.7)
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Fig. 1. ∂S denotes the boundary of S. 
nχ is a unit normal vector orthogonal to ∂S, and dy// is a line element

along the boundary ∂S.

into Eq. (8.6) with �′(y) = �(y) = (f1(y), f2(y), g1(y), g2(y)
T leads to

0 =
(
�′(y)

)†
(

n
χ
j Ŵ̃j

)
�(y)

= (ρ(y))† σχλ(y) +
(
σχλ(y)

)†
ρ(y), (8.8)

where

ρ(y) ≡
(

f1(y)

f2(y)

)
, λ(y) ≡

(
g1(y)

g2(y)

)
, (8.9)

and

σχ ≡ − cos χ σ2 + sin χ σ1 =
(
σχ

)†
. (8.10)

A crucial observation is that the condition (8.8) can be rewritten as

∣∣ρ(y) + L0σχλ(y)
∣∣2 =

∣∣ρ(y) − L0σχλ(y)
∣∣2 , (8.11)

where L0 is a non-zero real constant whose value is irrelevant unless L0 is non-vanishing.

General solutions to Eq. (8.11) are easily found in the form

ρ(y) + L0σχλ(y) = U
(
ρ(y) − L0σχλ(y)

)
, (8.12)

or equivalently

(I2 − U )ρ(y) = −L0(I2 + U )σχλ(y), (8.13)

where U is an arbitrary two-by-two unitary matrix. Following the arguments given in Sect. 4, we

conclude that the condition (8.13) has to reduce to

(I2 − U )ρ(y) = 0, (8.14)

(I2 + U )σχλ(y) = 0, (8.15)

and, further, that the allowed boundary conditions are classified into three types:

Type I boundary condition:

UType I =
(

1 0

0 1

)
. (8.16)
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It follows that the condition (8.14) is trivially satisfied, and the condition (8.15) reduces to

g1(y) = g2(y) = 0 at (y1, y2) ∈ ∂S. (8.17)

It will be convenient to rewrite the boundary condition (8.17) in terms of the original four-

component wavefunction �(y) as

P(−1)F=−1�(y) = 0 at (y1, y2) ∈ ∂S, (8.18)

with

P(−1)F=±1 = 1

2

(
I4 ± (−1)F

)
. (8.19)

Type II boundary condition:

UType II =
(

−1 0

0 −1

)
. (8.20)

It follows that the condition (8.15) is trivially satisfied, while the condition (8.14) reduces to

f1(y) = f2(y) = 0 at (y1, y2) ∈ ∂S. (8.21)

In terms of �(y), the above boundary condition can be expressed as

P(−1)F=+1�(y) = 0 at (y1, y2) ∈ ∂S. (8.22)

Type III boundary condition:

UType III = 
n · 
σ =
(

cos θ e−iφ sin θ

eiφ sin θ − cos θ

)
, (8.23)

with


n = (cos φ sin θ , sin φ sin θ , cos θ) . (8.24)

It follows from Eq. (8.23) that Eqs. (8.14) and (8.15) become

(I2 − 
n · 
σ)ρ(y) = (I2 − 
n · 
σ)

(
f1(y)

f2(y)

)
= 0,

(I2 + 
n · 
σ ′)λ(y) = (I2 + 
n · 
σ ′)

(
g1(y)

g2(y)

)
= 0 at (y1, y2) ∈ ∂S, (8.25)

with


σ ′ ≡ σχ 
σσχ

= (− cos(2χ)σ1 − sin(2χ)σ2, cos(2χ)σ2 − sin(2χ)σ1, −σ3). (8.26)

Here, we used the property (σχ )2 = I2. It will be convenient to express the above boundary

condition in terms of the original four-component wavefunction �(y). The result is given by

P
n· 
�=−1�(y) = 0 at (y1, y2) ∈ ∂S, (8.27)
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where P
n· 
�=±1 are projection matrices defined by

P
n· 
�=±1 ≡ 1

2

(
I4 ± 
n · 
�

)
, (8.28)


� ≡
(


σ 0

0 − 
σ ′

)
. (8.29)

We have succeeded in classifying the allowed boundary conditions at each point of the boundary

∂S. We should note that the results given in this section are consistent with those in Sect. 4. Actually,

for χ = ±π (χ = ±π/2), the above results reduce to those given in Sect. 4.2 (Sect. 4.3).

Let us examine an n-sided polygon as an application of the analysis given above. Let 
nχa =
(cos χa, sin χa) (a = 1, 2, . . . , n) be a normal unit vector orthogonal to the ath side of the polygon.

Then, we can impose one of the following boundary conditions on the ath side of the polygon:

Type I : P(−1)F=−1�(y) = 0,

Type II : P(−1)F=+1�(y) = 0,

Type III : P
n· 
�a=−1�(y) = 0, (8.30)

with


�a =
(


σ 0

0 −σχa 
σσχa

)
. (8.31)

If we would like to impose a single boundary condition on every side of the polygon, the possible

boundary conditions are restricted to

(1) g1(y) = g2(y) = 0,

(2) f1(y) = f2(y) = 0,

(3) f1(y) = g1(y) = 0,

(4) f2(y) = g2(y) = 0 (8.32)

on every side of the polygon. The above boundary conditions (1), (2), (3), and (4) correspond to Type

I, Type II, Type III with θ = π , and Type III with θ = 0, respectively. We note that the allowed Type

III boundary conditions are limited to θ = π and 0, where φ does not contribute to the boundary

conditions at θ = π and 0. This is because the normal unit vector 
nχa (a = 1, 2, . . . , n) on the ath side

is independent of 
nχb for a �= b, in general, so that P
n· 
�a=−1 (a = 1, 2, . . . , n) cannot be identical

for all sides of the polygon expect for θ = π and 0, irrespective of φ.

Let us finally discuss a disk as the extra dimensions. For a disk, we may impose a single boundary

condition on every point of the edge of the disk. It then follows from the analysis of the n-sided

polygon that the boundary condition on the edge of the disk has to be chosen from one of the four

boundary conditions (8.32), otherwise the Hermiticity of the supercharge would be lost.

9. Conclusions and discussions

We have succeeded in revealing the supersymmetric structure hidden in the 6D Dirac action on a

rectangle. The supersymmetry turns out to be very useful to classify the class of allowed boundary

conditions, and to clarify the 4D mass spectrum of the Kaluza–Klein modes for the 6D Dirac fermion.
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In fact, the allowed boundary conditions are derived by demanding the Hermiticity of the supercharge

and are classified into three types. We have furthermore extended our analysis to arbitrary flat surfaces

as the two-dimensional extra space. We have then found that the supersymmetric structure is still

realized there and have succeeded in classifying the allowed boundary conditions, in general.

An important observation in our results is that two massless chiral fermions appear in the 4D mass

spectrum for the Type I or Type II boundary conditions. This result seems to be surprising because

the 6D Dirac fermion is non-chiral and furthermore has the non-vanishing bulk mass M .14 Then, one

might naively expect that the 4D mass spectrum would consist of only massive states with masses

heavier than M . Actually, positive-energy eigenstates correspond to massive 4D Dirac fermions with

masses mn1n2 > M for n1, n2 = 1, 2, 3, . . .

On the other hand, we have found that the 4D massless chiral fermions correspond to zero-energy

solutions, which are bound states and possess a topological nature in supersymmetric quantum

mechanics. The appearance of the degenerate 4D massless chiral fermions will become crucially

important in solving the generation problem and also the fermion mass hierarchy problem of the

quarks and leptons, though the 4D massless chiral fermions are two-fold degenerate but not three-

in the present 6D model.

In our analysis, we have found the remarkable feature that zero-energy solutions are not affected

by the presence of the boundaries, while the boundary conditions work well for determining the

positive-energy solutions. Even though we have explicitly constructed a one-parameter family of

zero-energy solutions (5.18) and (5.22) for the Type II boundary condition and shown that the

number of the degeneracy is two, the analysis seems to be insufficient. This is because the general

class of zero-energy solutions is much wider than considered here, and we have not succeeded

in determining a complete set of zero-energy solutions definitely.15 Since zero-energy solutions are

directly related to massless 4D chiral fermions, it would be of great importance to clarify the structure

of the zero-energy solutions for higher-dimensional Dirac systems with more than or equal to two

extra dimensions, phenomenologically as well as mathematically.16

One extension of our analysis is to introduce potential terms in the Hamiltonian. This can be

done by replacing the bulk mass M by a superpotential W (y) in the supercharge Q in Eq. (2.14).

Even with the superpotential W (y), the supercharge is still Hermitian for Type I, II, and III boundary

conditions. Interestingly, the superpotential may naturally be introduced through aYukawa interaction

g〈φ(y)〉�(x, y)�(x, y) with a non-trivial background 〈φ(y)〉 of a scalar field φ(x, y).

Another important extension of our analysis is to investigate higher-dimensional Dirac actions. In

the case of a 6D Dirac fermion, only two massless chiral fermions appear in the 4D mass spectrum,

which is not sufficient to solve the generation problem. However, more than two 4D massless chiral

fermions may appear in the case of higher dimensions, equal to or more than eight dimensions,

14 It should be emphasized that no zero-energy solution or 4D massless chiral fermion appears for the

non-vanishing bulk mass M if we take the torus as the two-dimensional extra space, instead of the rectangle.
15 It is worth noting that no trouble appears in 5D fermion systems with a single extra dimension, though

a similar situation happens there [30–32,34]. Any zero-energy solution is not degenerate in one dimension, so

it can be determined uniquely.
16 Determining the size and the shape of the extra dimensions, known as moduli stabilization, would be

issues closely related to gravitational effects in higher-dimensional space-time, which is absent in the present

flat setup. Though this subject is of importance for a complete discussion on models in the context of extra

dimensions, we will leave it as a topic for future studies.

Another extension is to consider curved extra dimensions. Even for this situation, the supersymmetric

structure is expected to be realized [39,42]. It would be of interest to study the above subjects.
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even though it is naively expected that 2n massless chiral fermions would appear in the case of

D = 4 + 2n. This may imply that it is very important to perform a comprehensive analysis of the

allowed boundary conditions in higher-dimensional Dirac actions, as done in this paper, because

a suitable choice of boundary conditions could reduce the possible 2n massless chiral fermions to

three massless ones. Thus, it would be of great interest to extend our analysis to higher-dimensional

Dirac fermions and to search for the possibility of producing a three-generation model. This work

will be reported elsewhere.
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Appendix A. Chiral representation of 6D Gamma matrices

In this appendix, we represent our choice of the chiral representation of the 6D Gamma matrices:

Ŵµ = I2 ⊗ γ µ =
(

γ µ 0

0 γ µ

)
=

⎛
⎜⎜⎜⎝

0 σµ

σµ 0

0 σµ

σµ 0

⎞
⎟⎟⎟⎠ , (A.1)

Ŵy1 = iσ1 ⊗ γ 5 =
(

0 iγ 5

iγ 5 0

)
=

⎛
⎜⎜⎜⎝

iI2 0

0 −iI2

iI2 0

0 −iI2

⎞
⎟⎟⎟⎠ , (A.2)

Ŵy2 = iσ2 ⊗ γ 5 =
(

0 γ 5

−γ 5 0

)
=

⎛
⎜⎜⎜⎝

I2 0

0 −I2

−I2 0

0 I2

⎞
⎟⎟⎟⎠ , (A.3)

with σµ = (12, −σ1, −σ2, −σ3) and σ̄µ = (12, σ1, σ2, σ3). In this basis, the 4D chirality and the

inner chirality are expressed with the following diagonal forms:

Ŵ5 ≡ iŴ0Ŵ1Ŵ2Ŵ3 = I2 ⊗ (iγ 0γ 1γ 2γ 3)

= I2 ⊗ γ 5 =
(

γ 5 0

0 γ 5

)
=

⎛
⎜⎜⎜⎝

I2 0

0 −I2

I2 0

0 −I2

⎞
⎟⎟⎟⎠ , (A.4)

Ŵy ≡ iŴy1Ŵy2
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= σ3 ⊗ I4 =
(

I4 0

0 −I4

)
=

⎛
⎜⎜⎜⎝

I2 0

0 I2

−I2 0

0 −I2

⎞
⎟⎟⎟⎠ . (A.5)

As a result, the eight-component spinors �R/L,±, which are simultaneous eigenstates of Ŵ5 and Ŵy,

are expressed in terms of two-component spinors ξR/L,± as

�R,+ =

⎛
⎜⎜⎜⎝

ξR,+
0

0

0

⎞
⎟⎟⎟⎠ , �L,+ =

⎛
⎜⎜⎜⎝

0

ξL,+
0

0

⎞
⎟⎟⎟⎠ , �R,− =

⎛
⎜⎜⎜⎝

0

0

ξR,−
0

⎞
⎟⎟⎟⎠ , �L,− =

⎛
⎜⎜⎜⎝

0

0

0

ξL,−

⎞
⎟⎟⎟⎠ . (A.6)

Appendix B. Six-dimensional charge conjugation

In this appendix, we show the definition of the 6D charge conjugation, C:

C : �(x, y) → �(C)(x, y) = C�T(x, y)

= C(Ŵ0)T�∗(x, y). (B.1)

In the 6D case, the charge conjugation matrix C satisfies the following relations:

C−1ŴM C = −(ŴM )T, (B.2)

C†C = I8, (B.3)

CT = C. (B.4)

In general, we have two choices for 6D charge conjugation:

C−1
η ŴM Cη = η(ŴM )T, (B.5)

C†
ηCη = I8, (B.6)

CT
η = −η3Cη (η = ±1). (B.7)

For concrete discussions, we adopt the form

C = iσ2 ⊗ C(4D),

where C(4D) = iγ 2γ 0 is the 4D charge conjugation matrix.
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