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When a binary liquid is confined by a strongly repulsive wall, the local density is depleted near
the wall and an interface similar to that between the liquid and its vapor is formed. This analogy
suggests that the composition of the binary liquid near this interface should exhibit spatial modu-
lation similar to that near a liquid-vapor interface even if the interactions of the wall with the two
components of the liquid are the same. The Guggenheim adsorption relation quantifies the con-
centrations of two components of a binary mixture near a liquid-vapor interface and qualitatively
states that the majority (minority) component enriches the interface for negative (positive) mixing
energy if the surface tensions of the two components are not very different. From molecular dy-
namics simulations of binary mixtures with different compositions and interactions, we find that the
Guggenheim relation is qualitatively satisfied at wall-induced interfaces for systems with negative
mixing energy at all state points considered. For systems with positive mixing energy, this relation
is found to be qualitatively valid at low densities, while it is violated at state points with high
density where correlations in the liquid are strong. This observation is validated by a calculation of
the density profiles of the two components of the mixture using density functional theory with the
Ramakrishnan-Yussouff free-energy functional. Possible reasons for the violation of the Guggenheim
relation are discussed.

I. INTRODUCTION

Equilibrium and dynamic properties of strongly con-
fined liquids are known [1] to be substantially different
from those of their bulk counterparts. Confinement of
a single-component liquid by a repulsive wall produces
a modulation of the local density (layering) of the liq-
uid near the wall. This phenomenon has been studied
extensively in experiments [2], simulations [3] and theo-
retical analyses [4]. The effects of confinement on binary
mixtures have received less attention in the existing liter-
ature. When a binary liquid is confined by a wall that has
different interactions with the two components of the liq-
uid, the presence of the wall causes the concentrations of
the components near the wall to be different from those in
the bulk. This can lead to surface-induced phase separa-
tion and related phenomena [5]. Even if the interactions
of the wall with the two components are the same, the
presence of the wall may lead to a modulation of the local
composition in addition to the more familiar modulation
of the total density. This possibility is suggested by the
following argument. The presence of a sufficiently repul-
sive wall leads to the formation of a region near the wall
where the density of the liquid is considerably smaller
than that in the bulk and the situation would be similar
to that of a liquid in contact with its vapor. It is known
from earlier work [6, 7] that the composition of a multi-
component liquid near a liquid-vapor interface generally
differs from that in the bulk. So, the local composition
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of a binary liquid near a strongly repulsive wall that does
not distinguish between the two components is expected
to exhibit spatial variation. In this paper, we study this
spatial variation using computer simulations and density
functional theory.

There are many physical systems in which modula-
tions of the density and composition of a multicompo-
nent liquid near a repulsive wall play an important role.
Binary mixtures are often used in numerical studies of
glass-forming liquids because it is difficult to supercool
single-component model liquids with simple interactions.
There exist many simulations [8] of dense binary liquids
confined by repulsive walls. The modulation of the com-
position of the mixture near the confining walls plays an
important role in the behavior of these systems. This as-
pect is particularly important in understanding the prop-
erties of vapor-deposited glasses which, depending on the
substrate temperature and deposition rate, can have high
density, low enthalpy and higher mechanical moduli than
liquid-cooled glasses [9–16]. The anisotropy and higher
density of vapor-deposited glasses make them potentially
important for industrial applications such as optoelec-
tronics [9, 10, 17]. These glasses typically have two or
more components. As discussed above, the local concen-
trations of different components near the substrate, as
well as near the interface with the vapor, are, in gen-
eral, not the same as those in the bulk. This change of
composition should strongly affect the characteristics of
vapor-deposited glasses. Such glasses may have proper-
ties that are quite different from those of liquid-cooled
glasses that have the same composition throughout the
sample [18, 19]. It is therefore important to understand
the compositional behavior of a mixture near surfaces
in studies of vapor-deposited glasses. Our study of the
compositional behavior of a binary liquid near a repulsive
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wall is a step in this direction.

Another context in which the questions addressed in
our study are relevant is in determining whether a binary
mixture would be a good metallic glass former. The mix-
ing energy is one of the factors that decide the answer to
this question. The mixing energy of an A+B mixture is
defined as ω′ = zω, where z is the coordination number
and ω = [EAB − (EAA + EBB)/2], with EAA, EAB and
EBB the minimum energies between the A-A, A-B and
B-B pairs, respectively. Alloys with negative (positive)
mixing energy are believed to be good (bad) glass for-
mers [20]. The relation between the mixing energy and
glass-forming ability of a metallic binary mixture in the
presence of surfaces has been studied recently [21]. Here
we study the compositional behavior of binary mixtures
with both negative and positive mixing energies.

As noted above, the behavior of a binary liquid near
a strongly repulsive wall is similar to that near a liquid-
vapor interface. There exist several experimental stud-
ies [22–27] of the local density and composition of liquid
metal alloys near liquid-vapor interfaces. These studies
show that liquid metal alloys exhibit density as well as
composition modulation near an interface. The results of
our study would be useful for understanding the behavior
observed in these experiments.

Classical density functional theory (DFT) [28] has been
used [29, 30] in the past to study the density profiles
of binary mixtures near walls that have different inter-
actions with the two components of the mixture. We
are not aware of any theoretical analysis of the spatial
dependence of the composition of a binary liquid near
a repulsive wall that has the same interaction with the
two components of the mixture. We therefore compare
the results of our simulations with theoretical predictions
for the similar problem of binary mixtures near a liquid-
vapor interface. Existing theories [6, 7] of the surface
composition of binary liquids were formulated a long time
ago, but these theories continue to be used to understand
the behavior found in experiments [22, 24, 27] and sim-
ulations [31]. The simplest of these theories is the Gibbs
adsorption rule [6], which states that the component with
the lower surface tension should accumulate at the inter-
face. This rule is valid for systems with zero mixing en-
ergy. The component with lower surface tension should
enrich the interface also in the case where the surface
tensions of the two components are very different and
the mixing energy is small. When these two criteria (low
mixing energy and very different surface tensions of the
components) are not satisfied, the bulk concentrations of
the two components play an important role in determin-
ing the surface concentrations. For systems with non zero
mixing energy, surface concentrations of the two compo-
nents are theoretically predicted from the Guggenheim
relation [7], which states that the interface is enriched by
the majority (minority) components for negative (posi-
tive) mixing energy, provided the above-mentioned crite-
ria are not fulfilled [31]. Existing experimental results for
liquid metallic alloys [22, 24, 27] are qualitatively consis-

tent with the predictions of the Guggenheim relation. We
are not aware of any other theoretical prediction for the
liquid-vapor interfacial composition of binary mixtures.

In this paper, we examine in detail the spatial mod-
ulation of the composition of a binary mixture near the
interface created by the presence of a strongly repulsive
wall that has the same interaction with the two compo-
nents of the mixture. We present the results of exten-
sive simulations of the equilibrium behavior of several
binary liquids confined by different kinds of repulsive
walls. Our results provide detailed information about
how the spatial variation of the composition in the con-
finement direction depends on physical parameters such
as the structure of the repulsive wall, the interaction of
the wall with the particles in the liquid, the bulk com-
position of the liquid, the mixing energy, and thermody-
namic parameters (density and temperature) of the bulk
liquid. We show that the spatial modulation of the con-
centrations of the two components near the wall-liquid
interface is in qualitative agreement with the prediction
of the Guggenheim relation at all densities and temper-
atures considered if the mixing energy is negative. The
Guggenheim relation is also found to be qualitatively sat-
isfied in binary liquids with positive mixing energy if the
density is low. However, we find a qualitative violation of
the Guggenheim relation at high densities in two binary
systems with positive mixing energy. A DFT calcula-
tion using the Ramakrishnan-Yussouff free-energy func-
tional [32], which takes into account the effects of short-
range order in the liquid, is found to yield results that are
in agreement with those of our simulations for systems
with both positive and negative mixing energies. These
results suggest that correlations present in the binary liq-
uid at high densities, which are manifested as pronounced
short-range order, are responsible for the observed viola-
tion of the Guggenheim relation in dense binary liquids
with positive mixing energy.

The remainder of the paper is organized as follows. In
Sec. II we describe the Guggenheim relation and present
a simple derivation of this relation in order to point out
the approximations made in its derivation. The systems
studied and the simulation methods used in this work are
described in Sec. III. In Sec. IV we present the results
obtained from our molecular dynamics (MD) and Monte
Carlo (MC) simulations for several binary liquids con-
fined by different kinds of repulsive walls and compare
these with the prediction of the Guggenheim relation. In
Sec. V we compare the density profiles near the interface
obtained from classical DFT calculation and MD simula-
tions. Section VI contains a summary of the main results
of our study and a few concluding remarks.

II. THE GUGGENHEIM RELATION

The Guggenheim relation [7] that predicts the surface
concentrations of the components of a regular mixture (
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i.e. one with ω 6= 0) has the form

γA +
kBT

a
ln(

x′

x
) +

ω
′

a
[l(1− x′)2 − (l + k)(1 − x)2]

= γB +
kBT

a
ln(

1− x′

1− x
) +

ω
′

a
[lx′2 − (l + k)x2] (1)

where γA and γB are the surface tensions of A and B
components, respectively, a is the cross-sectional area of
a particle (assumed to be the same for both kinds of parti-
cles), and x and x′ are bulk and surface concentrations of
A component, respectively. Also, lz and kz are the coor-
dination numbers in the lateral and normal planes to the
interface (l+2k = 1 for a single-layer interface), kB is the
Boltzmann constant, and T is the absolute temperature.
For a face-centered-cubic (fcc) lattice, z = 12, l = 1/2
and k = 1/4; these values are used in the present work.
This relation is based on several assumptions such as the
presence of a single-layer interface, only nearest-neighbor
interactions, and similar sizes of the two components.
For zero mixing energy (ω = 0), Eq. (1) readily yields

x′ =
x

1− (1− C)(1 − x)
, (2)

where C = exp[a(γA − γB)/kBT ]; C ∈ (0, 1) for γA < γB
while C ∈ (1,∞) for γA > γB and values of x and 1− x
lie between 0 and 1 as they are bulk concentration of
A and B, respectively. From Eq. (2) it is evident that
x′ > x for γA < γB and x′ < x if γA > γB and hence
the component with lower surface tension dominates the
interface. This is the Gibbs adsorption law.
From Eq. (1) one can obtain the loci of points in the

ω-a∆γ parameter space (∆γ = γA − γB) with the same
surface and bulk concentrations of component A by set-
ting x′ = x. This is given by [31]

ω =
a∆γ

kz(1− 2x)
, (3)

which is the equation of a straight line passing through
the origin. The slope of this straight line increases as x
is increased from zero and changes sign as x is increased
beyond 0.50. Figures. 1(a) and 1(b) exhibit lines of equal
concentration for x = 0.45 and 0.55, respectively. In the
region to the right of the line of equal concentration, the
surface layer is enriched by B, while it is enriched by A in
the region on the left side of the line. While a∆γ tends to
enrich the surface layer with the component with lower
surface tension (B for a∆γ > 0 and A for a∆γ < 0), the
mixing energy ω acts to reverse this trend in the region
bounded by the ω-axis and the line of equal concentration
(shaded regions in Fig. 1). From Fig. 1 it is evident that
for ∆γ ≃ 0, the majority (minority) component enriches
the interface for negative (positive) ω. The larger the
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1
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B
A
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A

B

x=0.45 x=0.55
(a) (b)

FIG. 1: Guggenheim relation is depicted in the ω-a∆γ pa-
rameter space. The straight lines passing through the origin
show the parameter values at which the surface concentration
x′ and bulk concentration x of component A are equal for (a)
x = 0.45 and (b) x = 0.55. In the region of parameter space
to the right (left) of these lines, the surface layer is enriched
by the B (A) component. The enrichments in the shaded re-
gions are contrary to the prediction of the Gibbs adsorption
law. They also exhibit the dominance of the majority and
minority components for negative and positive mixing ener-
gies, respectively. The dashed lines schematically represent
the boundary above which bulk phase separation occurs.

value of ω, the majority (minority) enrichment, contrary
to the prediction of the Gibbs adsorption law occurs for
larger |a∆γ|. Of course, for very large positive ω, the
system will phase separate into A-rich and B-rich regions
in the bulk. This is schematically shown by the dashed
lines in Fig. 1.
We present here a simple derivation of the Guggen-

heim relation in order to bring out the assumptions and
approximations made in deriving Eq. (1). The binary
mixture is described as an Ising model defined on a lat-
tice. Every site of the lattice is assumed to be occupied
by a particle of type A or B. The Ising variable σi at
lattice site i takes the value +1 if the site is occupied by
a particle of type A and −1 if it is occupied by a par-
ticle of type B. Defining mi as the thermal average of
σi, the bulk concentration x of A particles is given by
x = (m+1)/2, where m is the value of mi for a bulk site.
In molecular field theory [33], the bulk magnetization m
satisfies the self-consistent equation

m = tanh[β(Jzm+ h)], (4)

where β ≡ 1/kBT , the interaction strength J in the Ising
model is given by J = ω/2, and h is a magnetic field re-
quired for fixing the bulk magnetization at the value cor-
responding to the prescribed value of x (the value of h is
related to the difference between the chemical potentials
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of A and B particles and to the difference between EAA

and EBB). The self-consistent equation for the magneti-
zation m′ = 2x′ − 1 of an Ising spin in the surface layer
is

m′ = tanh{β[Jz(lm′ + km) + h′]}, (5)

where the field h′ at the surface layer can be different
from the field h in the bulk. A few lines of algebra show
that these equations reduce to Eq. (1) if the difference
between the surface tensions γA and γB is identified with
2(h− h′)/a.
The following are the most important approximations

made in the above derivation of the Guggenheim rela-
tion. (i) The total density is assumed to be the same
in the surface layer and in all bulk layers (each lattice
site is assumed to be occupied by a particle of type A or
B), whereas the presence of a repulsive wall is known to
cause a strong modulation of the total density near the
wall in strongly correlated liquids. (ii) The composition
is assumed to be different from the bulk value in only one
surface layer. (iii) The derivation is based on molecular
field theory in which fluctuation effects are ignored. The
issue of which of these approximations is likely to be re-
sponsible for a violation of the Guggenheim relation in
strongly correlated liquids will be discussed in Sec. VI.

III. SIMULATION DETAILS

We have performed constant particle number, volume,
and temperature MD simulations for 2400 particles of
binary Lennard-Jones (BLJ) mixtures consisting of A
and B particles with different compositions at different
temperatures and densities. In these simulations, the
temperature was kept constant using the Brown-Clarke
thermostat[34]. The system was confined in the z direc-
tion by two structureless non-preferential ( i.e. same for
A and B components) repulsive walls with r−9 (unless
stated otherwise) potential. Periodic boundary condi-
tions were used in the x and y directions. The interaction
potential has the form

VAB(r)

4ǫAB
=

{

[(σAB

r

)12

−
(σAB

r

)6 ]

, r < 2.5σAB

0, r ≥ 2.5σAB

(6)

The length and energy parameters used in the present
study are ǫAA = 1.0, ǫBB = 0.5, ǫAB = 0.25 and σAA =
1.0, σBB = 0.88, σAB = 0.80 unless stated otherwise. All
these parameters except ǫAB are the same as those in
the Kob-Andersen Lennard-Jones (KALJ) model[35] in
which ǫAB = 1.50. Masses of all particles were taken to
be the same (M). All quantities are expressed in reduced
units: the length, time, and temperature are expressed in
units of σAA, (Mσ2

AA/ǫAA)
1/2, and ǫAA/kB. In terms of

ǫAA, ǫAB, and ǫBB, the mixing energy can be expressed
as ω = [(ǫAA+ ǫBB)/2− ǫAB]. Thus, the value of mixing
energy of the BLJ mixture is ω = +0.50, and that of the
KALJ mixture is ω = −0.75.

We have used a MD time step dt = 0.005 and equili-
bration and data production runs are 1 and 4× 106 MD
steps long, respectively. We also performed canonical MC
simulations for the BLJ system confined in the z direc-
tion by two hard walls (particles are not allowed within
a distance of 0.50σAA from the walls). These simulations
were carried out for a system with 1200 particles and an
average step size of 0.14. The BLJ potential was trun-
cated at 2.50σαβ [(α, β) ∈ (A,B)] and shifted to ensure
the continuity of the potential at the cutoff in the MC
simulations. For surface tension calculations of single-
component Lennard-Jones (LJ) systems, we have used
4000 particles and a potential cutoff of 8.5σ, where σ is
the particle diameter.

IV. SIMULATION RESULTS

In this section, we present the detailed results of our
simulations of the equilibrium behavior of different kinds
of binary liquids near interfaces generated by repulsive
walls with different potentials.

A. Violation of the Guggenheim relation for

positive mixing energy

We first present the results for the BLJ mixture that
has positive mixing energy. Figure 2(a) exhibits the
variation of the order parameter defined as ψ(z) =
[ρA(z) − ρB(z)]/[ρA(z) + ρB(z)] in the confinement (z)
direction for a bulk 80:20 composition. The order param-
eter can be rewritten as ψ(z) = ρA(z)/[ρA(z) + ρB(z)]−
ρB(z)/[ρA(z)+ρB(z)], which is the difference between the
fractional compositions of A and B. For a 80:20 compo-
sition, the value of ψ(z) will be 0.60 far away from the
walls, where the system shows bulk behavior. Values of
ψ(z) > 0.60 and ψ(z) < 0.60 indicate enrichment of the
A and B components, respectively. The order parameter
for the 20:80 composition is depicted in Fig. 2(b). The
temperature is T = 2.0 and bulk densities are ρ = 1.104
in Fig. 2(a) and ρ = 1.38 in Fig. 2(b). Different densities
were considered in the two cases in order to maintain the
same volume fractions. It should be noted that the satu-
ration density for large values of z is slightly higher than
the bulk density ρ. This happens because of the forma-
tion of regions with no particles (vacuum) near the two
repulsive walls (details can be found in Ref.[36]). The
z dependence of the total density, scaled and shifted by
arbitrary numbers [0.42 and 0.10 in Fig. 2(a) and 0.33
and −1.10 in Fig. 2(b)], are also shown in these figures
to illustrate the familiar spatial modulation of the total
density.
In Fig. 2(a) the A component enriches the interface

while the B component enriches the interface in Fig.
2(b); A and B are the majority components in Figs. 2(a)
and 2(b), respectively. Thus, regardless of the values of
the surface tension, the majority component enriches the
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FIG. 2: (Color online) Order parameter ψ(z) of the BLJ mix-
ture confined by two repulsive r−9 walls for (a) 80:20 and (b)
20:80 compositions. The temperature is T = 2.00 and den-
sities are (a) ρ = 1.104 and (b) ρ = 1.38. The scaled and
shifted density profile is also shown.

interface for this BLJ system for which the mixing energy
ω = +0.50, is positive. According to the Guggenheim ad-
sorption relation, the minority component should have
enriched the interface for this system. This observation
is thus in contradiction of the Guggenheim relation.

To check whether the behavior described above is af-
fected by the distance between the walls (the width of the
slit pore), we have simulated the behavior of the 80:20
BLJ system at T = 4.0 for two values, 20 and 40, of Lz,
the distance between two walls. In this comparison, it is
necessary to take into account a trivial effect of system
size that was mentioned above. Since the density is van-
ishingly small in a region of width ∼ 0.8 near each of the
two repulsive walls, the constant saturation density in the
middle of the simulation cell is slightly higher than the
bulk density and depends weakly on Lz because the vac-
uum regions near the walls correspond to a larger fraction
of the total volume for smaller values of Lz. To eliminate
this trivial effect, we have compared the density profiles

for Lz = 20 and 40 obtained from simulations in which
the repulsive walls were placed at distances of 0.8 away
from the boundaries of the simulation box (the left and
right boundaries of the simulation box are at z = 0.80
and z = Lz − 0.80, respectively, whereas the repulsive
walls are at z = 0 and z = Lz). The number of particles
is N = 2400 for Lz = 20.0 and N = 4800 for Lz = 40.0.
Figure 3 shows the comparison of ψ(z) for these two sys-
tem sizes. There is no significant difference in the two
sets of data. In the inset we show the z dependence of
the density ρ(z) for the two values of Lz. No dependence
on Lz is seen and therefore Lz = 20 is large enough to
neglect the effect of the second wall on the modulation of
the density and the order parameter near the first one.

The violation of the Guggenheim relation described
above occurs for all compositions between 20:80 and
80:20, as shown in Fig. 4(b). Figure 4 depicts the surface
concentration x′ vs the bulk concentration x of compo-
nent A for negative [Fig. 4(a)] and positive [Fig. 4(b)]
mixing energies. The values of x′ in MD simulations
have been obtained from the concentration of A at the
position of the first peak in the density modulation. The
error bars reflect variations of the results obtained from
five independent MD simulations. The bulk density for
the 80:20 BLJ system is ρ = 1.104 and for other compo-
sitions it has been adjusted to maintain the same volume
fraction. The results shown in Fig. 4(a) are for the KALJ
system [35] with negative mixing energy, ω = −0.75. The
simulation results are compared with the predictions of
the Guggenheim relation in both cases. We emphasize
the qualitative behavior (enrichment of the surface layer
by the majority or the minority component) in this com-
parison. The Guggenheim relation qualitatively holds
well for the KALJ system with negative mixing energy

1.0 2.0 3.0 4.0
z

0.0

0.2

0.4

0.6

0.8

1.0

ψ
(z

)

Lz=20
Lz=40

1.0 10.0z0.0

0.5

1.0

1.5

2.0

2.5

3.0

ρ(
z)

Lz=20
Lz=40

80:20 BLJ
T = 4.0

FIG. 3: (Color online) Comparison of the order parameter
profile ψ(z) of the 80:20 BLJ mixture confined by two repul-
sive r−9 walls for Lz = 20 with N = 2400 and Lz = 40 with
N = 4800 at temperature T = 4.0. The inset shows a com-
parison of the z dependence of the density ρ(z) for Lz = 20
and 40. The density of a simulation cell with boundaries at
z = 0.80 and z = Lz − 0.80 is 1.20.
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at low temperature T = 1.0 and at the high temperature
T = 4.0: Both the Guggenheim relation and MD sim-
ulations exhibit enrichment of the surface layer by the
majority component for all compositions. However, this
relation is qualitatively violated for all compositions for
the BLJ system with positive mixing energy at tempera-
ture T = 4.0. Figure 4(b) shows that while the minority
component is supposed to enrich the interface according
to the Guggenheim relation, the majority component is
found to enrich the interface in MD simulations.
The surface tensions of pure A and pure B LJ liquids

are required for determining the values of x′ predicted by
the Guggenheim relation. The surface tension has been
obtained from the difference of normal and tangential
pressure tensors [37–39]

γ =

∫ phase2

phase1

[PN (z)− PT (z)]dz (7)

=

〈

∑

i>j

∑

j

x2ij + y2ij − 2z2ij
2Arij

V ′
ij −

∑

j

zjv
′(zj)

A

〉

,(8)

where v(z) is the wall potential at distance z from the
wall and A is the area of the simulation box normal to
the z direction. Unlike the liquid-vapor interface, the
shape of the wall-induced interface is not of the hyper-
bolic tangent form due to the presence of the wall. There-
fore, it is difficult to evaluate the tail correction for the
surface tension. We have used a large cutoff of 8.5σ in
this calculation, σ being the particle diameter of the one-
component LJ system. Since the surface tension of the
one-component system does not scale with the energy
and size parameters in the presence of walls, we have
calculated the surface tensions of pure A and B liquids
independently. We have used 18.28σAA × 18.28σAA ×
20.00σAA and 26.92σAA × 26.92σAA × 20.00σAA simu-
lation cells with 4000 particles to calculate the surface
tensions at temperatures T = 1.0 and T = 4.0, respec-
tively. For these system sizes, finite-size capillary effects
are negligible in the calculation of the surface tensions.
As the surface tension of a wall-induced interface strongly
depends on the density profile, we have used systems
with significant density modulation at each temperature.
Specifically, single-component LJ densities of 0.598 and
0.276 were used for the evaluation of surface tensions at
T = 1.0 and 4.0, respectively. The diameter of the cross-
sectional area parameter a in Eq. (1) was set to unity
in the calculation of x′. The error bars shown in Fig. 4
for the data points representing the results obtained from
the Guggenheim relation reflect uncertainties in the cal-
culated values of the surface tension.

B. Interfaces near a structured wall

So far, we have discussed the properties of wall-induced
interfaces near structureless repulsive walls. We have
found that the Guggenheim relation is qualitatively vio-
lated in mixtures with positive w for interfaces created
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FIG. 4: (Color online) Plots of the interface concentration
x′ vs the bulk concentration x of the A component for BLJ
systems having mixing energies (a) ω = −0.75 and (b) ω =
+0.50. Results of MD simulations are compared with the
prediction of the Guggenheim relation. The surface tensions
of A and B are 0.99 and 0.90 for T = 1.0 and 1.45 and 1.37
for T = 4.0. The inset shows a comparison at T = 4.0 for the
KALJ system.

near structured walls as well. Figure 5 exhibits the z
dependence of the order parameter for 80:20 and 20:80
compositions of BLJ systems confined by two fcc walls.
The fcc walls consist of A particles that interact with A
and B particles in the liquid in the same way. All wall
particles are fixed in a fcc structure and the strength of
the interaction between a particle in the wall and a fluid
particle is 0.7 times that between two A particles in the
fluid. The particle densities in the walls for ithe 80:20 and
20:80 BLJ systems are 2.57 and 3.62, respectively. The
majority component is found to enrich the interface in
both 80:20 and 20:80 mixtures, which is in disagreement
with the prediction of the Guggenheim relation.
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FIG. 5: (Color online) Order parameter ψ(z) of a BLJ mix-
ture confined by two fcc walls for (a) 80:20 and (b) 20:80
compositions. The temperature is T = 2.00 and densities are
(a) ρ = 1.104 and (b) ρ = 1.38. The scaled and shifted density
profile is also shown. The walls are of fcc structure, consisting
of particles that interact with A and B particles of the fluid
in the same way.

C. Interfaces in binary mixtures of symmetric

components

We have considered another binary LJ mixture in
which the constituent components have the same size
and energy parameters, i.e., σAA = σAB = σBB = 1.0
and ǫAA = ǫBB = 2ǫAB = 1.0. Thus the mixing energy
is ω = +0.50, the same as that in the asymmetric BLJ
mixture considered above. Since the size and energy pa-
rameters of the two components are identical, the surface
tensions of the components are the same and therefore
the Gibbs adsorption rule fails to predict which compo-
nent will enrich the interface for such a system. However,
the Guggenheim relation predicts the enrichment of the
minority component at the interface as the mixing energy
is positive. At low densities and temperatures (e.g., for
ρ = 0.32 and T = 0.95, results not shown), our simula-

tions of a system without confining walls show the for-
mation of a liquid-vapor interface that is enriched by the
minority component, in agreement with the prediction of
the Guggenheim relation. If the system is confined by
repulsive walls, enrichment of the minority component
is seen at the wall-induced interface [Fig. 6(a)] at den-
sity ρ = 0.92 and temperature T = 1.50. If the density
is increased at the same temperature, the system sepa-
rates into A-rich and B-rich phases. If, however, the tem-
perature is also increased to avoid phase separation, the
wall-induced interface is enriched by the majority com-
ponent in violation of the Guggenheim relation, as shown
in Fig. 6(b) for ρ = 1.38 and T = 10.0. If the tempera-
ture is increased at a fixed density, ρ = 0.92, the value of
the order parameter ψ(z) at the interface increases from
ψ(z) = 0.30 at T = 1.50 to approach ψ(z) = 0.60 at
T = 10.0 (data not shown here). If the density is in-
creased at T = 10.0, the value of ψ(z) starts deviating
from ψ(z) = 0.60 to higher values near a threshold den-
sity ρ = 1.104 (data not shown here). So, at low densities
and temperatures, the minority component enriches the
liquid-vapor or wall-liquid interface in accordance with
the Guggenheim relation. However, the majority compo-
nent enriches the wall-liquid interface, in violation of the
Guggenheim relation, at large densities and temperatures
that are sufficiently high to prevent phase separation in
the bulk. These findings show that the asymmetry in the
energy and size parameters of the components of the BLJ
mixture is not responsible for the observed violation of
the Guggenheim relation.

D. Effects of density on the composition near

wall-induced interfaces

The results described in the preceding section suggest
that the Guggenheim relation is violated in systems with
positive mixing energy if the density is large. To check
the generality of this observation, we have examined the
behavior of the 80:20 BLJ mixture confined by two r−9

repulsive walls at different densities, keeping the temper-
ature fixed. Figure 7 exhibits the z dependence of the
order parameter ψ(z) at T = 0.80 and bulk densities
ρ = 0.92 [Fig. 7(a)] and ρ = 1.10 [Fig. 7(b)]. The mixing
energy is positive in this system and therefore it exhibits
a tendency to separate into A-rich and B-rich phases.
The temperature and densities considered in these sim-
ulations were chosen to avoid bulk phase separation. At
the lower density (ρ = 0.92), the minority B component
enriches the wall-induced interface, in accordance with
the prediction of the Guggenheim relation. It should be
noted that B has lower surface tension compared to A
and therefore the surface tension plays an important role
in the enrichment of the surface layer by B. However, it
is evident from Fig. 7(b) that as the density is increased,
the dominance of the minority component at the wall-
induced interface disappears and at density ρ = 1.10,
the majority component enriches the interface, violating
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FIG. 6: (Color online) Order parameter ψ(z) of a symmetric
80:20 binary LJ mixture with positive mixing energy, confined
by two r−9 walls at (a) ρ = 0.92 and T = 1.50 and (b)
ρ = 1.38 and T = 10.0 . Scaled and shifted profiles of the total
density are also shown. The length and energy parameters
are σAA = σBB = σAB=1.00 and ǫAA = ǫBB = 2ǫAB=1.00,
respectively.

the prediction of the Guggenheim relation. Thus, the
Guggenheim relation remains valid at low densities, but
it is violated at high densities.

E. MC simulation results for confinement by hard

walls

In order to examine if the nature of the interaction of
the fluid particles with the walls plays any role in the
violation of the Guggenheim relation, we replace the re-
pulsive r−9 walls by hard walls, which do not allow a
particle to come closer than 0.5σAA. As MD simulations
are difficult for this situation, we performMC simulations
at constant temperature and density. The z dependence
of the order parameter ψ(z) and the scaled and shifted
total density ρ(z) obtained from our MC simulations are
shown for 80:20 and 20:80 BLJ mixtures in Figs. 8(a)
and 8(b) at temperature T = 4.0 and densities 1.10 and
1.38, respectively. The confining walls here are hard walls
that do not interact with the particles in the BLJ system
as long as they do not violate the hard-wall constraint.
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 ρ  = 1.10, T=0.80

FIG. 7: (Color online) Order parameter ψ(z) of an 80:20 BLJ
mixture confined by two r−9 walls at temperature T = 0.80
and densities (a) ρ = 0.92 and (b) ρ = 1.10. Scaled and
shifted profiles of the total density are also shown.

In this case also, the majority component dominates the
interface for the BLJ mixture with positive mixing en-
ergy, violating the prediction of the Guggenheim rela-
tion. Thus the nature of the interaction with the walls
does not play any significant role in the violation of the
Guggenheim relation.

V. RESULTS OBTAINED FROM DENSITY

FUNCTIONAL THEORY

Classical DFT has been very successful [28] in provid-
ing a theoretical understanding of equilibrium properties
of inhomogeneous liquids. In order to explore the rea-
son(s) for the observed violation of the Guggenheim re-
lation for wall-induced interfaces in binary liquids with
positive mixing energy, we have used DFT to calculate
the density profiles of the two components of a binary
liquid near a repulsive wall. In DFT, the grand poten-
tial functional Ω[ρ(r)] of a single-component liquid in the
presence of an external potential V (r) is written as

Ω[ρ(r)] = Fid[ρ(r)]+Fex[ρ(r)]+

∫

(V (r)−µ)ρ(r)dr, (9)
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FIG. 8: (Color online) Order parameter ψ(z) obtained from
MC simulations for (a) 80:20 and (b) 20:80 BLJ mixtures
confined by hard walls at temperature T = 4.0 and densities
(a) ρ = 1.10 and (b) ρ = 1.38. Scaled and shifted profiles of
the total density are also shown.

where Fid[ρ(r)] and Fex[ρ(r)] are, respectively, the ideal
gas part and the excess part, arising from interactions,
of the Helmholtz free energy, and µ is the chemical po-
tential. In the absence of any external potential, the
equilibrium density is uniform and the grand potential
function can be written as

Ω[ρ] = Fid[ρ] + Fex[ρ]−

∫

µρdr, (10)

where ρ is the equilibrium bulk density. Equations (9)
and (10) readily yield

Ω[ρ(r)]− Ω[ρ] = Fex −

∫

µδρ(r)dr, (11)

where δρ(r) = ρ(r)− ρ and Fex is given by

Fex = ∆Fid[ρ] + ∆Fex[ρ] +

∫

V (r)ρ(r)dr, (12)

with ∆Fid[ρ] ≡ Fid[ρ(r)] − Fid[ρ] and ∆Fex[ρ] ≡
Fex[ρ(r)]− Fex[ρ].

We have used the simple Ramakrishnan-Yussouff (RY)
[32] free-energy functional in our calculations for confined
BLJ mixtures. The RY functional for a single-component
system without an external potential has the form

βFex[ρ(r)] =

∫

dr[ρ(r) ln
ρ(r)

ρ
− δρ(r)]

−
1

2

∫ ∫

drdr′C(|r− r
′|)δρ(r)δρ(r′),(13)

where β = (kBT )
−1 and C(r) is the direct pair correla-

tion function of the uniform liquid with density ρ. For
the case of a binary mixture, in the presence of external
potential due to a wall, the RY functional becomes

βFex[ρA(r), ρB(r)] =

∫

d3r
[

ρA(r) ln
ρA(r)

ρA
− δρA(r) +

ρB(r) ln
ρB(r)

ρB
− δρB(r)

]

−
1

2

∫ ∫

d3rd3r′
[

CAA(|r− r
′|)

δρA(r)δρA(r
′) + 2CAB(|r− r

′|)δρA(r)δρB(r
′) +

CBB(|r− r
′|)δρB(r)δρB(r

′)
]

+ β

∫

d3rV (r)[ρA(r) +

ρB(r)], (14)

where δρA(r) = ρA(r) − ρA and ρA is the bulk density
for the A component. Similarly, δρB(r) = ρB(r)−ρB for
the B component. One must not equate the bulk density
with the saturation density far away from the walls. Due
to the presence of vacuum-like regions near the repulsive
walls, the saturation density is not the same as the bulk
density in finite samples, the former being slightly higher
than the latter (see Ref. [36]). The direct correlation
function Cα,β(r)(α, β ∈ A,B) is obtained from integral
equation theory employing Zerah-Hansen [40] closure.
The extremum principal of DFT leads to the Euler-

Lagrange equations

δ

δρA(r)
Fex = µA,

δ

δρB(r)
Fex = µB, (15)

where µA and µB are the chemical potentials of the two
components. These equations are solved iteratively to
yield ρA(r) and ρB(r). The density is assumed to be
uniform in the xy plane parallel to the walls.
Figure 9 shows a comparison of the density profiles of

the two components and the order parameter obtained
from DFT calculations and MD simulations for a BLJ
system with an 80:20 composition at density ρ = 1.104
and T = 4.0. It is clear that there is good agreement
between the two sets of results. The discrepancy in the
magnitude of the first density peak for the A compo-
nent is probably due to limitations of the RY functional
for soft LJ potentials. Similar agreement between the
results of DFT calculations and MD simulations is also
found for the 20:80 BLJ system (data not shown here).
Note that the Guggenheim relation is violated in this BLJ
system with positive mixing energy. Thus, the violation
of the Guggenheim relation found in the simulations is
reproduced in the DFT calculations.
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FIG. 9: (Color online) Comparison of the z dependence of (a)
the density profiles and (b) the order parameter ψ(z) obtained
from DFT calculations and MD simulations at density ρ =
1.104 and temperature T = 4.0 for an 80:20 BLJ system.

We have addressed the question of why the composi-
tion of the mixture near the walls is different from that
in the bulk. To separate out the contributions of the en-
tropy and the internal energy, we write the free-energy
difference Fex

min in terms of the entropy difference Sex

and the difference in the internal energy Uex:

Fex
min = Uex − TSex, (16)

where Fex
min is the value of Fex for the density profiles

obtained from the solution of Eq. (15) and the excess
entropy is given by

Sex = −
∂

∂T
Fex

min. (17)

This quantity is obtained from the slope of a plot of Fex
min

vs T .
We have also carried out a calculation in which the

composition of the mixture is forced to remain unchanged

throughout the system, while the total density is al-
lowed to vary with z by applying an extra constraint
ρA(r)/ρB(r) = s, where s is the ratio of the densities of
the two components in the bulk. With this constraint
the RY functional can be rewritten as

βFex[sρB(r), ρB(r)] =

∫

d3r(s+ 1)
[

ρB(r) ln
ρB(r)

ρB

−δρB(r)
]

−
1

2

∫ ∫

d3rd3r′
[

s2CAA(|r − r
′|)

+2sCAB(|r− r
′|) + CBB(|r− r

′|)
]

δρB(r)δρB(r
′)

+β

∫

d3rV (r)(s + 1)ρB(r). (18)

For the sake of clarity of notation, we denote the
Helmholtz free-energy functional for this case by Fex

c .
With this additional constraint, the excess grand poten-
tial ∆Ωc is given by

∆Ωc[ρ] = Fex
c [sρB(r), ρB(r)]−

∫

(sµA + µB)δρB(r))d
3
r,

(19)
and the extremum condition leads to the equation

δ

δρB(r)
Fex

c = (sµA + µB) = µc. (20)

As expected, the optimal value of the Helmholtz free
energy in the constrained case is higher than that in the
unconstrained case, i.e., Fex

c,min > Fex
min. The total den-

sity profile ρ(r) = [ρA(r) + ρB(r)] obtained in the con-
strained minimization is slightly different from that ob-
tained from the unconstrained minimization. We have
also calculated the Helmholtz free energy for a situation
where the total density profile ρ(r) is exactly the same
as that in the unconstrained case, but the local densities
ρA(r) and ρB(r) are rescaled to maintain the ratio s of the
bulk densities. This is done as follows. From the solution
of (15) we obtain ρA(r) and ρB(r) at a given temperature
and density. We then replace ρA(r) by sρ(r)/(s+1) and
ρB(r) by ρ(r)/(s+1). The Helmholtz free energy in this
case is denoted by F ′ex. The values of the Helmholtz free
energy for these three cases are found to be in the order
F ′ex > Fex

c,min > Fex
min. Using Eqs. (16) and (17), we es-

timate the contributions of the entropy and the internal
energy for all the three cases.
Figure 10 exhibits the T dependence of β∆F (T ) =

β(Fex
min − F ′ex), −∆S(T ) = −(Sex − S′ex), and

β∆U(T ) = β(Uex − U ′ex) for mixing energy ω = +0.50
at T = 4.0 and ω = −0.75 (inset) at T = 3.0 at density
ρ = 1.3872 for the 20:80 composition, i.e., s = 0.25. We
prefer to compare Fex

min with F ′ex because the total den-
sity profiles are exactly the same in these two cases and
therefore, the contributions of the wall potential are also
the same. We emphasize that the difference between F ′ex

and Fex
c,min is very small. For positive as well as negative

mixing energy, the free energy in the unconstrained case
is, as expected, lower than that in the constrained situ-
ation where a 20:80 composition is maintained through-
out the system. From Fig. 10 it is also evident that the
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energy.

decrease in the free energy is due to a decrease in the
internal energy. The entropy in the constrained case is
higher than that in the unconstrained case because the
two components are less well mixed (the local composi-
tion is more heterogeneous) in the unconstrained case.
While the entropy favors the constrained situation with
uniform composition, the internal energy favors the un-
constrained one. The contribution of the internal energy
towards decreasing the free energy is larger than that
of the entropy towards increasing it and hence the free
energy is lowered in the unconstrained case.

VI. SUMMARY AND DISCUSSION

We have studied in detail the variation in the local
composition of binary liquids near a repulsive wall that
has the same potential for both components of the liq-
uid. The observed behavior near the wall-induced inter-
face is compared with the prediction of the Guggenheim
relation for vapor-liquid interfaces, which is a theoretical
description of surface-induced composition modulation.
When the mixing energy of the binary system is negative,
i.e., when the two components of the mixture tend to be
mixed, the majority component is found to enrich the in-
terface at all the temperatures and densities considered
in our simulations. This is in qualitative agreement with
the prediction of the Guggenheim relation. If the mixing
energy is positive, phase separation occurs at low tem-
peratures, but a homogeneous bulk phase is present at
higher temperatures. In this situation, the wall-induced
interface is enriched by the minority component, in agree-
ment with the prediction of the Guggenheim relation, if
the bulk density is low. However, at high densities and
temperatures high enough to prevent phase separation

in the bulk, the majority component enriches the inter-
face, in qualitative disagreement with the prediction of
the Guggenheim relation. From simulations for different
binary mixtures and wall potentials, we show that this
behavior is robust: It is found for both structured and
structureless walls, for both symmetric and asymmetric
mixtures and for walls with both soft and hard repulsive
potentials. A DFT calculation using the Ramakrishnan-
Yussouff free-energy functional reproduces the behavior
found in our simulations, including the violation of the
Guggenheim relation at high densities in binary liquids
with positive mixing energy.

While we do not have a complete understanding of
the reason(s) for the observed violation of the prediction
of the Guggenheim relation, our simulation and DFT
results provide a few clues. As noted in Sec. II, the
derivation of the Guggenheim relation involves several
approximations. The mean-field treatment used in the
derivation of the Guggenheim relation does not appear
to be the reason for its violation because the DFT calcu-
lation, which is also a mean-field theory, yields results in
agreement with those of simulations. The main difference
between the theory behind the Guggenheim relation and
DFT is that the latter takes into account the effects of
short-range correlations in a dense liquid through the use
of the direct pair correlation function in the free energy
functional. The derivation of the Guggenheim relation
outlined in Sec. II is based on the assumption that the
total density is uniform and the composition is different
from that in the bulk only in one layer at the interface.
Our simulations, on the other hand, show that the to-
tal density exhibits considerable spatial modulation near
the wall and the effects of the wall persist for several
layers before bulk behavior is restored. Both these ef-
fects arise from short-range correlations present in the
liquid. These features are reproduced in the DFT calcula-
tion that takes into account these correlations. However,
these effects are completely neglected in the derivation
of the Guggenheim relation. These observations suggest
that the failure of the Guggenheim relation to predict the
nature of the modulation of the composition near wall-
induced interfaces in binary liquids with positive mixing
energy is a consequence of neglecting the effects of short-
range correlations present in the liquid. This conclusion
is supported by the observation that the violation of the
prediction of the Guggenheim relation is found only for
liquids with relatively high density for which short-range
correlations are more pronounced; simulations for liquids
at the same temperature but at lower densities do not
exhibit a qualitative violation of the prediction of the
Guggenheim relation.

As noted in the Introduction, variations in the com-
position of vapor-deposited glass films near the vacuum-
glass and glass-substrate interfaces are believed to play
an important role in determining the physical properties
of the glass. The process of vapor deposition has been
simulated in Ref. [18], using the KALJ binary system. In
that work, the majority component was found to enrich
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both vacuum-glass and glass-substrate interfaces. This
is consistent with our results and those of Ref. [31] since
the mixing energy is negative in the KALJ system. In
Ref. [18], a spatial variation of the composition was also
found in glasses obtained by rapidly cooling the binary
liquid on a substrate from a high temperature. These re-
sults indicate that a modulation of the composition near
interfaces may be a generic property of glasses with two
or more components. A detailed investigation of how the
properties of such glasses are affected by the spatial vari-
ation of the composition near interfaces would be most
interesting.
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