Header menu link for other important links
X
Satb2 acts as a gatekeeper for major developmental transitions during early vertebrate embryogenesis
Pradhan S.J., Reddy P.C., Smutny M., Sharma A., Sako K., Oak M.S., Shah R., Pal M., Deshpande O., Dsilva G.Show More
Published in Nature Research
2021
PMID: 34667153
Volume: 12
   
Issue: 1
Abstract
Zygotic genome activation (ZGA) initiates regionalized transcription underlying distinct cellular identities. ZGA is dependent upon dynamic chromatin architecture sculpted by conserved DNA-binding proteins. However, the direct mechanistic link between the onset of ZGA and the tissue-specific transcription remains unclear. Here, we have addressed the involvement of chromatin organizer Satb2 in orchestrating both processes during zebrafish embryogenesis. Integrative analysis of transcriptome, genome-wide occupancy and chromatin accessibility reveals contrasting molecular activities of maternally deposited and zygotically synthesized Satb2. Maternal Satb2 prevents premature transcription of zygotic genes by influencing the interplay between the pluripotency factors. By contrast, zygotic Satb2 activates transcription of the same group of genes during neural crest development and organogenesis. Thus, our comparative analysis of maternal versus zygotic function of Satb2 underscores how these antithetical activities are temporally coordinated and functionally implemented highlighting the evolutionary implications of the biphasic and bimodal regulation of landmark developmental transitions by a single determinant. © 2021, The Author(s).
About the journal
Published in Nature Research
Open Access
no
Impact factor
N/A