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Motivation:S-adenosyl-L-methionine (SAM) is an essential cofactor present in thebiological
system and plays a key role in many diseases. There is a need to develop a method for
predictingSAMbindingsites inaprotein fordesigningdrugsagainstSAMassociateddisease.
To the best of our knowledge, there is nomethod that can predict the binding site of SAM in a
given protein sequence.

Result: This manuscript describes a method SAMbinder, developed for predicting SAM
interacting residue in a protein from its primary sequence. All models were trained, tested, and
evaluated on 145 SAM binding protein chains where no two chains have more than 40%
sequencesimilarity. Firstly,modelsweredevelopedusingdifferentmachine learning techniques
on a balanced data set containing 2,188 SAM interacting and an equal number of non-
interacting residues.Our random forest basedmodel developedusingbinaryprofile feature got
maximum Matthews Correlation Coefficient (MCC) 0.42 with area under receiver operating
characteristics (AUROC) 0.79 on the validation data set. The performance of our models
improved significantly fromMCC0.42 to 0.61, when evolutionary information in the form of the
position-specific scoringmatrix (PSSM) profile is used as a feature.We also developedmodels
on a realistic data set containing 2,188 SAM interacting and 40,029 non-interacting residues
and got maximum MCC 0.61 with AUROC of 0.89. In order to evaluate the performance of
our models, we used internal as well as external cross-validation technique.

Availability and Implementation: https://webs.iiitd.edu.in/raghava/sambinder/.

Keywords: S-adenosine-L-methionine, PSSM profile, in silico prediction, cancer, machine learning technique (MLT)
INTRODUCTION

Structural and functional annotation of a protein is one of the major challenges in the era of
genomics. With the rapid advancement in sequencing technologies and concerted genome projects,
there is an increasing gap between the sequenced protein and functionally annotated proteins,
(Casari et al., 1995; Yu et al., 2014; Agrawal et al., 2019d). Therefore, there is a requirement of
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automated computational methods that can identify the residues
playing an essential role in protein functions. Protein–ligand
interaction has been recognized as one of the important
functions which play a vital function in all biological processes
(Agrawal et al., 2019e). In the past, considerable efforts have been
made to develop tools that can identify the ligand-interacting
residues in a protein (Sousa et al., 2006). Initially, generalized
methods have been developed which predicts the binding site or
pockets in the proteins regardless of their ligand (Levitt and
Banaszak, 1992; Laskowski, 1995; Hendlich et al., 1997; Dundas
et al., 2006; Le Guilloux et al., 2009). Later on, it was realized that
all ligands are not the same, and there is a wide variation in the
shape and size of binding pockets. Therefore, researchers started
developing ligand-specific methods (Chauhan et al., 2009;
Chauhan et al., 2010; Chen et al., 2012; Yu et al., 2013a; Hu
et al., 2016; Hu et al., 2018), and it was observed that these
ligand-specific methods performed better than generalized
methods (Chen et al., 2012; Yu et al., 2013b; Hu et al., 2016).
Comprehensive information on the software developed for
protein–small molecule interaction is reviewed in a paper by
Agrawal et al. (2018).

All living organism consists of small molecular weight ligands
or cofactors, which carries out an important function in some
metabolic and regulatory pathways. S-adenosyl-L-methionine
(SAM) is one such essential cofactor, first discovered in the
year 1952. After ATP, SAM is the second most versatile and
widely used small molecule (Cantoni, 1975). It is a natural
substance present in the cells of the body and is a direct
metabolite of L-methionine, which is an essential amino acid.
SAM is a conjugate molecule of two ubiquitous biological
compounds; (i) adenosine moiety of ATP and (ii) amino acid
methionine (Catoni, 1953; Waddell et al., 2000). One of the most
essential functions of the SAM is the transfer or donation of
different chemical groups such as methyl (Wuosmaa and Hager,
1990; Thomas et al., 2004), aminopropyl (Lin, 2011), ribosyl
(Kozbial and Mushegian, 2005), 5'deocxyadenosyl, and
methylene group (Kozbial and Mushegian, 2005; Gana et al.,
2013) for carrying out covalent modification of a variety of
substrates. SAM is also used as a precursor molecule in the
biosynthesis of nicotinamide phytosiderophores, plant hormone
ethylene, spermine, and spermidine. It also carries out chemical
reactions such as hydroxylation, fluorination which takes place
in bacteria (Cadicamo et al., 2004). It has become the choice of
various clinical studies and possess therapeutic value for treating
diseases like osteoarthritis (Najm et al., 2004), cancer (Wagner
et al., 2010; Chaib et al., 2011), epilepsy (Item et al., 2004),
Alzheimer's (Borroni et al., 2004), dementia and depression
(Bottiglieri et al., 1990; Rosenbaum et al., 1990), Parkinson
(Zhu, 2004), and other psychiatric and neurological disorders
(Bottiglieri, 1997). In the previous studies, it has been shown that
mutation in the binding site of SAM has changed the protein
function. For example, Aktas et al. showed that alanine
substitution in the predicted SAM binding residues reduced
the SAM binding affinity and enzyme activity dramatically
(Aktas et al., 2011). Thus, there is a need to develop a method
that can predict SAM binding sites in a protein sequence as it is
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an important ligand. Structure determination techniques (e.g., X-
ray crystallography, Nuclear Magnetic Resonance (NMR), Cryo
Electron Microscopy (Cryo-EM), Small Angle X-ray Scattering
(SAXS) have been used to identify SAM interacting residue in
protein. In addition, several experimental techniques have been
used to investigate different aspects of protein–ligand
interactions/protein–ligand binding affinity. Some of these
widely used techniques are Isothermal Titration Calorimetry
(ITC), Surface Plasmon Resonance (SPR), and Fluorescence
Polarization (FP). Detailed description of these techniques and
working principles has been provided in the article by Du et al.
(2016). Although experimental techniques can elucidate ligand-
interacting residue and thermodynamic profile for a given
protein–ligand complex, these techniques are time-consuming,
laborious, and expensive. Therefore, there is a requirement of
highly robust and effective computational tools that can annotate
the protein function using only its sequence. Also, in silico
methods might provide new insights for the proteins whose 3D
structure is not present in the literature.
MATERIALS AND METHODS

Data Set Creation
Firstly, we extracted 244 SAM binding proteins Protein Data
Bank (PDB) IDs from the PDB database whose structures are
determined using X-ray crystallography. We considered only
those proteins in which SAM was present as a free ligand, which
resulted in 457 SAM binding protein chains. In the next step, we
filtered all the sequences with a 40% sequence similarity using
CD-HIT software (Huang et al., 2010) for creating a non-
redundant data set. In previous studies, it has been shown that
the performance of in silico method for protein annotation
depends on the quality of protein structure used for its
development (Chauhan et al., 2010; Patiyal et al., 2019). Thus,
we remove all those structure from our data set whose resolution
is poorer than 3Å. Finally, 145 protein chains have been obtained
whose structure has been resolved at 3Å or better. Ligand Protein
Contact (LPC) software (Sobolev et al., 1999) was used to extract
the interatomic contact information of SAM interaction with
residues present in the protein chains. LPC software implements
surface complementarity theory to provide interatomic contacts
in between ligand and residue. We used cutoff criteria of 4Å and
called the residue SAM interacting if its contact with SAM is less
than or equal to 4Å; else, the residue was assigned as SAM non-
interacting. This criteria of data set creation is well-established
and adopted in many previous studies for assigning ligand-
interacting residues (Chauhan et al., 2010; Mishra and
Raghava, 2010).

Internal and External Validation
Data set was divided in a random manner into two parts: (i)
training data set, which comprises 80% of the protein chains, and
(ii) validation data set, which comprises remaining 20% of the
protein chains. The training data set was used for training and
testing the model using a fivefold cross-validation technique,
January 2020 | Volume 10 | Article 1690
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which is called internal validation technique. In case of validation
data set, it is only used for validating the performance of a model
trained on training data set. This validation data set is also called
independent or external validation data set as it is not used for
training or testing of models. It is only used to validate the
performance of best model trained on training data set.

Data sets were generated at the protein level instead of
residue/pattern level as, in previous studies, it has been shown
that data set created at pattern level is biased and shows higher
performance (Yu et al., 2014). Data set was further classified into
(i) balanced and (ii) realistic data set for model building and
analysis studies. The balanced data set contains same number of
SAM interacting and non-interacting residues (1,798 in training
data set and 390 in the validation data set). The realistic data set
consists of 1,798 SAM interacting residues and 33,314 SAM non-
interacting residues in the training data set. In contrast, the
validation data set consists of 390 SAM interacting residues and
6,715 SAM non-interacting residues. The internal data set was
used for performing all kinds of analysis, i.e., composition,
propensity, physiochemical properties, and statistical analysis.

Fivefold Cross-Validation
The fivefold cross technique was performed for evaluating the
performance of different prediction models in case of internal
validation. In this process, data are divided into five equal parts,
out of which four sets are used for model training, and the fifth is
used for model testing. The process is repeated for five times
during which each set is used for testing. Average performance
obtained after five iterations is reported. This kind of
performance evaluation has been used in many previous
studies (Kumar et al., 2018; Nagpal et al., 2018). Once models
were trained, their performance was tested on the validation data
set, and this process is termed as external validation.

Window or Pattern Size
We created overlapping patterns of each sequence of different
window sizes ranging from 5-to 23-amino-acid length. If the
pattern central residue is SAM interacting, it is designated as a
positive pattern; otherwise, it was designated as a negative
pattern. (L−1)/2 (where L is pattern length) number of “X,” a
dummy residue was added at both the termini of the protein
chain for generating patterns for terminus residues.

Binary Profile
We generated binary profile of each pattern by assigning binary
values to the amino acids in fixed length pattern. A vector of
dimension 21 represented each amino acid present in the pattern
hence leading to final vector of N × 21, where N is pattern
length. For example, residue “A” was represented by
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; which contains 20
amino acids and one dummy amino acid “X.” X was
represented by [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] (Agrawal
and Raghava, 2018; Agrawal et al., 2019b).

Position-Specific Scoring Matrix
Position-specific scoring matrix (PSSM) profiles containing
evolutionary information have been shown as an important
Frontiers in Pharmacology | www.frontiersin.org 3
feature in many previous studies for predicting protein–
ligand interaction and other bioinformatics problems (Chen
et al., 2012; Yu et al., 2013a). PSSM profiles of a sequence
were generated using Position-Specific Iterative Basic Local
Alignment Search Tool (PSI-BLAST) and searching against
the Swiss Prot database. In total, three iterations were
performed with an E-value cutoff of 0.001 against each
sequence. The original PSSM profiles obtained were further
normalized to get value in between 0 and 1, followed by
calculation of the position-specific score for each residue. The
final matrix obtained consists of 21 × N elements (20 amino
acids residue and one dummy residue “X”). Here N is the
length of the pattern.

Machine Learning Techniques
We implemented the Python-based machine learning package
SCIKIT-learn (Pedregosa et al., 2011) for developing prediction
models. We implemented the support vector classifier (SVC),
random forest classifier (RF), ExtraTree classifier (ETree), K-
nearest neighbor (KNN), multilayer perceptron (MLP), and
Ridge classifier for developing prediction models. We
optimized different parameters on our internal data set using
the Grid Search parameter present in the package before model
prediction development.

Statistical Study
P-value was computed to observe the statistical significance
between the composition and propensity values of SAM
interacting and non-interacting residues. The significance level
considered for computing P-value was 0.05.

Evaluation Parameters
Performance of developed prediction models was evaluated in
terms of sensitivity (Sen), specificity (Spc), accuracy (Acc),
Matthews Correlation Coefficient (MCC), and area under
receiver operating characteristics (AUROC) as shown in
previous studies (Le and Ou, 2016a; Le and Ou, 2016b; Le
et al., 2017). “pROC package” implemented in R was used for
computing AUROC (Title Display and Analyze ROC Curves,
2019). The formula for calculating is explained in Equations 1–4.

Sensitivity =
TP

TP + FN
� 100 1

Specificity =
TN

TN + FP
� 100 2

Accuracy =
TP + TN

TP + FP + TN + FN
� 100 3

MCC =
TP � TNð Þ − FP � FNð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp 4

where TP is correctly predicted positive value, TN is the correctly
predicted negative value, FP is the actual negative value which
has been wrongly predicted as positive, and FN is the positive
value which has been wrongly predicted as negative.
January 2020 | Volume 10 | Article 1690
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RESULTS

Analysis of SAM Binding Sites
Composition Analysis
High frequency of residues C, D, F, G, H, N, W, and Y was
observed in SAM interacting sites (Figure 1). Our study agrees
with the previous study (Gana et al., 2013), where authors show
that SAM interacting proteins belong to fold type I families
where charged and small amino acids (D, E, K, H, Y, and G) are
involved in the interaction. The study showed that SAM
interactions were predominantly stabilized by H-bonds and the
atoms of SAM responsible for interaction with protein. These
atoms are N, N1, and N6 sites of the adenine ring, O2* and O3*
sites of sugar moiety, and terminal N, O, and OXT. Amino acids
interacted at N1 site included mostly hydrophobic residues L, V,
A, C, F, M, and G. Residues interacted at N6 site included polar
residues Q and S, along with charged residues D and E. Statistical
analysis showed that there is statistical significance in the
composition of SAM interacting and non-interacting residues
which include C, D, E, F, G, H, K, L, N, P, R, V, W, and Y. P-value
computed for the SAM interacting and the non-interacting
residue is provided in the Supplementary Table S1.

Normalized Propensity Analysis
We also analyzed the normalized propensities of amino acid
residues in SAM interacting and non-interacting sites. We
observed that propensities of residues like C, D, F, G, H, M, N,
S, W, and Y were higher in SAM interacting sites
(Supplementary Figure S1). High statistical significance in the
propensity value of SAM interacting and the non-interacting
residue was observed with P-value 0.0 for all residues.

Physiochemical Properties Analysis
We found that SAM interacting sites are rich in acidic, small, polar,
and aromatic amino acids, as shown in Supplementary Figure S2.
Our study agrees with the previous studies (Gana et al., 2013;
Nagarajan et al., 2015).
Frontiers in Pharmacology | www.frontiersin.org 4
Machine Learning Model Performance
Using Binary Patterns
Various machine learning models were developed using binary
patterns for window size 5–23 on the balanced data set. We
compiled the result obtained using RF classifier for each window
size in Table 1 as this classifier performed best for most of the
patterns. AUROC plot obtained for both training and validation
data sets is shown in Figures 2A, B, respectively. In our analysis,
we observed that RF based prediction model performed best
among all the prediction models for the window size 21. The
model achieved an accuracy of 70.79%, 0.42 MCC, and 0.78
AUROC on the training data set and accuracy of 70.85%, 0.42
MCC, and 0.79 AUROC on the validation data set. Detail result
obtained for each window size by different machine learning
techniques is provided in Supplementary Tables S2–S11.

Machine LearningModel PerformanceUsing
Evolutionary Information (PSSMProfile)
Prediction models were developed using PSSM profiles for all the
considered window size on the balanced data set. The result
obtained using ETree classifier for each window size is compiled
in Table 2 as this classifier performed best for most of the
patterns. AUROC was plotted for the training (Figure 3A) and
validation data set (Figure 3B). We observed that, in the case of
PSSM profiles, the performance of the prediction models were
increased. ETree classifier model developed on the window size
17 performed best among all the developed models. It achieved
the highest accuracy of 80.39%, MCC of 0.61, and AUROC of
0.88 on the training data set, whereas, on the validation data set,
it achieved accuracy of 77.07%, MCC of 0.54, and AUROC of
0.86. The result obtained by different classifiers on each window
size has been provided in the Supplementary Tables S12–S21.

Machine Learning Model Performance
Using Hybrid Feature
Wealsodevelopedmodels on thehybrid featurewherewe sumup the
values of binary profile and the evolutionary information obtained
FIGURE 1 | Percentage composition of S-adenosyl-L-methionine (SAM) interacting and non-interacting residues.
January 2020 | Volume 10 | Article 1690
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forthe residue. The result obtained for each window length using
SVC is compiled in Supplementary Table S22 as it performed best
for maximum patterns. AUROC plot for the training data set and
validationdata set is provided inSupplementaryFigures S3A andB,
respectively. SVC obtained a maximum accuracy of 80.58%, MCC
Frontiers in Pharmacology | www.frontiersin.org January 2020 | Volume 10 | Article 16905
of 0.61, and AUROC of 0.89 on the training data set for window size
19. In the case of the validationdata set, the accuracy of 78.50%,MCC
of 0.57, and AUROC of 0.87 were obtained. The result for all the
window sizes obtained by different classifiers is provided in
Supplementary Tables S23–S32.
TABLE 1 | The performance of random forest model developed using amino acid sequence (binary pattern) for individual window size on balanced data set.

Pattern size Training data set Validation data set

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

Pat5 65.71 61.67 63.69 0.27 0.70 66.06 63.21 64.64 0.29 0.71
Pat7 69.87 64.31 67.09 0.34 0.74 69.43 66.58 68.01 0.36 0.74
Pat9 72.05 65.66 68.86 0.38 0.76 69.95 68.65 69.30 0.39 0.76
Pat11 69.19 70.26 69.73 0.39 0.77 65.03 71.76 68.39 0.37 0.76
Pat13 73.06 66.05 69.56 0.39 0.77 70.98 65.03 68.01 0.36 0.77
Pat15 69.58 70.71 70.15 0.40 0.78 66.06 72.02 69.04 0.38 0.78
Pat17 70.37 71.10 70.74 0.41 0.78 67.36 71.50 69.43 0.39 0.78
Pat19 70.54 71.32 70.93 0.42 0.78 67.36 73.83 70.60 0.41 0.79
Pat21 70.37 71.21 70.79 0.42 0.78 67.62 74.09 70.85 0.42 0.79
Pat23 70.76 70.99 70.88 0.42 0.78 68.39 71.76 70.08 0.40 0.79
Sen, sensitivity; Spc, specificity; Acc, accuracy; MCC, Matthews Correlation Coefficient; AUROC, area under the receiver operating characteristic curve.
FIGURE 2 | Area under receiver operating characteristics (AUROC) plots obtained for various window length developed using binary profile on balanced data set for
(A) training data set and (B) validation data set.
TABLE 2 | The performance of ExtraTree classifier model developed using PSSM profile for individual window size on balanced data set.

Pattern size (classifier) Training data set Validation data set

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

Pat5 79.18 75.76 77.47 0.55 0.86 73.83 76.17 75.00 0.50 0.83
Pat7 79.85 79.12 79.49 0.59 0.87 73.32 79.53 76.42 0.53 0.85
Pat9 81.48 76.49 78.98 0.58 0.87 76.68 77.46 77.07 0.54 0.85
Pat11 81.54 76.32 78.93 0.58 0.87 75.39 78.50 76.94 0.54 0.86
Pat13 79.29 80.42 79.85 0.60 0.88 74.87 81.61 78.24 0.57 0.86
Pat15 81.59 77.10 79.35 0.59 0.88 76.68 78.24 77.46 0.55 0.86
Pat17 79.24 81.54 80.39 0.61 0.88 72.54 81.61 77.07 0.54 0.86
Pat19 82.21 76.04 79.12 0.58 0.88 76.68 78.24 77.46 0.55 0.86
Pat21 79.85 81.59 80.72 0.61 0.88 74.87 81.87 78.37 0.57 0.86
Pat23 79.91 81.14 80.53 0.61 0.88 73.06 81.61 77.33 0.55 0.86
PSSM, position-specific scoring matrix.
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Machine Learning Models Performance
on the Realistic Data Set
Window size 17 was found to be the optimum window size as the
model developed using the PSSM profile performed best among
all the models. Therefore, we used this window size for
developing prediction models on the realistic data set using the
PSSM profile as an input feature. When balanced specificity and
sensitivity were considered, SVC based model achieved
maximum MCC value of 0.32 on the training data set and 0.31
on the validation data set. However, MCC value increases to 0.61
on the training data set and 0.52 on the validation data set when
balanced sensitivity and specificity were not taken into account
(Table 3). The AUROC achieved on the training data set and
validation data set was 0.89 and 0.87, respectively (Figure 4).

Implementation of Model in Web Server
In order to help biologists predict SAM interacting residues, we
implemented our best models in a web server, SAMbinder. The
web server consists of several modules such as “Sequence,”
Frontiers in Pharmacology | www.frontiersin.org 6
“PSSM Profile,” “Peptide Mapping,” “Standalone,” and
“Download.” These modules have been explained below in detail.

(i) Sequence: This module allows users to predict SAM
interacting residue in a protein from its primary sequence. A
user can submit either single or multiple sequences or upload the
sequence file in the FASTA format and can select the desired
probability cutoff and machine learning classifier for prediction.
The module utilizes the binary profile as an input feature, and
several machine learning models have been implemented into it.
The classifier provides the prediction score, which is normalized
in between propensity score 0–9. Residues having the propensity
score equal or above the selected cutoff threshold are highlighted
in blue color, and remaining residues are highlighted in black
color. Blue color indicates that the probability of these residues in
SAM binding is high in comparison to the residues present in
black color. The result is downloadable in the “csv” file format
and will be sent to email also if the user has provided the email.

(ii) PSSM profile: As the name suggests, this module utilizes the
PSSM profile as an input feature for predicting SAM interacting
TABLE 3 | The performance of PSSM profile based models developed using different machine learning techniques for window size 17 on realistic data set.

Machine Learning Techniques Main Data Set Validation Data Set

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

SVC# 53.65 98.94 96.64 0.61 0.89 36.53 99.40 95.99 0.52 0.87
SVC* 81.48 80.14 80.21 0.32 0.89 77.72 79.88 79.76 0.31 0.87
RF# 43.27 99.44 96.59 0.58 0.86 36.53 98.97 95.58 0.48 0.86
RF* 80.25 74.64 74.93 0.27 0.86 76.94 79.73 79.58 0.30 0.86
ETree# 46.13 99.42 96.72 0.60 0.87 47.67 97.93 95.20 0.50 0.86
ETree* 78.90 79.79 79.74 0.31 0.87 74.09 83.70 83.18 0.33 0.86
KNN# 46.91 99.27 96.61 0.59 0.84 34.72 99.36 95.85 0.50 0.79
KNN* 76.04 79.72 79.53 0.29 0.84 68.13 80.56 79.89 0.27 0.79
MLP# 37.49 98.59 95.49 0.45 0.85 34.46 98.01 94.55 0.39 0.83
MLP* 78.84 75.84 76.00 0.27 0.85 65.28 83.26 82.28 0.28 0.83
Ridge# 38.61 97.55 94.55 0.39 0.83 37.31 96.13 92.93 0.33 0.80
Ridge* 79.57 67.37 67.99 0.22 0.83 77.46 67.42 67.97 0.21 0.80
Januar
y 2020 | Volu
me 10 | Art
*Balanced sensitivity and specificity, #maximum MCC, SVC, support vector classifier; RF, random forest; ETree, ExtraTree; KNN, K-nearest neighbors; MLP, multilayer perceptron.
FIGURE 3 | AUROC plots obtained for various window length developed using evolutionary profile on balanced data set for (A) training data set and (B) validation
data set.
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FIGURE 4 | AUROC plots obtained for window length 17 developed using evolutionary profile on realistic data set for (A) training data set and (B) validation data set.
FIGURE 5 | Architecture of SAMbinder.
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residues in a given protein sequence. This feature is better than the
binary profile; however, the only limitation is that it is very
computer-intensive. Therefore, a user can use this module if the
number of sequences is very few. The output is provided in the same
format as the Sequence module provides. For predicting multiple
sequences using the PSSM profile, we suggest for the user to utilize
the standalone version of the software.

(iii) Peptide mapping: In this module, we have provided the
facility where a user can map the peptide that contains SAM
interacting central residue. We pre-computed propensity (between
0 and 9) of each tri and pentapeptide, which contains SAM
interacting central residues from known PDB protein structure.
The propensity was computed using all SAM interacting protein
chains, i.e., redundancy was not removed to avoid loss of
information. Once a user submits sequence in FASTA format, all
the possible segments of selected length are generated and mapped
on the protein sequence along with the propensity score. Based on
that mapping server predicts whether the peptide segment is SAM
interacting or non-interacting. If the propensity of residue is equal to
greater than the selected threshold, it is known as SAM
interacting residue.

Standalone
Standalone of SAMbinder is Python-based and is available at the
GitHub site. The user can download it from the website https://
github.com/raghavagps/sambinder/. SAMbinder standalone version
is also implemented in the docker technology. Complete usage of
downloading the image and its implementation is provided in the
docker manual “GPSRdocker” (Agrawal et al., 2019a) which can be
downloaded for the website https://webs.iiitd.edu.in/gpsrdocker/.
DISCUSSION

SAM is an essential metabolic cofactor/intermediate, which is found
in almost every cellular life form and enzyme. It is a sulfonium
molecule and hybrid of two structural molecules methionine and
adenosine. The primary function of SAM is to perform as a methyl
donor to N-, C-, O-, or S- nucleophiles under the catalysis of
enzymes known as SAM-dependent methyltransferases (MTases).
The reaction is carried out through the SN2 type mechanism, where
the nucleophilic attack takes place at the methyl group adjacent to
the sulfonium center. The reaction mentioned above leads to the
transmethylation of various biomolecules (DNA, RNA, proteins,
carbohydrates, and other small metabolites). These biomolecules are
involved in significant biochemical mechanisms such as cellular
signaling, epigenetic regulation, and metabolite degradation. Hence,
this transmethylation reaction is of broad biological significance
(Zhang and Zheng, 2016).

SAM binding proteins are predominant in two major types of
folds: (i) Rossman fold and Triosephosphate Isomerase (TIM) barrel
fold and different motifs (Motif I–VI) (Gana et al., 2013). SAM
binding proteins play a vital role in many metabolic and regulatory
pathways in almost all forms of the living organism and acts as a
potential drug target in several diseases. In Europe, SAMe is used as a
drug for treating diseases like liver disorder, depression,
fibromyalgia, and osteoarthritis. It has also been used as dietary
Frontiers in Pharmacology | www.frontiersin.org 8
supplements in theUnited States for supporting the bones and joints.
Therefore, it is very important to predict the SAM interacting
residues in a given protein. We analyzed various properties of
SAM interacting protein chains such as composition, propensity,
and physiochemical properties and developed various machine
learning models for predicting SAM interacting residue in new
protein using a number of input features. The models were first
developed on the balanced data set and different window sizes. We
observed that the model developed using the PSSM profile and
window size 17 performed best among all the models. The
performance of the models was also validated on an independent
data set and an additional data set. Python-based machine learning
package scikit-learn was implemented for developing the prediction
models. In order to assist the scientific community, we have created a
Python-based standalone version of our software and also developed
aweb serverwhere a user can predict the SAM interacting residues in
the target protein. The server can be freely accessible at http://webs.
iiitd.edu.in/raghava/sambinder. The complete workflow of
SAMbinder is shown in Figure 5.
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