With a rapidly growing population, development of new materials, techniques and devices which can provide safe potable water continues to be one of the major research emphases of the scientific community. While the development of new metal oxide catalysts is progressing, albeit at a slower pace, the concurrent and rapid development of high surface area catalyst supports such as graphene and its functionalised derivatives has provided unprecedented promise in the development of multifunctional catalysts. Recent works have shown that metal oxide/graphene composites can perform multiple roles including (but not limited to): photocatalysts, adsorbents and antimicrobial agents making them an effective agent against all major water pollutants including organic molecules, heavy metal ions and water borne pathogens, respectively. This article presents a comprehensive review on the application of metal oxide/graphene composites in water treatment and their role as photocatalyst, adsorbent and disinfectant in water remediation. Through this review, we discuss the current state of the art in metal oxide/graphene composites for water purification and also provide a comprehensive analysis of the nature of interaction of these composites with various types of pollutants which dictates their photocatalytic, adsorptive and antimicrobial activities. The review concludes with a summary on the role of graphene based materials in removal of pollutants from water and some proposed strategies for designing of highly efficient multifunctional metal oxide/graphene composites for water remediation. A brief perspective on the challenges and new directions in the area is also provided for researchers interested in designing advanced water treatment strategies using graphene based advanced materials. © 2013 The Royal Society of Chemistry.