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Abstract. The largest eigenvalue distribution of the Wishart-Laguerre ensemble,

indexed by Dyson parameter β and Laguerre parameter a, is fundamental in

multivariate statistics and finds applications in diverse areas. Based on a generalisation

of the Selberg integral, we provide an effective recursion scheme to compute this

distribution explicitly in both the original model, and a fixed-trace variant, for a, β non-

negative integers and finite matrix size. For β = 2 this circumvents known symbolic

evaluation based on determinants which become impractical for large dimensions.

Our exact results have immediate applications in the areas of multiple channel

communication and bipartite entanglement. Moreover, we are also led to the exact

solution of a long standing problem of finding a general result for Landauer conductance

distribution in a chaotic mesoscopic cavity with two ideal leads. Thus far, exact

closed-form results for this were available only in the Fourier-Laplace space or could

be obtained on a case-by-case basis.

1. Introduction

The Wishart-Laguerre ensemble constitutes an important class of random matrices and

has been of immense usefulness in modeling a variety of problems in diverse topics [1–3].

The corresponding extreme eigenvalues, aside from being fundamental in multivariate

statistics [1,4–15], play crucial roles in problems ranging from quantum entanglement in

bipartite systems [16–19], and electronic transport properties in mesoscopic systems [10,

20], to multichannel communication in wireless networks [21–29]. The asymptotic

behaviour of these extreme eigenvalues and the corresponding gap probabilities have

been explored extensively, leading to Tracy-Widom densities [12, 13, 30–33] and large-

deviation results [34–37] of significant importance. In certain applications, however,

one requires to go beyond universal results and seek exact and explicit computation
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of these distributions for finite matrix size. Typical theory in this connection is

based on determinants or Pfaffians requiring symbolic computation [6,10,11,14,15,26],

and therefore becomes impractical to evaluate if large matrices are involved. An

alternative approach for obtaining explicit expressions involves implementing certain

recurrences. This has turned out to be very effective considering the availability

of modern software packages which can handle recursive symbolic computation very

efficiently. For the smallest eigenvalue of real Wishart-Laguerre matrices, in Refs. [38,39]

Edelman provided a recursion scheme which has subsequently been generalised to other

ensembles and symmetry classes [1,10,19,40–44]. However, extending this to the largest

eigenvalue distribution has remained elusive due to its comparatively more convoluted

mathematical structure [1].

In this work, we accomplish the task of providing an efficient recursion scheme

for evaluating the probability density function (PDF) as well as the cumulative

distribution function (CDF) of the largest eigenvalue of the integer β-Wishart-Laguerre

ensemble for both unrestricted and fixed trace variants. These results apply at once

to problems pertaining to multiple channel communication in wireless systems and

bipartite entanglement in random pure states. Additionally, we exploit the connection

of the largest eigenvalue of the fixed trace Wishart-Laguerre ensemble to the quantum

conductance problem and solve a long-standing problem of obtaining a general closed-

form result for the Landauer conductance distribution in a chaotic mesoscopic cavity

with ideal leads. Thus far, exact closed-form results for this distribution were available

only in the Fourier-Laplace space as a determinant or could be obtained on a case by

case basis [45–50,52].

To present our findings, we begin by providing the general results for the functional

form of the PDF and CDF of the Wishart-Laguerre largest eigenvalue, along with a

brief discussion of their immediate applicability to the multiple channel communication

and bipartite entanglement problems. We then briefly describe the machinery behind

our proposed recursive approach and also present comparison of analytical and Monte

Carlo simulation based results for a few examples. The application to the quantum

conductance problem is discussed next, where we point out the implementation of

recursion scheme to obtain exact Landauer conductance distribution. The analytical

results in this case are contrasted with the numerical results obtained with the aid of

scattering matrices modelled using circular ensemble of random matrices. Finally, we

conclude with a brief summary of our work.

2. Exact distribution for the β-Wishart-Laguerre largest eigenvalue

The classical cases of Wishart-Laguerre ensemble include real, complex and quaternion

positive-definite matrices of the form GG†, designated by the Dyson index β = 1, 2 and

4, respectively. In recent years, matrix models for continuous β > 0 variants have been

also worked out and have drawn considerable attention. In the general case, the joint
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PDF for Wishart-Laguerre eigenvalues (0 < x1, ..., xn <∞) is given by

P(x1, . . . , xn) =
1

W

n∏
l=1

xal e
−βxl/2

∏
1≤j<k≤n

|xk − xj|β, (1)

with a > −1. The partition function W is known using the Selberg integral as [1, 2]

W =

(
2

β

)γ n−1∏
j=0

Γ
(
β(j+1)

2
+ 1
)

Γ
(
βj
2

+ a+ 1
)

Γ
(
β
2

+ 1
) , (2)

where γ = n[a + β(n − 1)/2 + 1]. The PDF and CDF of the largest eigenvalue are

computed as [1]

P (x) = n

∫ x

0

dx2 . . .

∫ x

0

dxnP(x, x2, . . . , xn), (3)

Q(x) =

∫ x

0

dx1 · · ·
∫ x

0

dxnP(x1, ..., xn) =

∫ x

0

dx′P (x′). (4)

The CDF of the largest eigenvalue coincides with the gap probability En,β(0; (x,∞)) of

finding no eigenvalue in the domain (x,∞).

We demonstrate below that for positive integer β and non-negative integer a, the

sought PDF and CDF exhibit respective structures:

P (x) =
n∑
j=1

e−jβx/2
ja+j(n−j)β∑

k=a

cjkx
k, (5)

Q(x) =
n∑
j=0

e−jβx/2
ja+j(n−j)β∑

k=0

djkx
k. (6)

For complex matrices (β = 2), the above structures have been pointed out in Ref. [22]

in the context of multiple channel communication problem. However, the computation

of the coefficients (which depend on β, a and n and evaluate to rational numbers) has

remained a daunting task [22–24]. These earlier works have relied on evaluating the

coefficients using the Hankel determinant of an n-dimensional matrix. This becomes

prohibitive if n becomes large (say, & 10). As we will see below, our recursive approach

facilitates the evaluation of PDF, CDF and coefficients in an efficient manner.

The fixed-trace variant of the Wishart-Laguerre ensemble is described by the joint

density

PF (y1, . . . , yn) =
1

WF

δ

(∑
i

yi − 1

)
n∏
l=1

yal
∏

1≤j<k≤n

|yk − yj|β, (7)

where the eigenvalues (0 ≤ y1, ..., yn ≤ 1) are constrained by the Dirac-delta condition,

and WF = [1/Γ(γ)](β/2)γW is the corresponding partition function. The PDF and CDF

of the largest eigenvalue for this ensemble follows from the Fourier-Laplace relationship

with the unrestricted trace variant [1], equation (1), as

PF (y) =
2

β
Γ(γ)

n∑
j=1

Θ(1− jy)

ja+j(n−j)β∑
k=a

cjk
Γ(γ − k − 1)

(
2y

β

)k
(1− jy)γ−k−2, (8)
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QF (y) = Γ(γ)
n∑
j=0

Θ(1− jy)

ja+j(n−j)β∑
k=0

djk
Γ(γ − k)

(
2y

β

)k
(1− jy)γ−k−1, (9)

where Θ(z) denotes the Heaviside step function. It should be noted that the largest

eigenvalue in this case also coincides with the scaled largest eigenvalue associated

with (1), i.e., ymax = xmax/(x1 + . . .+ xn).

The above results apply directly to the multiple channel communication and

bipartite entanglement problems. In multiple input multiple output (MIMO)

communication, the channel matrix H is the central object. It models the fading of the

signal between nt and nr number of transmitting and receiving antennas, respectively.

The singular values of the nr×nt–dimensional H matrix or, equivalently, the eigenvalues

of HH† (or H†H) play a crucial role in deciding several quantities of interest which assess

the performance of the MIMO system. In the cases of one-sided Gaussian and Rayleigh

fadings, the eigenvalues are described by the density given in (1) with β = 1 and 2,

respectively, and the parameter a = β(|nt − nr|+ 1)/2− 1. In Ref. [22,23], it has been

shown within a transmit-beamforcing model with maximum ratio combining (MRC)

receivers that the maximum output signal-to-noise (SNR) is directly related to the

largest eigenvalues of HH†. Consequently, the distribution of the largest eigenvalue has

been used to obtain the statistics of symbol error probability (SEP), outage probability

and ergodic channel capacity [22,23]. Additionally, the distribution of the scaled largest

eigenvalue finds applications in various hypothesis testing problems, both in statistics

and in signal processing [24,53–59].

In the problem of bipartite entanglement, one is interested in the properties of the

reduced density matrix. To elaborate, consider Hilbert spaces Hn,Hm of dimensions n

and m for the constituents with n ≤ m. Moreover, let |φ〉 be a pure state belonging

to the composite system, i.e., |φ〉 ∈ Hn ⊗ Hm. In case |φ〉 is chosen randomly in a

uniform manner, the Schmidt eigenvalues of the reduced density matrix ρ = trm(|φ〉〈φ|)
obtained by partial tracing over the part belonging to Hm are governed by the joint

PDF (7) with a = β(m − n + 1)/2 − 1 [1, 60]. The largest of these eigenvalues

varies from 1/n to 1. In these two extremes, owing to the fixed trace restriction, all

other eigenvalues assume a common value of 1/n and 0, respectively. These respective

scenarios correspond to the two subsystems being maximally entangled and separable.

The distribution of the largest eigenvalue of the fixed trace ensemble therefore carries

important information regarding the entanglement between the subsystems of the

composite bipartite system [18].

3. Recursion scheme

We now briefly describe the machinery behind the recursion scheme to obtain the CDF

and PDF of the largest eigenvalue. To begin with, we will demonstrate that the multi-

dimensional integral in (4) for Q(x) does lead to the structure shown in (6). For even

β, we expand
∏

j<k |xk − xj|β as a homogeneous multivariable polynomial of degree
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βn(n− 1)/2, viz.,∏
1≤j<k≤n

|xk − xj|β =
∑

κ=(κ1,...,κn)

ακ

n∏
l=1

xκll , (10)

for some coefficients ακ. Here κ is an integer partition involving up to n parts and

of fixed length such that
∑n

i=1 κi = βn(n − 1)/2. With κ1 ≥ κ2 ≥ · · ·, it is known

κj ≤ (n− j)β. Substituting the above expansion in (4) yields

Q(x) =
1

W

∑
κ

ακ

n∏
l=1

(∫ x

0

dxl x
a+κl
l e−βxl/2

)
. (11)

Provided a is a non-negative integer, the integral inside the above product can be

evaluated as ∫ x

0

ds sae−βs/2 = a!

(
2

β

)a+1
[

1− e−βx/2
a∑
k=0

1

k!

(
βx

2

)k]
. (12)

Therefore, eventually we wind up with the expansion of the form given in (6), but with

the upper limit of the inner sum (over k) equal to ja + j[n − (j + 1)/2]β. As shown

in the Appendix A, this can be refined to ja + j(n − j)β as in (6). Also, Eqs. (11)

and (12) imply that for β even dj0 = (−1)j
(
n
j

)
. For handling odd β, we order the

eigenvalues so that x1 > x2 > . . . xn > 0, and then the expansion in (10) is valid

for appropriate coefficients ακ. Moreover, the Q(x) can be written as the iterated

multi-dimensional integral n!
∫ x
0
dx1 · · ·

∫ xn−2

0
dxn−1

∫ xn−1

0
dxnP(x1, ..., xn), leading again

to (6). The expansion in (5) for the PDF P (x) follows similarly by using Eqs. (10)

and (12) in (3).

We next discuss a recursion scheme for the computation of the coefficients. We

introduce the auxiliary function, generalising the Laguerre weighted Selberg integral [1,2]

L(α)
p,ν (x) =

p!(ν − p)!
ν!

∫ x

0

dt1 · · ·
∫ x

0

dtν

ν∏
l=1

tλ1l e
−λtl |x− tl|α

×
∏

1≤j<k≤ν

|tk − tj|2λep(x− t1, . . . , x− tν), (13)

where ep(t1, . . . , tν) are the elementary symmetric polynomials. At the heart of the

recursion lies a remarkable linear differential-difference equation [42,43],

λ(ν − p)L(α)
p+1,ν(x) = [λ(ν − p)x+Bp]L

(α)
p,ν (x)

+ x
d

dx
L(α)
p,ν (x)−DpxL

(α)
p−1,ν(x), (14)

where p = 0, 1, ..., ν − 1 and

Bp = (p− ν)[λ1 + α + 1 + λ(ν − p− 1)], Dp = p[λ(ν − p) + α + 1].

Suppose L
(α)
0,ν (x) is known. Application of the recurrence allows for the computation

of L
(α)
ν,ν (x) which is identical to L

(α+1)
0,ν (x). With ν = n, 2λ = β, iterating to the value

α = β gives Q(x).
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Figure 1: PDF and CDF of the largest eigenvalue for the unrestricted trace (left) and

the fixed trace (right) Wishart-Laguerre ensembles for n = 10, a = 15.

The difficulty is that L
(α)
0,ν (x) is known only for ν = 1. Fortunately, the relation

between P (x) and Q(x) displayed in (4) permits an iteration also in ν, as observed

in a recursive computation of the largest eigenvalue PDF of the Gaussian orthogonal

ensemble given by James [61]. Thus we begin with (12) to obtain
∫ x
0
dx1 x

a
1e
−βx1/2. The

recurrence in (14) can then be applied β times to evaluate∫ x

0

dx1 x
a
1e
−βx1/2|x− x1|β.

Next, we denote x by x2 in the above expression, multiply by xa2e
−βx2/2, and integrate

over x2 from 0 to x to obtain∫ x

0

dx xa2e
−βx2/2

∫ x2

0

dx1 x
a
1e
−βx1/2|x2 − x1|β,

which is the same as half this double-integral with the upper limit of the inner integral

changed to x from x2. Now we essentially repeat this procedure. Using the recurrence,

knowledge of the above two dimensional integral is used to compute∫ x

0

dx2 x
a
2e
−βx2/2

∫ x

0

dx1 x
a
1e
−βx1/2

∏
1≤j<k≤3

|xk − xj|β

with x3 = x, which is then multiplied by xa3e
−βx3/2, and integrated over x3, and so

on. Continuing, we eventually arrive at the expansion (6). An important point is

that at all stages of the iteration the one-dimensional integral in (12) applies and the

expressions can be written in an expansion analogous to (6). It should be also noted
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that the expansion for P (x) appears in this procedure a step before the final integration

is considered for Q(x). Furthermore, when evaluating the expressions for a given n, the

results for lower dimensions are also obtained in the process.

A Mathematica [62] code to implement the above described recursion scheme can be

found in the supplementary material. It also extracts the coefficients cjk and djk which

can then be used for evaluating results for the fixed trace ensemble. As an example,

we have considered n = 10, a = 15 and shown the plots for β = 1, 2, 3, 4 in Fig. 1.

The analytical result based solid curves are contrasted against the numerical simulation

based overlaid symbols and we can see an excellent agreement.

4. Exact distribution of Landauer conductance

One of the remarkable achievements of random matrix theory (RMT) has been in the

field of quantum conductance in chaotic mesoscopic systems [45–48, 63–66]. Starting

from its prediction of universal conductance fluctuation [45, 46, 63–65] to the modern

day description of topological superconductors and Majorana fermions [66], RMT has

had great success in modeling various charge transport related phenomena. Despite

this, there remain several problems which have defied an exact solution. One such

problem is working out the exact distribution of Landauer conductance in a chaotic

mesoscopic cavity with ideal leads [45–52]. Here we solve this problem by exploiting

its mathematical connection with largest eigenvalue of the fixed trace Wishart-Laguerre

ensemble.

The chaotic mesoscopic cavity is connected to an electron reservoir via two ideal

leads. The electronic transport properties follow from the knowledge of the scattering

matrix (S matrix). In this case, the S matrix can be modelled using Dyson’s circular

ensemble [45–47, 67] (note that for nonideal leads the S-matrix has to be taken from

a nonuniform measure given by the Poisson kernel [1, 45, 68, 69]). For given number of

channels n1 and n2 in the two leads, the S matrix is n1 +n2 dimensional. The Landauer

conductance, measured in units of e2/h, is then given by g = tr(Π1SΠ2S
†), where Π1

is a projection matrix with elements (Π1)j,k = δjk for j ≤ n1 and zero otherwise and

Π2 = 1n1+n2 − Π1. For β = 4, the S matrix has quaternionic entries and Π1,Π2 are

accordingly modified. The Landauer conductance is equivalently described in terms of

the transmission eigenvalues (0 ≤ T1, ..., Tn ≤ 1) as [45,70,71]

g =
n∑
j=1

Tj, (15)

where n = min(n1, n2). We also define m = max(n1, n2). The joint PDF describing the

transmission eigenvalues is given by [45–47,67,72]

P (T1, ...., Tn) ∝
n∏
l=1

T al
∏

1≤j<k≤n

|Tk − Tj|β, (16)

where a = β(m − n + 1)/2 − 1. The above is a special case of the Jacobi ensemble of

random matrices [1, 67, 72]. It should be noted that the exponent a is an integer for
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Figure 2: Distribution of the Landauer conductance for β = 1, 2, 4 and three

combinations of the number of channels n1, n2, as indicated using n = min(n1, n2)

and m = max(n1, n2).

β = 2, 4 for any number of channels n1, n2, whereas for β = 1 we require |n1− n2| to be

an odd integer. The distribution of the Landauer conductance follows as

Pg(g) =

∫ 1

0

dT1 · · ·
∫ 1

0

dTnδ

(
g −

n∑
j=1

Tj

)
P (T1, . . . , Tn). (17)

A simple scaling yj = Tj/g reveals that the above can be written in terms of the CDF

of the largest eigenvalue of the fixed trace Wishart-Laguerre ensemble [20],

Pg(g) =
1

Γ(γ)
Kgγ−1QF (1/g); (18)

K =
n−1∏
l=0

Γ
(
a+ β(n+l−1)

2
+ 2
)

Γ(βl
2

+ 1)
. (19)

Plugging in the expression for QF from (9) gives

Pg(g) = K

n∑
j=0

Θ(g − j)
ja+j(n−j)β∑

k=0

djk
Γ(γ − k)

(
2

β

)k
(g − j)γ−k−1. (20)

This equation provides the sought exact Landauer conductance distribution for general

non-negative integer a, β. Corresponding Mathematica code is provided in the

supplementary material. In Fig. 2, as examples, we show the distribution of scaled

conductance, viz., nPg(ng) vs. ng for β = 1, 2, 4 and various n,m combinations.

The numerical results obtained using simulation of scattering matrices from circular

ensembles are overlaid as symbols on the solid curves based on analytical results. We

can see a perfect agreement.

5. Summary and conclusion

In this work, we have provided an efficient recursive scheme for the exact computation

of the largest eigenvalue distribution of the integer β-Wishart-Laguerre ensemble.

Applications to multiple channel communication, bipartite entanglement problems, and
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an exact solution to the Landauer conductance distribution in a chaotic mesoscopic

cavity with ideal leads have been highlighted.

We would like to conclude by emphasising that the recursive approach proposed in

this work for the Wishart-Laguerre largest eigenvalue can be obtained from the more

general case of the Jacobi ensemble [42, 43]. The details of this, and its consequences,

are planned for a future work.
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Appendix A. Refinement of upper limit of inner summation in equation (6)

We discuss here the refinement of the upper limit of inner summation in (6). For this

we consider the j-point correlation function,

ρ(j)(x1, . . . , xj) =
n!

(n− j)!

∫ ∞
0

dxj+1 · · ·
∫ ∞
0

dxnP(x1, ..., xn), (A.1)

and the following expansion of Q(x) in terms of ρ(j):

Q(x) = 1 +
n∑
j=1

(−1)j

j!

∫ ∞
x

dx1 · · ·
∫ ∞
x

dxj ρ(j)(x1, . . . , xj). (A.2)

We then use the fact that for large x1, . . . , xj, ρ(j)(x1, . . . , xj) is proportional to

j∏
l=1

x
a+β(n−j)
l e−βxl/2

∏
1≤p<q≤j

|xp − xq|β. (A.3)

and perform integration by parts multiple times. The latter procedure reveals, for each

j, the exponent κ in the leading large x form xκe−βjx/2 and thus the upper limit in the

summation over k in (6). The value κ = ja+ j(n− j)β is therefore obtained, as appears

in (6).
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Recursion scheme for the largest β-Wishart-Laguerre
eigenvalue and Landauer conductance in quantum transport:

Supplementary Material

Peter J. Forrester and Santosh Kumar

Description of the Mathematica code

We implement the proposed recursion scheme in a Mathematica code presented below.

From the discussion of the recursion scheme, it follows that we need a three level

nested loop to obtain the expressions for the PDF P (x) and CDF Q(x). Since the

overall expression for a given dimension n builds upon the lower values of dimension,

the outermost loop runs over ν = 1, 2, .., n− 1. At a given ν value, the innermost loop

involves recursion over p as in Eq. (14) from p = 0 to ν − 1, so as to increase the

exponent α by 1. The α, overall, needs to be iterated from 0 to β − 1 so as to obtain

the result for a given β. This is achieved in the middle loop. Once these three loops are

completed, the expression for P (x) is obtained. A final integration is then performed

(corresponding to ν = n) to yield the corresponding Q(x).

The algorithm involves performing integrals over expressions containing linear

combination of terms like xre−sx (Laguerre weight) several times. We found that the

direct use of the inbuilt function ‘Integrate’ in Mathematica is extremely inefficient

at performing this task if there are many terms in the expression. Therefore, we use

the ‘Map (/@)’ function and apply the result in Eq. (12) to individual terms in the

expression and thereby obtain the overall integrated result in view of the linearity.

The coefficients cjk and djk are extracted readily from the obtained P (x) and Q(x)

expressions with the aid of the ‘CoefficientList’ function in Mathematica. These are

then used to yield explicit expressions for the PDF PF (y) and CDF QF (y) for the fixed

trace ensemble and also the Landauer conductance density function Pg(g). It should be

noted that in Mathematica list indices start from 1 and not from 0, therefore the indices

in the Eqs. (5), (6), (8), (9) and (20) are accordingly shifted when implemented in the

code.

From Eqs. (5) and (6) it is clear that there are (n/6)[(n2 − 1)β + 3(n − 1)a + 6]

and (1/6)(n + 1)[n2β + n(3a − β) + 6] terms in the expanded expressions of P (x) and

Q(x), respectively. As a consequence, the symbolic expressions become very lengthy

even for moderate values of n and a. For example, if we consider β = 2, n = 5, a = 5,

the number of terms in the expanded expressions comes out to 95 and 121, respectively.

For numerical evaluation of such lengthy expressions we must work with a very high

precision so as to prevent under- or over-flow.

The above described three level nested loop algorithm may be contrasted with that

for the smallest eigenvalue [43], which involves a two level nested loop only due to a less

involved mathematical structure there.
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