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Abstract—The practically important case of a dielectric-loaded
tape helix enclosed in a coaxial perfectly conducting cylindrical
shell is analysed in this paper. The dielectric-loaded tape helix
for guided electromagnetic wave propagation considered here has
infinitesimal tape thickness and infinite tape-material conductivity.
The homogeneous boundary value problem is solved taking into
account the exact boundary conditions similar to the case of
anisotropically conducting open tape helix model [1, 2]. The boundary
value problem is solved to yield the dispersion equation which takes
the form of the solvability condition for an infinite system of linear
homogeneous algebraic equations viz., the determinant of the infinite-
order coefficient matrix is zero. For the numerical computation
of the approximate dispersion characteristic, all the entries of the
symmetrically truncated version of the coefficient matrix are estimated
by summing an adequate number of the rapidly converging series for
them. The tape-current distribution is estimated from the null-space
vector of the truncated coefficient matrix corresponding to a specified
root of the dispersion equation.

1. INTRODUCTION

A method of exactly solving the boundary value problem arising in
the propagation of slow electromagnetic waves guided by an open
tape helix for the anisotropically conducting model [1], wherein the
component of the tape-current density perpendicular to the winding
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direction is neglected, was presented for the first time in [1, 2] without
making any a’priori assumption about the tape-current distribution.
This method has subsequently been extended to solving the problem
of guided electromagnetic wave propagation through an open tape
helix for the perfectly conducting model in [3]. Beginning with the
fundamental work of Sensiper [4] until the publication of [1], all
the published derivations [5–8] of the propagation characteristics of
electromagnetic waves guided by an open helical slow-wave structure,
modeled invariably to be an anisotropically conducting tape helix, were
based on some ad hoc assumption about the tape-current distribution.
As a consequence, the tangential electric field boundary conditions
could only be satisfied in some approximate sense. The need for such
an ad hoc assumption about the tape-current distribution arose out of
the inherent inability of the form of the series-expansion for the tape-
current density assumed in every one of these “derivations” to correctly
confine the surface current to the tape surface only. In other words,
the infinite series for the tape-current density ought to have summed
automatically to zero in the gap region (the region on the cylindrical
surface between the tapes) but does not.

In this paper, the method analyzing the anisotropically conducting
model of the open tape helix is applied to the practically relevant
case of a tape helix supported inside a coaxial perfectly conducting
cylindrical shell by symmetrically disposed wedge-shaped (see Fig. 1)
dielectric rods. With a view to making the problem of guided
electromagnetic wave propagation through such a model of slow-wave
structure tractable, the azimuthally periodic dielectric constant of the
tubular region between the tape helix and the outer conductor is
replaced by its azimuthally-averaged constant value εeff . When the
cross-sectional shape of the symmetrically located dielectric support
rods is anything other than a wedge {(r, θ) : a ≤ r ≤ b, θ1 ≤ θ ≤ θ2},
the azimuthally-averaged dielectric constant εeff (r) will turn out to be
a function of the radial coordinate r. In this case, the region between
the tape helix and the outer conductor is partitioned into a finite
number of tubular layers and each layer is characterized by the radially-
averaged value of εeff (r) over its radial thickness. This is equivalent
to approximating εeff (r) by a piecewise constant function in the radial
variable r. The solution for the field components over the entire region
between the tape helix and the outer conductor can then be obtained by
enforcing the continuity of the tangential field components across the
interfaces separating two adjacent tubular layers with different values
for the effective dielectric constant. This procedure has been adopted
by Jain et al. [9] to analyze guided wave propagation through a tape
helix supported by dielectric rods of circular cross-section based of
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course on an ad hoc assumption about the tape-current distribution.
Almost all of the existing literature on the propagation of

electromagnetic waves guided by a dielectric-loaded tape helix are
based either on an ad hoc assumption about the tape-current
distribution [9–15] or an a’priori assumption about the behavior of
the tape-current distribution near the tape edges [17]. Tien [10] and
McMurtry [11] have analysed the effects of a supporting dielectric
layer surrounded by a metal tube based on a tape-current distribution
used by Sensiper [4] and Watkins [6]. The same observation may
be made about the work of Uhm [12] on guided electromagnetic
wave propagation using the anisotropically conducting model of a
dielectric-loaded tape helix. D’Agostino et al. [13] and Tsutaki et
al. [14] based their analysis of guided electromagnetic wave propagation
through a dielectric-loaded tape helix on an assumed cosh function
dependence for the tape-current distribution whereas Kosmahl and
Branch, Jr. [15] made use of a cosh function dependence for the gap
fields in their analysis of guided-wave propagation supported by a
dielectric-loaded tape helix. A completely different formulation in
terms of helical coordinates was proposed by Chen et al. [16] to tackle
the problem of guided electromagnetic wave propagation through a
tape helix supported by a finite number of symmetrically located
wedge-shaped dielectric rods without resorting to homogenization of
the nonhomogeneous dielectric region between the tape helix and the
outer conductor by azimuthal averaging. However, it was not possible
to satisfy the electromagnetic boundary conditions in the gap regions
of the tape helix within the framework proposed by Chen et al.

Although the derivation of the dispersion equation presented
by Chernin et al. [17] for a perfectly conducting dielectric loaded
tape helix involves neither any ad hoc assumption about the tape-
current distribution except for its behavior near the tape edges
nor any approximations in satisfying the tangential electric field
boundary conditions on the tape surface, their surface-current density
expansions, which are assumed to have a form identical to those of
the field components when restricted to the surface of the infinite
cylinder containing the tape helix, do not again seem to be capable of
limiting the support of the surface-current density to the tape surface
only. Moreover, reexpansions of the tape current density components
in terms of Chebyshev polynomials, resorted to be Chernin et al. [17],
seem to be motivated by the anticipated singularity of the surface
current density component parallel to the winding direction near the
tape edges. Such an a’priori assumption regarding the edge behavior
of the surface current density component is totally unnecessary as an
ordinary Fourier-series expansion is pretty well capable of bringing
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out any such singular behavior, if present, as long as the singularity
is integrable. Another anomalous behavior displayed by the surface
current density plots obtained by Chenin et al. concerns the lack of
symmetry about the center line of the tape.

In the sequel, we make use of the following standard notations:
(i) Z for the ring of integers, (ii) a prime superscript on a function
for the derivative with respect to the argument and (iii) 1X for the
indicator function of a set X, that is

1X(x) =
{

1 if x ∈ X
0 if x /∈ X

2. PROBLEM FORMULATION

We consider a tape helix of infinite length, constant pitch and
tape width, infinitesimal tape thickness and infinite tape-material
conductivity surrounded by a dielectric of effective permittivity εeff ,
enclosed in a coaxial metallic outer conductor. The axis of the helix
is taken along the z-coordinate of a cylindrical coordinate system
(ρ, ϕ, z). The radius of the helix is a, the inner radius of the outer
cylindrical conductor is b, the pitch is p, the width of the helix in
the axial direction is w, and the pitch angle ψ is then given by
cotψ = 2πa/p.

The scalar Helmholtz equation for the Borgnis potential U (and

(b)(a)

Figure 1. Cross sectional vew of dielectric-loaded tape helix model:
(a) Actual structure with three support rods of dielectric constant εr;
(b) Azimuthally averaged structure with an effective dielctric constant
εeff = (1−α)+αεr for the region between the tape helix and the outer
conductor.
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V ) is

1
ρ

∂

∂ρ

(
ρ
∂U

∂ρ

)
+

1
ρ2

∂2U

∂ϕ2
+

∂2U

∂z2
+ k2

0U = 0 (1)

Assuming solutions for U and V in the form

[U V ]T =
∑

n∈Z
[Fn(ρ) Gn(ρ)]T ej(nϕ−βnz)

dictated by the geometric invariance properties of the tape helix, and
substituting into (1) (and the corresponding equation for V ), Fn (and
Gn) is seen to satisfy the ordinary differential equation

∂2Fn

∂ρ2
+

1
ρ

∂Fn

∂ρ
−

[
n2

ρ2
+ τ2

n

]
Fn = 0 for 0 ≤ ρ < a (2a)

∂2Fn

∂ρ2
+

1
ρ

∂Fn

∂ρ
−

[
n2

ρ2
+ τ+

n
2
]

Fn = 0 for a < ρ < b (2b)

where βn = β0 + 2πn/p is the propagation phase constant of the nth
space harmonic; the transverse mode number τn, n ∈ Z, for the region
inside helix (0 ≤ ρ < a) is given by τ2

n , β2
n − k2

0; the transverse mode
number τ+

n , n ∈ Z, for the dielectric region (a < ρ < b) is given by
τ+
n

2 , β2
n − εeff k2

0, where k0 = ω/c is the free-space wave number at
the radian frequency ω, β0 = β(ω) the propagation phase constant of
guided electromagnetic waves supported by the dielectric-loaded tape
helix at the radian frequency ω, and c = (µ0ε0)−1/2 the speed of light
in vacuum. Thus the Borgnis’ potential for the guided-wave solutions,
at the radian frequency ω, takes on the form

[
U
V

]

=





∑
n∈Z

[
An

Bn

]
Sn(pnρ)ej(nϕ−βnz) for 0 ≤ ρ < a

∑
n∈Z

{[
Cn

Dn

]
Sn(p+

n ρ)+
[
C ′

n

D′
n

]
Tn (p+

n ρ)
}

ej(nϕ−βnz) for a < ρ < b

(3)

where pn , |τn| and p+
n , |τ+

n | and An, Bn, Cn, Dn, C ′
n and D′

n, n ∈
Z, are arbitrary (complex) constants. The functions Sn and Tn

appearing in (3) are given by

Sn(pnρ) =
{

In(pnρ), τ2
n > 0

Jn(pnρ), τ2
n < 0
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Sn

(
p+

n ρ
)

=

{
In (p+

n ρ) , τ+
n

2
> 0

Jn (p+
n ρ) , τ+

n
2

< 0

Tn

(
p+

n ρ
)

=

{
Kn (p+

n ρ) , τ+
n

2
> 0

−π
2 Yn (p+

n ρ) , τ+
n

2
< 0

where Jn and Yn are the nth order Bessel functions of first and second
kind respectively, and In and Kn are the nth order modified Bessel
functions of the first and second kind respectively. The expressions
for the tangential field components may be obtained from the Borgnis
potentials [7]:

Ez =





∑
n∈Z

−p2
nAnSn(pnρ)ej(nϕ−βnz)

for 0 ≤ ρ < a∑
n∈Z

−p+
n

2
Cn [Sn(p+

n ρ)− γbnTn(p+
n ρ)] ej(nϕ−βnz),

for a < ρ < b

(4a)

Eϕ =





∑
n∈Z

[
nβn

ρ AnSn(pnρ) + jωµ0pnBnS′n(pnρ)
]
ej(nϕ−βnz)

for 0 ≤ ρ < a∑
n∈Z

[nβn

ρ Cn [Sn (p+
n ρ)− γbnTn (p+

n ρ)]

+jωµ0p
+
n Dn [S′n (p+

n ρ)− γ′bnT ′n (p+
n ρ)]

]
ej(nϕ−βnz)

for a < ρ < b

(4b)

Hz =





∑
n∈Z

−p2
nBnSn(pnρ)ej(nϕ−βnz)

for 0 ≤ ρ < a∑
n∈Z

− (p+
n )2 Dn [Sn (p+

n ρ)− γ′bnTn (p+
n ρ)] ej(nϕ−βnz)

for a < ρ < b

(5a)

Hϕ =





∑
n∈Z

[
−jωε0pnAnS′n(pnρ) + nβn

ρ BnSn(pnρ)
]
ej(nϕ−βnz)

for 0 ≤ ρ < a
∑
n∈Z

[(
nβn

ρ Dn [Sn (p+
n ρ)− γ′bnTn (p+

n ρ)]
)

− (jωεoεeff p+
n Cn [S′n (τ+

n ρ)− γbnT ′n (p+
n ρ)])] ej(nϕ−βnz)

for a < ρ < b

(5b)

where γbn , Sn(p+
n b)

Tn(p+
n b)

and γ′bn , S′n(p+
n b)

T ′n(p+
n b)

. In (4) and (5), the arbitrary
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constants C ′
n and D′

n, n ∈ Z, have been evaluated in terms of Cn and
Dn respectively to be C ′

n = −Cnγbn and D′
n = −Dnγ′bn by enforcing

the boundary conditions Ez = 0 and Eϕ = 0 at ρ = b. The boundary
conditions Ez = 0 and Eϕ = 0 at ρ = b are equivalent to having U = 0
and ∂V

∂ρ = 0 at ρ = b.

3. TAPE HELIX BOUNDARY CONDITIONS

The boundary conditions at ρ = a for the anisotropically conducting
model of the dielectric loaded tape helix are

(i) The tangential electric field is continuous for all values of ϕ and
z.

(ii) The discontinuity in the tangential magnetic field equals the
surface current density on the tape surface.

(iii) The tangential electric field vanishes on the tape surface.

Thus

Ez (a−, ϕ, z)−Ez (a+, ϕ, z) = 0 (6a)
Eϕ (a−, ϕ, z)− Eϕ (a+, ϕ, z) = 0 (6b)
[Hz (a−, ϕ, z)−Hz (a+, ϕ, z)] sin ψ

+ [Hϕ (a−, ϕ, z)−Hϕ (a+, ϕ, z)] cos ψ = 0 (6c)
[Hz (a−, ϕ, z)−Hz (a+, ϕ, z)] cos ψ

− [Hϕ (a−, ϕ, z)−Hϕ (a+, ϕ, z)] sinψ = J||(ϕ, z) (6d)
[Ez (a, ϕ, z) + Eϕ (a, ϕ, z) cot ψ] g (ϕ, z) = 0 (6e)

where J||(ϕ, z) is the surface current density component parallel to
the winding direction supported by helix, and the function g(ϕ, z) is
defined in terms of the indicator functions 1Il(ϕ), l ∈ Z, of the disjoint
(for the same value of ϕ) intervals [(l + ϕ/2π)p − w/2, (l + ϕ/2π)p +
w/2], l ∈ Z, by

g(ϕ, z) ,
∑

l∈Z
1Il(ϕ) (z) (7)

and for an arbitrary function f(ρ, ϕ, z)

f(a±, ϕ, z) , lim
δ↓0

f(a± δ, ϕ, z)

The functional dependence of the surface current density component
J||(ϕ, z), which is confined only to the two-dimensional region on the
infinite cylinder ρ = a occupied by the tape-helix material, on the
variables ϕ and z is dictated by the periodicity and the symmetry
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conditions imposed by the helix geometry. Accordingly, J||(ϕ, z),
admits the representation

J||(ρ, ϕ, z) =

(∑

n∈Z
Jnej(nϕ−βnz)

)
g(ϕ, z) (8)

The factor g(ϕ, z) on the right hand side of (8) ensures that the surface
current is confined to the tape surface only. The surface current density
expansion of (8) may be recast into the form

J||(ϕ, z) = e−jβ0zf(ζ̂) (9)

where

f(ζ̂) =
∑

l∈Z

(∑

n∈Z
Jne−j2πnζ̂

)
1[l−ŵ/2,l+ŵ/2]

(
ζ̂
)

(10)

ζ̂ , (z − ϕp/2π)/p (11)

and

ŵ , w/p

The function f , being periodic in ζ̂ with period 1, may be expanded
in a Fourier series

f(ζ̂) =
∑

n∈Z
Γke

−j2πkζ̂ (12)

where the Fourier coefficients Γk, k ∈ Z, are given by

Γk =
∫ 1/2

−1/2
f

(
ζ̂
)

ej2πkζ̂dζ̂ = ŵ
∑

n∈Z
Jnsinc (k − n) ŵ (13)

where
sincX , sinπX/πX if X 6= 0

1 if X = 0

Thus

J|| (ϕ, z) =
∑

n∈Z
Γnej(nϕ−βnz) (14)

Now, we are ready to tackle the boundary conditions. For the sake of
convenience, let us introduce the abbreviations:

k0a , ak0

βna , aβn

pna , apn, p+
na , ap+

n ,

p+
nb , bp+

n = (b/a) p+
na, n ∈ Z
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Substituting the field expansions into the homogeneous boundary
conditions (6a)–(6c) and equating the coefficients of exp j(nϕ − βnz)
for each n ∈ Z separately to zero, we obtain the following three
relations among the four arbitrary constants An, Bn, Cn and Dn for
each n ∈ Z:

Cn =

{(
pna

p+
na

)2 Sn(pna)
∆ab

Tn

(
p+

nb

)
}

An, n ∈ Z (15a)

Dn =
T ′n

(
p+

nb

)

jωµ0

1
p+

na∆āb̄





nβnaSn(pna)

(
1− p2

na

p+
na

2

)
An

+ jωµ0pnaS
′
n(pna)Bn





(15b)

Bn = jωε0





∆ab̄

∆āb̄

1
k2

0ap
+
na

Sn(pna)
S′n(pna)

(nβna)
(

1− p2
na

p+
na

2

) (
p+

na
2 − nβna cotψ

)
− χBn

∆ab̄

∆āb̄

pna

p+
na

[
p+

na
2 − nβna cotψ

]

+
Sn(pna)
S′n(pna)

[
nβna cotψ − p2

na

]





An(15c)

where

χBn = pna

(
εeff

pna

p+
na

∆āb

∆ab

Sn(pna)
S′n(pna)

− 1
)

cotψ

Substituting for Bn in terms of An from (15c) into (15b) gives an
explicit linear relation between Dn and An too. The fourth boundary
condition (5d) together with the explicit expressions for Bn, Cn and
Dn in terms of An and the expression (14) for J||(ϕz), in turn, relates
An to Γn as

An =
Γn

jωε0

1
(1 + cot2 ψ) sinψ

1
S′n(pna)





Sn(pna)
S′n(pna)

(
nβna cotψ−p2

na

)
+∆ab̄

∆āb̄

pna

p+
na

(
p+

na
2−nβnacotψ

)

p3
na

(
1−εeff

pna

p+
na

Sn(pna)
S′n(pna)

∆āb
∆ab

)(
∆ab̄
∆āb̄

p+
na

pna
− Sn(pna)

S′n(pna)

)
−χAn





on equating the coefficients of exp j(nϕ− βnz) on both sides of (6d)
where

χAn = (nβna)2
1

k2
0a

∆ab̄

∆āb̄

S2
n(pna)

S′n
2(pna)

p+
na

pna

(
1− p2

na

p+
na

2

)
(15d)
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In (15)

∆ab = Sn

(
p+

na

)
Tn

(
p+

nb

)− Sn

(
p+

nb

)
Tn

(
p+

na

)

∆ab̄ = Sn

(
p+

na

)
T ′n

(
p+

nb

)− S′n
(
p+

nb

)
Tn

(
p+

na

)

∆āb = S′n
(
p+

na

)
Tn

(
p+

nb

)− Sn

(
p+

nb

)
T ′n

(
p+

na

)

∆āb̄ = S′n
(
p+

na

)
T ′n

(
p+

nb

)− S′n
(
p+

nb

)
T ′n

(
p+

na

)

Finally, the enforcement of the homogeneous boundary condition on
the tangential electric field component parallel to the winding direction
leads to the functional relation

e−jβ0z
∑

l∈Z

(∑

n∈Z
σnΓne−j2πnζ̂

)
1[l−ŵ/2,l+ŵ/2]

(
ζ̂
)

= 0 (16)

where

σn =





p+
na

(
nβna cotψ − p2

na

)2

− χσn − k2
oap

2
na

(
S′n(pna)
Sn(pna)

)2 [
εeff pna

Sn(pna)
S′n(pna)

− p+
na

]

p+
na

2
p2

na

(
S′n(pna)
Sn(pna)

−εeff
pna

p+
na

∆āb

∆ab

)(
∆ab̄

∆āb̄

S′n(pna)
Sn(pna)

− pna

p+
na

)

− ∆ab̄

∆āb̄

(nβna)
2 ∆εeff





(17)

where

χσn =
∆ab̄

∆āb̄

pna
S′n(pna)
Sn(pna)

(
nβna cotψ−p+

na
2
)[

nβnacotψ
(
1+k2

0a∆εeff
)−p2

na

]

where ∆εeff , εeff −1. Since e−jβ0z 6= 0, (16) implies that each Fourier
coefficient of the periodic function

h(ζ̂) ,
∑

l∈Z

(∑

n∈Z
σnΓne−j2πnζ̂

)
1[l−ŵ/2,l+ŵ/2](ζ̂) (18)

of ζ̂ (with period 1) must vanish, that is
∑

n∈Z
σnΓnsinc(n− k)ŵ = 0 for k ∈ Z (19)

Substituting for Γn from (13), the condition (19) may be put in the
form ∑

q∈Z
αkqJq = 0 for k ∈ Z (20)
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where

αkq =
∑

n∈Z
σnsinc(k − n)ŵ sinc(q − n)ŵ (21)

For a nontrivial solution of the infinite set of linear homogenous
Equations (20) for Jq, q ∈ Z, it is necessary that the determinant
of the coefficient matrix A , [αkq], k, q ∈ Z, is zero, that is

|A| = 0 (22)

The determinantal Equation (22) gives, in principle, the dispersion
relation for the cold wave modes of the dielectric supported
anisotropically conducting tape helix. Similar to the analysis of
anisotropically conducting open tape helix model presented in [1],
the derivation of the dispersion equation is based neither on any
a’priori assumption regarding the tape-current distribution nor on any
approximation of the helix boundary conditions. In this sense, the
derivation is exactly within the assumed model for the dielectric loaded
tape helix.

4. NUMERICAL COMPUTATION OF THE DISPERSION
CHARACTERISTIC

On using the asymptotic formulae for Sn, S′n, Tn and T ′n [4], we observe
from (17) that

|σn| ∼ O(1/|n|) as |n|→ ∞
Therefore, the rapidly converging infinite series for αkq, k, q ∈ Z,
may be symmetrically truncated to a low order without incurring
any appreciable error. When the accurate estimates for the matrix
entries obtained in this fashion are used in the approximate dispersion
equation resulting from a symmetric truncation of the infinite-order
matrix A to a matrix Â of order (2N +1)×(2N +1), the corresponding
dispersion characteristic is found to be almost insensitive to the
truncation order N as long as N ≥ 10.

The approximate dispersion equation for a truncation order N =
20 and for the parameter values of ŵ = 1/2, b/a = 2.24, εeff = 2.25, and
ψ = 10◦ is solved numerically for k0a(β0a), β0a ≥ 0, and the resulting
lowest order tape-helix dispersion curve is plotted in Fig. 2. It is worth
emphasizing that the dispersion characteristic for a dielectric-loaded
tape helix in the form shown in Fig. 2 has so far not been reported
in the literature. Although there exists no forbidden region for the
dielectric loaded tape helix, forbidden regions of an open tape helix for
the same values of ŵ and ψ are also plotted in Fig. 2 for comparison
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purposes. It is seen that the dispersion characteristic enters the first
allowed region (slow wave region) of the anisotropically conducting
model of open tape helix from the fast wave region. The dispersion
curve first increases with increase in β0a and then decreases as seen
from Fig. 2. The characteristic reaches approximately zero at the
meeting point of the forbidden region boundaries and increases as it
enters the second allowed region of the open tape helix model. The
peak value of the dispersion curve in the second ‘allowed region’ is
slightly more than the peak value in the first ‘allowed’ region. The
shape of the dispersion curve in the second ‘allowed’ region is then
seen to repeat periodically in the subsequent ‘allowed’ regions also.
The dominant-mode dispersion curve of a dielectric loaded sheath helix
for the same values of εeff and b/a is also plotted for comparison in
Fig. 2. It is observed that the dielectric loaded sheath helix model is
no longer an approximation to the dielectric loaded tape helix model.

In addition to the lowest order mode, whose dispersion curve is
plotted in Fig. 2, a dielectric-loaded tape helix supports an infinite
number of higher order modes. The dispersion curves for the modes of
order from second to fifth are plotted in Fig. 3 together with that of
the lowest order mode. The initial behaviour of the dispersion curves
of modes higher than the second tend to be characteristically different
from that of the first two modes for the parameter values of the helix
assumed in the numerical computation. This “chaotic” behaviour may
be attributed to the larger values of the “cut-off frequencies” of the

Tape Helix

Sheath Helix

Figure 2. Dispersion characteristic of dielectric loaded tape helix for
ŵ = 1/2, b/a = 2.24, εeff = 2.25 and ψ = 10◦.
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higher order waveguide modes; the outer conductor may be considered
as forming a circular cylindrical waveguide which is loaded by the
anisotropically conducting tape helix and the partially filled dielectric
layer. However, all these higher-order dispersion curves tend to merge
eventually with the lowest-order dispersion curve along its negative-
slope portion in the first ‘allowed’ region. Rest of the analysis in this
paper will be making use of only the lowest-order mode dispersion
characteristic.

Figure 3. Dispersion characteristics for modes of first five orders.

Tape Helix

Sheath Helix

Figure 4. Plot of phase speed vs β0a.
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It is observed from the phase-speed plot of Fig. 4 that the phase
speed vp of the dielectric loaded sheath helix is approximately 13% of
the speed of light. It is also seen from Fig. 4 that the phase speed of the
dielectric loaded tape helix is more than two times that of the speed of
light for very small values of β0a (β0a < 0.3). As soon as the dispersion
curve enters the first ‘allowed region’, the phase speed reduces to 50%
of the speed of the light. Towards the end of the first ‘allowed region’
and thereafter, the phase speed varies from 1% and 20% of the speed
of light. The only nearly constant phase speed region of the dielectric
loaded tape helix useful for the purpose of effective interaction with an
electron beam leading to traveling wave amplification corresponds to a
value of β0a lying between 1.5 and 3. It is to be noted that the phase
speed of the dielectric loaded tape helix structure is 50% to that of the
speed of light in the aforesaid region. For this reason, the relativistic
effects (relativistic variation of electron mass with speed) have to be
taken into account while analysing the beam-wave interaction in a
TWT amplifier configuration.

The initial portion of the graph (of the multivalued function)
showing the variation of the normalised phase speed vp/c with respect
to the normalised frequency k0a for the dielectric loaded tape helix
corresponding to 0 < k0a < 1.3 is plotted in Fig. 5. It is observed
from the plot that the normalised phase speed corresponding to the
monotonically increasing portion of the dispersion curve (Fig. 2) in
the first “allowed” region is nearly constant for k0a ∈ (0.45, 1.28).

Figure 5. Plot of phase speed vs k0a.
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For a helical radius a = 0.56896 [18], it is found that the dielectric
loaded tape helix may be operated in the frequency range of 4.2 GHz
to 10.9 GHz, i.e., C-band and part of X-band of microwave frequencies.

5. NUMERICAL COMPUTATION OF THE TAPE
CURRENT DISTRIBUTION

The distribution of current on the tape surface may be estimated
in terms of the (2N + 1)-dimensional null-space vector Ĵ of the
(2N + 1) × (2N + 1) symmetrically truncated coefficient matrix Â
corresponding to any specified solution pair (β0a, k0a(β0a)) of the
dispersion equation |Â| = 0. Denoting the null-space vector of the
corresponding singular matrix Â by

Ĵ =
[
Ĵ−N , Ĵ−(N−1), . . . , Ĵ−1, Ĵ0, Ĵ1, . . . , ĴN−1, ĴN

]T
(23)

the surface current density for a truncation order N may be estimated
using Fejer (Cesaro) means [19] as

Ĵ‖(z, ζ̂) = e−jβ0z f̂(ζ̂)

= e−jβ0z
∑

l∈Z
1[l−ŵ/2,l+ŵ/2](ζ̂)

N∑

n=−N

(
1− |n|

N+1

)
Ĵne−j2πnζ̂ (24)

The partial sum of Fourier series is estimated by Fejer means for a
smoother approximation and faster convergence than is provided by
the corresponding direct partial sums [20]. Since the surface-current
density Ĵ‖(z, ζ̂) is periodic in ζ̂ with period 1, the restriction Ĵ

(R)
‖ (z, ζ̂)

of it to any one period, say to the interval [−1/2, 1/2], gives a complete
description:

Ĵ
(R)
‖

(
z, ζ̂

)
= e−jβ0z1[−1/2,1/2](ζ̂)

N∑

n=−N

(
1− |n|

N + 1

)
Ĵne−j2πnζ̂

The magnitude |Î(ζ̂)| and the phase ϕ(ζ̂) of the normalized surface-
current distribution

Î(ζ̂) =
∣∣∣Î(ζ̂)

∣∣∣ ejϕ(ζ̂)∆
Ĵ

(R)
‖ (z, ζ̂)

Ĵ
(R)
‖ (z, 0)

= 1[−1/2,1/2](ζ̂)f̂(ζ̂)/f̂(0)

= 1[−1/2,1/2](ζ̂)
∑N

n=−N (1− |n|/N + 1) Ĵne−j2πnζ̂

∑N
n=−N (1− |n|/N + 1) Ĵn

(25)
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computed for β0a = 3, ψ = 10◦ and the values 1
2 , 5

12 and 1
3 of the axial

width-to-pitch ratio ŵ are plotted in Figs. 6–8 against ζ̂ ∈ [−1/2, 1/2].
It may be observed from the magnitude and the phase plots of the

Figure 6. Surface current distribution of the anisotropically
conducting dielectric-loaded tape-helix model for ŵ = 1

2 .

Figure 7. Surface current distribution of the anisotropically
conducting dielectric-loaded tape-helix model for ŵ = 5

12 .
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Figure 8. Surface current distribution of the anisotropically
conducting dielectric-loaded tape-helix model for ŵ = 1

3 .

surface current distribution that

(i) The magnitude distribution is even symmetric whereas the phase
distribution is odd symmetric about the center line of the tape.

(ii) The surface current density magnitude, which has a flat minimum
along the center line of the tape, tends to grow superlinearly
towards the tape edges, the edge value exhibiting a slight increase
with the tape width; however the maximum deviation of the
surface current density magnitude is less than 4% even for ŵ =
1/2.

(iii) The phase of the surface current density, on the other hand,
exhibits a periodic sawtooth variation across the tape width with
two periods of the sawtooth waveform getting accommodated
within the tape width when ŵ = 1/2; as ŵ decreases,
proportionately smaller portions of sawtooth waveform get
accommodated within the width of the tape.

6. CONCLUSIONS

The main conclusions that may be drawn from the present study are
the following: The dominant mode dispersion characteristic of the
sheath helix is no longer a good approximation to that of the dielectric
loaded tape helix. There are infinite number of modes supported
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by a dielectric-loaded tape helix. The dispersion curves of higher
order modes exhibit an initial ‘chaotic’ behaviour before eventually
merging with the dispersion curve of the lowest-order mode. Only
the lowest order mode dispersion curve is useful for the purpose of
traveling-wave amplification. Effective electron beam-wave interaction
for amplification purpose is only possible in the constant phase speed
region of the first ‘allowed region’. As this constant phase speed is
nearly 50% of the speed of light, nonrelativistic operation of a helix
traveling wave amplifier is no longer feasible; relativistic effects will
have to be accounted for in the amplification process.
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