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Abstract: We present a new approach to study (1+1)-dimensional Dirac equation
in the background of an effective mass M by exploiting the possibility of a position-
dependent Fermi velocity vF . We explore the resulting structure of the coupled
equations and arrive at an interesting constraint of M turning out to be the inverse
square of vF . We address several solutions of the effective potential that include the
free particle, shifted harmonic oscillator, Morse potential and CPRS potential.
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1 Introduction

Dirac equation is recognized as one of the finest achievements in twentieth-century physics.
It is a relativistic equation in its own right that describes the dynamics of spin one-half
particles. It has been investigated from various perspectives of which the list is long [1].
As a sample survey, let us mention that its study was made on a hyperbolic graphene
surface under perpendicular magnetic fields [2], in connection with confinement in two
dimensions of nonuniform magnetic fields for massless fermions [3], and from the point
of view of first-order intertwining operators [4]. Furthermore, Dirac equation has also
received attention following the production of graphene crystals as two-dimensional, single
carbon atom sheets (see, for instance, [5]) and reports were presented for the understanding
of the electronic properties of the charge carriers by two-dimensional zero-mass Dirac
particles [6, 7]. It is also known that position-dependent Fermi velocity could be induced
from a nonuniform strain in graphene as scanning tunnelling spectroscopy experiments
reveal [8–10]. We might remark that the electron concentration in the conduction band
is greatly affected by the Fermi energy which is much smaller than that of a metal The
idea of position-dependent Fermi velocity also gained acceptance when a gap formation
was noticed in graphene physics [11]. A number of theoretical investigations incorporating
spatially varying Fermi velocity have also been carried out [12–14] including a recent one
studying electronic transport in two-dimensional strained Dirac materials [15]. We note in
passing that

Unconventional aspects of supersymmetry were shown to exist in graphene and for
its associated problems [16]. Previously, interpretation in the realm of supersymmetric
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quantum mechanics [17,18] has been given. More recently, the most general form of the
one-dimensional Dirac Hamiltonian in the presence of scalar and pseudoscalar potentials
was written down and analysed [20] (and references therein) to look for the role of the
intertwining relations.

In the underlying structure of Dirac equation, the present work is devoted to extending
some of its aspects in the context of position-dependent mass (PDM) and fermi velocity.
We have concentrated on the study of the coupled equations, resulting from the spinor
interpretation of the 2-component wavefunctions, by considering the effects of space
dependent mass as well as Fermi velocity. The aim of this paper is to study (1+1)-
dimensional Dirac equation in a PDM theory where Fermi velocity depends on the position.

The paper is organised as follows. In section 2 we introduce the idea of localised Fermi
velocity(LFV). In section 3 we explore the PDM issue by comparing with the von Roos
form of the effective Hamiltonian. We also explore here the general behaviour of the
effective potential. In section 4 we address several classes of examples following from our
scheme. Finally a summary is presented in section 5.

2 (1+1)-Dirac equation and the PDM

The (1 + 1)-Dirac Hamiltonian [26,27] can be expressed in several equivalent forms. One
such that suits our convenience is given by

HD = vfσxpx + σyW (x) + σzmv
2
f + 1V (x) (2.1)

where 1 is the block-diagonal unit matrix and the associated potential, in general, consists of
the electrostatic contribution V (x), along withW (x) which corresponds to the pseuodoscalar
contribution. We shall see that the latter acts as the superpotential of the system. The
standard expressions of the Pauli matrices are known to be

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

(2.2)

The solution of the non-relativistic version of the Dirac equation following from HD is
known for long in the context of an external magnetic field [28] and for massless particles
in (2+1)-dimensions [29] by operating on a two-component spinor wave function. In the
framework of first-order intertwining relations the role of the electrostatic potential V (x)
is ineffective [30].

In the context of treating Dirac equation in the background of PDM, we adopt the von
Roos method of converting the kinetic energy operator to a Hermitian form by introducing
a set of three ambiguity parameters. In the theoretical studies a number of cases of different
choices of ambiguity parameters have been investigated. These correspond to the schemes
of Ben Daniel and Duke [21] (α = γ = 0, β = −1), Bastard [22] (α = −1, γ = β = 0), Zhu
and Kroemar [23] (α = γ = −1

2), and redistributed model [24] (β = γ = −1
2 , α = 0).

We will focus1 on the Ben Daniel and Duke model to seek correspondence of the resulting
Schrödinger form for the two cases of the Dirac Hamiltonian when the latter is applied on
the spinor wave equation. The Ben Daniel and Duke model is a physically interesting model
and has found, among other places, applications in nanowire semiconductor heterostructure
( [25] and references therein). In fact, one can construct eigenstates and spectral values of
nanowires having different cross-sectional shape and/or varying composition.

1Of course, we can readily extend to other PDM types by changing the values of the ambiguity parameters.
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A combination of Fermi velocity and the mass function carries the bulk information of
the material properties of the Dirac particle [31]. Indeed, these give rise to the possibility of
producing a heterostructure. Since the Fermi velocity can vary from material to material,
such a scenario is comprehensible in condensed matter physics [32]. In the following section
we will enquire how a localized Fermi velocity influences the Dirac equation.

3 Localized Fermi Velocity

Let us modify (2.1) by incorporating a modulated velocity in 1-dimensional heterostructure
as follows

HD =
√

vf (x)σxpx

√

vf (x) + σyW (x) + σzm(x)v2f (x) (3.1)

where following [32] the position dependence in the mass and Fermi velocity has been taken
into account. Then the following matrix structure of HD emerges

HD =

(

mv2f + V −i~√vf∂√vf − iW

−i~√vf∂√vf + iW −mv2f + V

)

(3.2)

In (3.2), the quantities m, vf , V and W are arbitrary function of x. Applying HD on a
two-component spinor wavefunction having components (ψ+, ψ−)

T , the Dirac equation
assumes the form

(

mv2f + V −i~√vf∂√vf − iW

−i~√vf∂√vf + iW −mv2f + V

)(

ψ+

ψ−

)

= E

(

ψ+

ψ−

)

(3.3)

where E is the energy eigenvalue. These result in a set of coupled equations

(−i~√vf∂
√
vf − iW )ψ− = D−ψ+ (3.4)

(−i~√vf∂
√
vf + iW )ψ+ = D+ψ− (3.5)

where we adopted natural units ~ = 1 and D+ = (E+mv2f −V ) and D− = (E−mv2f −V ).
Through disentanglement we get for the upper component

−
v2f

D+

d2ψ+

dx2
− d

dx

( v2f

D+

)dψ+

dx
+
[ 1

D+

(

W 2 − 1

4
v′f

2 − 1

2
vfv

′′
f

)

+ vf
d

dx

( W

D+

)

−1

2
vfv

′
f

d

dx

( 1

D+

)]

ψ+ = D−ψ+ (3.6)

and a similar one for the lower component

−
v2f

D−

d2ψ−
dx2

− d

dx

( v2f

D−

)dψ−
dx

+
[ 1

D−

(

W 2 − 1

4
v′f

2 − 1

2
vfv

′′
f

)

− vf
d

dx

( W

D−

)

−1

2
vfv

′
f

d

dx

( 1

D−

)]

ψ− = D+ψ− (3.7)

For onward calculations we will employ Mustafa’s invariant relation [13] m(x)v2f (x) = m0v
2
0 ,

wherem0 and vf = v0 refers to their constant values and also set V (x) = 0. As a result both
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D+ = E +m0v
2
0 and D− = E −m0v

2
0 turn out to be constant. After some straightforward

rearrangement we are led to the following uncoupled equations

−v2f
d2ψ+

dx2
− d

dx
(v2f )

dψ+

dx
+
[(

W 2 − 1

4
v′f

2 − 1

2
vfv

′′
f

)

+ vfW
′)
]

ψ+ = (E2 −m2
0V

4
0 )ψ+

(3.8)

−v2f
d2ψ−
dx2

− d

dx
(v2f )

dψ−
dx

+
[(

W 2 − 1

4
v′f

2 − 1

2
vfv

′′
f

)

− vfW
′)
]

ψ− = (E2 −m2
0V

4
0 )ψ−

(3.9)

Interestingly, if we transform the paired wavefunctions according to

ψ±(x) =
1

√

vf (x)
Φ±(y(x)) (3.10)

where the function y(x) is defined by

y(x) =

∫ x dz

vf (z)
+ constant (3.11)

then the two component equations 3.8 and 3.9 make over to the forms

−d
2Φ±(y)

dy2
+
[(

W 2(x(y))± vf (x(y))W
′(x(y)))

]

Φ±(y) = (E2 −m2
0v

4
0)Φ±(y) (3.12)

these can be viewed as the equations for the extended SUSY partner potentials. Indeed
the reduction to their standard SUSY representations is obvious in the constant vf case.

4 A new look at the PDM problem

The scenario of PDM [33] has been widely studied in the literature. These include setting
up of an extended scheme to generate the associated class of potentials [34] and examining
the consequences of a deformed shape invariance condition [35], a general strategy to
tackle solvable potentials [40], exploring point canonical transformation [41], seeking new
types of exact solutions for an effective mass system [42,43], investigating on the sphere
and hyperbolic plane [44], looking for invariants and spectrum generating algebras [45],
analyzing consistency of indefinite effective mass [46], and obtaining analytical results for
PDM problems [47]. Interest in PDM systems was triggered by the physical problems
pertaining to compositionally graded crystals [48], quantum dots [49], liquid crystals [50]
etc.

A general strategy of writing down a hermitian form of the effective-mass kinetic
energy operator T̂ for PDM guided mechanical systems was given in [33]. In terms of a
position-dependent mass function µ(x), the kinetic energy operator T̂ in this case takes
the form

T̂ = −~
2

4
(µη(x)pµβ(x)pµγ(x) + µγ(x)pµβ(x)pµη(x)) (4.1)

It is found to contain a set of ambiguity parameters η, β and γ which are controlled by the
relation
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η + β + γ = −1 (4.2)

We emphasize that the ordering of the non-commutative momentum and mass operators
have been so arranged in (3.1) that the resulting form of the kinetic energy operator T̂
is rendered Hermitian. Although its form is not unique, other acceptable representations
inevitably reduce to one of the special cases discussed earlier in the introduction and show
equivalence to a reasonable accuracy [48].

On replacing µ(x) = µ0M(x) the time-independent Schrödinger equation can be
converted to [34]

Hφ(x) =
[

− d

dx

1

M(x)

d

dx
+ Veff

]

φ(x) = ǫφ(x) (4.3)

where the effective potential Veff is seen to depend on the mass function, M(x) and its
derivatives

Veff = V(x) + 1

2
(β + 1)

M ′′

M2
− [η(η + β + 1) + β + 1]

M ′2

M3
(4.4)

In (3.4) the primes are refer to the derivatives with respect to x and V(x) corresponds to
some given potential. Corresponding to the parameters of the Ben Daniel-Duke formal-
ism [21], the effective potential Veff (x) coincides with the system potential V(x).

It is useful to point out that it was shown by Bagchi et al [35] several years ago that
on setting M = g−2(x), (3.3) could be transformed to

Hφ(x) =

[

−
(

√

g(x)
d

dx

√

g(x)

)2

+ Veff (x)

]

φ(x) = Eφ(x) (4.5)

Comparing (4.3) with (3.8) and (3.9) we readily see that the mass function M(x), for
both upper (+) and lower (-) components, coincides and given by the inverse square of the
Fermi velocity

M±(x) =
1

v2f (x)
(4.6)

In other words, g(x) plays the role of local Fermi velocity. This is one of important
realization of this work. We now proceed to show how the above result impacts the effective
potential and solve for their corresponding forms.

5 Some examples of solvable systems

5.1 Free Particle

Choosing the pseudoscalar potential to be constant i.e W (x) = ω0 will correspond to the
free particle case. With the following form of the LFV vf (x) = a2x2 +1, the partner SUSY
potentials assume the forms

V±(x) = ω2
0 (5.1)

These correspond to just a constant shift in the energy level i.e constant-potential in
whole x-line. A point to notice is that if we transform y = 1

a
tan−1(ax) ∈ (−π

2a ,
π
2a), the
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free-particle problem gets transformed to the case of the infinite square well potential which
satisfies the Schrödinger equation

−d
2Φ±(y)

dy2
+ k2Φ±(y) = 0 (5.2)

where k2 = E2 −m2
0v

4
0 − ω2

0. The normalized solutions are of the same forms for both the
component(upper and lower) and are given by

Φn(y) =







√

2a
π
sin(kny), for even n

√

2a
π
cos(kny), for odd n

(5.3)

where the wavevector kn = an and the associated energy eigenvalues are

E2
n = a2n2 +m2

0v
4
0 + ω2

0 (5.4)

For completeness we furnish the forms of the wavefunctions in the x-coordinate

ψn(x, a) =







√

2a
π

sin(n(tan−1(ax))√
1+a2x2

, for even n
√

2a
π

cos(n(tan−1(ax))√
1+a2x2

, for odd n
(5.5)

where the presence of the parameter a is explicitly indicated in the argument of the
wavefunction.

5.2 Shifted Harmonic Oscillator

Here we inquire in to the possibility of the pseudoscalar potential varying inversely pro-
portional to LFV i.e W (x) = (aeαx + b) and consider the damping form of the latter i.e.
vf (x) = v0e

−αx. Then the Schrödinger equation (3.12) is turned into the form

−d
2Φ±(y)

dy2
+ V±(x(y))Φ±(y) = (E2 −m2

0v
4
0)Φ±(y) (5.6)

where the potential reads V±(x) = a2e2αx +2abeαx + (b2 ± v0aα). This is well known to be
the Morse type potential. Opting for the transformation converting the full-line (−∞,∞)
to the half-line representation through y = 1

v0α
eαx ∈ (0,∞), one readily moves over to

the shifted half-harmonic oscillator V±(y) = a2v20α
2y2 + 2abv0αy + (b2 ± v0aα). For the

concrete case b = 0 (5.6) can be rewritten as

−d
2Φ±(y)

dy2
+ [

1

2
ω2y2 ± 1√

2
ω]Φ±(y) = (E2 −m2

0v
4
0)Φ±(y) (5.7)

where ω =
√
2v0aα. Both Φ±(y) possess eigenfunctions described by the Hermite polyno-

mials

Φn(y) =
1

√√
π2nn!x0

e
− y2

2y2
0Hn

(

y

y0

)

, n = 1, 3, 5, ... (5.8)

where y0 =
√

2
ω
. The explicit energies for the upper and lower component are

E2
n = ω(n+

1

2
)± 1

2
ω2 +m2

0v
4
0 where n = 1, 3, 5...
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5.3 1-dimensional Coulomb problem

Full-line Coulomb problem belongs to the class of singular potentials in 1-dimension. An
early work on it is due to Loudon [36] who concluded that except for the ground state the
remaining energies displayed a two-fold degeneracy. Later, Andrews’ treatment was more
or less in line with London’s contention except for the interpretation of certain technical
features [37]. A more general treatment for N -dimensions was provided by Nieto [38]. A
good review of the essential results can be found in [39].

Let us consider the choice of the pseudoscalar potential as being proportional to LVF,
i.e, W (x) = (ae−αx − b). Further, we assume a damping form of the Fermi velocity, i.e.,
vf (x) = v0e

−αx. Equation (3.12) turns into

−d
2Φ±(y)

dy2
+ V±(x(y))Φ±(y) = (E2 −m2

0v
4
0)Φ±(y) (5.9)

where V±(x) are given by

V±(x) = (a2 ∓ v0aα)e
−2αx − 2abe−αx + b2 (5.10)

which can be recognized as the Morse type potential. It holds in the entire full-line.
Employing the coordinate transformation y = 1

v0α
eαx folds the interval (−∞,∞) into the

half-line (0,∞, ). In new variable y we thus obtain the Coulomb for the potential

V±(y) = (l2 ∓ l)
1

y2
− 1

y
+

1

4l2
, y ∈ (0,∞, ) (5.11)

where we have denoted l = a
v0α

and 2b = 1
l
.

To solve (5.9) we will be guided by the standard solution of the differential equation

−d
2Λ(s)

ds2
+
(

p2 +
q

s
+

r

s2

)

Λ(s) = 0 (5.12)

whose general solution is given by [52]

Λ(s) ∝ s
1±

√
1+4r

2 e−ps
1U1

(

q

2p
+

1±
√
1 + 4r

2
, 1±

√
1 + 4r; 2ps

)

(5.13)

where 1U1 is confluent hypergeometric function. Keeping in mind the convergence of the
solution we take the positive root and assume the condition

q

2p
+

1

2

(

1 +
√
1 + 4r

)

= −n where n = 0, 1, 2, ...... (5.14)

to hold [53]. Comparing with (5.12) corresponding to the upper component, we obtain the
relation

p2 =
1

4l2
− (E2 −m2

0v
4
0), q = −1, r = l(l − 1) (5.15)

In terms of the energy levels this translates to the result

E2
+n = m2

0v
4
0 +

1

4l2
− 1

4(n+ l)2
where n = 0, 1, 2, ...... (5.16)

for the upper component of the potential. These looks similar to what we have for the the
usual hydrogen atom problem. The corresponding eigenfunctions follow from (5.13). Let

7



us remark that the eigenfunctions can also be expressed in terms of the Whittaker function
M(k,m; z) [54]

Φ+(y) ∝M

(

l√
1− 4τ2l2

, l − 1

2
;

√
1− 4τ2l2

l
y

)

(5.17)

where τ2 = E2 −m2
0v

4
0.

To conclude this section, we give the result corresponding to the lower component of
the potential in (5.11). We find for the energy values are

E2
−n = m2

0v
4
0 +

1

4l2
− 1

4(n+ l + 1)2
where n = 0, 1, 2, ...... (5.18)

along with the associated eigenfunctions in terms of the confluent hypergeometric function

Φ−(y) ∝ yl+1e−
√

1−4τ2l2

2l
y
1U1

(

1 + l − l√
1− 4τ2l2

, 2l + 2;

√
1− 4τ2l2

l
y

)

(5.19)

where τ2 = (E2 −m2
0v

4
0). The presence of the exponential damping factor can be clearly

noticed facilitating convergence in the region − 1
2τ < l < 1

2τ . We have thus solved the
problem completely.

6 Non-polynomial potentials

From equation (4.3), (3.8) and (3.9), we have for the two types of the wavefunctions the
respective effective potentials

V +
eff =

(

W 2 + vfW
′ − 1

4
v′f

2 − 1

2
vfv

′′
f

)

(6.1)

V −
eff =

(

W 2 − vfW
′ − 1

4
v′f

2 − 1

2
vfv

′′
f

)

(6.2)

Expressing W (x) in terms of an auxiliary function ζ(x) i.e. W (x) = ζ(x) − 1
2v

′
f , the

corresponding effective potentials take the forms

V +
eff = ζ2 − v′fζ + vfζ

′ − vfv
′′
f (6.3)

V −
eff = ζ2 − d

dx
(vfζ) (6.4)

These conform to the generalized forms of the partner effective potentials. It is interesting
to note that the following combinations of the LFV and the auxiliary function namely
respectively, vf = 8

2x2+1
and ζ(x) = x, provide for V −

eff potential

V −
eff = x2 + 8

2x2 − 1

(2x2 + 1)2
(6.5)

holding for the upper component. V +
eff is exactly in the same as the CPRS potential [51]

proposed a few years ago in the context of.... In the constant mass case, the potential (6.5)
supports the eigenvalues and wavefunctions

ξn = −3 + 2n, n = 0, 3, 4, 5.... (6.6)

Θ(x) =
Pn(x)

(2x2 + 1)
e−

x2

2 (6.7)
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where Pn(x) are given in terms of the Hermite polynomials Hn(x) by

Pn(x) =

{

1, n = 0

Hn(x) + 4nHn−2(x) + 4n(n− 3)Hn−4(x), n=3,4,5...
(6.8)

In Figure 1 a sketch of V +
eff is shown.

On the other hand, for the upper component we have

V +
eff = x2 +

8

(2x2 + 1)
+

32x2

(2x2 + 1)2
+

256

(2x2 + 1)3
− 2048x2

(2x2 + 1)4
(6.9)

To the best of our knowledge, this version of an extended non-polynomial potential is new.
It depicts a double-well potential. For the first two terms it conforms to the standard type
whose exact solutions are given by the confluent Heun functions. For a detailed account we
refer to [55]. The additional terms act as damping effects whose significance is insignificant.
The profile of (6.10) is sketched in Figure 2. Some remarks on the qualitative analysis are
in order. The local minimum points of this above potential is at xmin = ±0.964633 where
the values of V +

eff (xmin) = 3.74132 while the maixmum value V +
eff (xmax) = 264 which is

at xmax = 0.

Figure 1: CPRS potential(6.5). Figure 2: Double-well potential(6.9).

7 Summary

To summarize, we have investigated in this article a class of Dirac Hamiltonian against
the background of spatially-dependent mass and Fermi velocity. By converting to a pair
of coupled equations when the Hamiltonian acts on the two-component spinor, we find
that these equations resemble the corresponding PDM forms resulting from the von Roos
prescription of the modified Hermitian kinetic energy operator. By observing that the
underlying pseudoscalar potential also acting as the superpotential, we solve for several
classes of solvable systems that include the free particle, shifted harmonic oscillator, 1D
Coulomb and CPRS.
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