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Multiple Access Channels
Kamal Singh

Abstract—We consider the decentralized power optimization
problem for Gaussian fast-fading multiple access channel (MAC)
so that the average sum-throughput is maximized. In our MAC
setup, each transmitter has access to only its own fading coeffi-
cient or channel state information (CSI) while the receiver has full
CSI available at all instants. Unlike centralized MAC (full CSIT
MAC) where the optimal powers are known explicitly, the ana-
lytical solution for optimal decentralized powers does not seem
feasible. In this letter, we specialize alternating-maximization
(AM) method for numerically computing the optimal powers and
ergodic capacity of the decentralized MAC for general fading
statistics and average power constraints. For illustration, we
apply our AM method to compute the capacity of MAC channels
with fading distributions such as Rayleigh, Rician etc.

I. INTRODUCTION

The multiple access channel (MAC) is a commonly used

model to represent communication scenario where multiple

senders communicate to a common receiver, such as the uplink

channel of a mobile cellular network. The availability of the

CSI at the transmitters and receiver has a significant impact on

the achievable throughput rates of the fading MAC channels.

Under full CSI at the receiver and partial CSI at the trans-

mitters, the ergodic capacity region of a MAC with additive

white Gaussian noise (AWGN) and fast fading is completely

characterized by the optimal power control schemes [1]. An

intuitive justification for this property is that in a fast fading

scenario, each codeword experiences all possible fading real-

izations and thus, any rate close to ergodic capacity can be

achieved by choosing to transmit all codewords with the same

rate and optimal power strategies [2]. More precisely, Gaussian

codebooks with optimal power control achieves the ergodic

capacity region, see Figure 1. Depending upon the availability

of channel state information (CSI) at the transmitters and

receiver, the optimal power control strategy varies. In this

letter, we consider a fading MAC where each transmitter

knows only its own fading coefficients and the receiver has

full CSI. Further, we assume independent fading statistics,

with average power constraints not necessary identical, across

users. Also, we assume a fast fading model where the channel

varies IID (independent and identically distributed) in time.

The power and ergodic capacity problem of the decentral-

ized fading Gaussian MAC is a long-standing open problem

posed by Shamai and Telatar in [4] suggesting that analyt-

ical solution is not feasible. As an alternative, near closed-

form lower bounds on ergodic capacity are derived for the

identical user1 MAC channel using a simple heuristic ON-
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1Fading distributions and power constraints are identical across users.

OFF power scheme which further improve with number of

MAC users [4]. In [5], structural properties of the optimals are

derived to design suitable power schemes to further raise these

near closed-form lower bounds. More recently in [6], tight

numerical bounds (upper and lower both) to ergodic capacity

are obtained for the decentralized MAC for identical users

setting.

This letter is a first attempt to solve numerically the optimal

powers and ergodic capacity problem of the decentralized

fading MAC for general fading statistics and average power

constraints. Thus, in our study, the identical users MAC is a

special case. Our main contribution is a simple alternate max-

imization based numerical algorithm for optimal decentralized

powers and capacity where each of the partial maximizations

is solved utilizing the monotone structure of the optimals.

The organization of the letter is as follows. Section II

details the system model and the optimization problem to be

solved. In Section III, the computational algorithm for the

optimal powers based on alternating maximization approach

is explained followed by proofs of convergence and optimal-

ity. Numerical results for the decentralized fading MAC are

presented in section IV. Section V concludes the letter.

II. SYSTEM MODEL

Consider a L-user Gaussian fading MAC whose output is

given by

Y =
∑L

i=1
HiXi + Z,

where user-i transmit symbol Xi undergoes flat fading denoted

by multiplicative coefficient Hi . The additive noise Z is a

normalized AWGN process independent of Xi and Hi . The

fading processes Hi are assumed to be independent across

users and varies IID in time. In our decentralized model,

the fading coefficients Hi are known only to the respective

transmitters at all instants. The receiver has access to the full

CSI vector (H1, H2, · · · , HL ). We also assume that the fading

distributions are known a priori to all the transmitters and

the receiver. The i-th transmitter, using the available channel

state information hi (current realization of Hi), selects transmit

power of Pi (hi), see Figure 1. For convenience, with a slight

abuse of notation, we will use Pi to denote the power control

of the i-th user. For a chosen set of power schemes denoted

by (P1, · · · , PL ), the average ergodic sum-rate R , E
∑L

i=1 Ri

given by

R(P1, · · · , PL ) = E log

(

1 +
∑L

i=1
|Hi |2Pi (Hi)

)

, (1)

is achieved by employing successive cancellation decoding at

the receiver [3, Chapter 4]. Since Hi is known at the respective
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Fig. 1: Power control in Decentralized Gaussian fading MAC.

transmitter and receiver, the sum-rate in (1) depends only

on the fading magnitudes. Thus, we can replace |Hi |2 by

Vi and write Pi (Hi) as Pi (Vi), 1 ≤ i ≤ L. Our objective is

to maximize the sum-rate R over the set of power control

schemes Pi (Vi), 1 ≤ i ≤ L, satisfying power constraints

associated with the transmitters.

Definition 1. The ergodic sum-capacity Csum is the maximum

average sum-rate achievable [1], i.e.

Csum = max
(P1, ..., PL )∈P

E log

(

1 +
∑L

i=1
ViPi (Vi)

)

, (2)

where the maximization is over the set P defined as collection

of all power strategies satisfying E Pi (Vi) ≤ P
avg

i
, 1 ≤ i ≤ L.

Remark 2. Notice that the average power constraints are

linear and the objective function R is concave in powers

Pi, 1 ≤ i ≤ L. Furthermore, R is continuous and has

continuous partial derivatives. Also, it can be easily deduced

that the set P is a non-empty convex compact set.

We will use boldface letters to denote vectors. For example,

d is a vector with element di at position-i where di can be

either a scalar or a function. We also use the notation d
ĵ

to represent a vector containing all elements of d excluding

element d j . The joint distribution (CDF) is denoted by Ψ,

where Ψi denotes the marginal CDF of fading of user-i.

III. OPTIMAL POWER CONTROL

Since (2) is a convex program with a strictly feasible point,

KKT conditions are necessary and sufficient condition for the

optimal powers. We obtain the cost function

L ,
∫

log *
,
1 +

L
∑

i=1

viPi (vi)+
-

dΨ(v) −
L

∑

i=1

λi

∫
Pi (vi)dΨi (vi)

where the constants λi, 1 ≤ i ≤ L are Lagrange multipliers for

each of the power constraints. The derivatives with respect to

the power allocation functions has to be zero for optimality,

whenever non-zero power is allocated. Thus,∫ dΨ(v
ĵ
)

1 + vjPj (vj ) +
∑L

i=1,i,j viPi (vi)
=

λ j

vj
, 1 ≤ j ≤ L. (3)

The analytical solution of (3) for the optimal powers is

considered not feasible [4]. Next, we identify a key structural

property of optimal decentralized powers that enables the com-

putation of optimal powers and ergodic capacity numerically.

Theorem 3. The optimal power P∗
j
(vj ), whenever non-zero,

must be a monotonically increasing function of vj, 1 ≤ j ≤ L.

Proof: W.l.o.g consider the optimal power scheme say P∗
k

of user-k. Using (3), we have

vk

∫
dΨ(v

k̂
)

1 + vkP∗
k

(vk ) +
∑L

i=1,i,k viP
∗
i
(vi)
= λk, (4)

whenever P∗
k
> 0. Furthermore, consider any two values of

the fading variable vk say β > α such that positive powers

are allocated. Thus, we have

β

∫
dΨ(y)

1 + βP∗
k

(β) + y
= α

∫
dΨ(y)

1 + αP∗
k

(α) + y
, i.e.

∫ (

β

1 + βP∗
k

(β) + y
− α

1 + αP∗
k

(α) + y

)

dΨ(y) = 0. (5)

where
∑L

i=1,i,k viP
∗
i
(vi) is replaced by y for ease of represen-

tation. Rewriting the integrand in (5), we get∫ (

(β − α)(1 + y) + αβ(P∗
k

(α) − P∗
k

(β))

(1 + αP∗
k

(α) + y)(1 + βP∗
k

(β) + y)

)

dΨ(y) = 0· (6)

The integrand above is strictly positive for P∗
k

(β) ≤ P∗
k

(α),

thus violating (6). Therefore, P∗
k

(β) > P∗
k

(α). This completes

the proof.

Remark 4. Though we presented proof of monotonicity of the

optimal P∗
k

assuming that all remaining powers are optimal,

this is also true for the partially optimal say P̂∗
k

for any set

of feasible powers for the remaining users and can be proved

using reasoning similar to that in the proof of the Theorem 3.

Let us denote the integral on the LHS in (3) by f j (vjPj (vj )).

Corollary 5. For optimal Pj (vj ), f j (vjPj (vj )) is monotoni-

cally decreasing function of vj .

Proof: For the optimal case, by Theorem 3, vjPj (vj )

increases monotonically in vj and the corollary follows.

A. AM Algorithm

We now develop a simple numerical algorithm to solve the

joint optimization problem in (2) in terms of partial optimiza-

tions using the principle of alternating maximization (AM).

As we will later prove, the partial maximization can be solved

numerically using the monotone structure of the optimal. The

convergence and the optimality proofs are established in the

next sub-section.

The alternating maximization (AM) method maximizes R

w.r.t. each power scheme sequentially. To identify this, we de-

note the i-th user power by P
(n)
i

. The computational algorithm

is parameterized in terms of λi, 1 ≤ i ≤ L.

Algorithm Optimal powers for decentralized MAC

Initialization: Initialize λ j, 1 ≤ j ≤ L, small step-size δ,

approximation error tolerance ǫ . P
(0)
j
, 1 ≤ j ≤ L denote
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arbitrarily initialized powers obeying constraints. Set n = 1.

Repeat

For j = 1 to L

(a) Compute the partial maximization

P
(n)
j
= arg max

Pj

R(P
(n)

1
, · · · , P(n)

j−1
, Pj, P

(n−1)

j+1
, · · · , P

(n−1)
K

),

using the formula: P
(n)
j

(vj ) =
1

vj
f −1
j

(

λ j

vj

)

·

(b) Find P̄
avg

j
=

∫
P

(n)
j

(vj )dΨj (vj ).

(c) If


(

P
avg

j
− P̄

avg

j

)

> ǫ, then λ j = λ j + δ; goto step (a)
(

P
avg

j
− P̄

avg

j

)

< −ǫ, then λ j = λ j − δ; goto step (a)

End

n = n + 1

Until all the power constraints converge.

Notice that the algorithm outputs power schemes in the order

P
(0)

1
, P

(0)

2
, · · · , P(0)

K
, P

(1)

1
, P

(1)

2
, · · · , P(1)

K
, P

(2)

1
, P

(2)

2
, · · · , P(2)

K
, · · · ,

where each power in the sequence is the partial maximizer

in step (a) with the previously available powers fixed for the

remaining users. In the following corollary, we justify the

procedure for the partial maximization in step (a).

Corollary 6. The partial maximizer P
(n)
j

is solved by

P
(n)
j

(vj ) =
1

vj
f −1
j

(

λ j

vj

)

, 1 ≤ j ≤ L, (7)

where f −1
j

(·) is the inverse mapping of the f j (·) function.

Proof: Since for optimal Pj (vj ), f j (vjPj (vj )) is strictly

decreasing with vj , there is a one-to-one correspondence

between the RHS and LHS of (3) for every vj . Hence f −1
j

(·),
inverse mapping of f j (·), exists and the corollary follows.

Precisely speaking, for every vj , we compare the computed

integral f j (vjPj (vj )) with
λ j

vj
for different values of Pj (vj )

until the two values agree to the desired accuracy. This is

done using bisection method (linear convergence, rate 1/2) to

solve (3) for Pj (vj ). The algorithm repeats until convergence

(step (c)) with stop condition as |P avg

j
− P̄

avg

j
| < ǫ, 1 ≤ j ≤ L.

B. Convergence and Optimality

In general, alternating optimizations need not converge. We

now show that AM algorithm always converges to the global

optimal of (2). The proof follows a set of arguments similar

to convergence and optimality proofs of AM optimization for

convex objective function and convex constraints presented

in [8, Chapter 9] with appropriate modifications.

We define term “iteration" to indicate updating of all L-

user’s power exactly once from previously updated L-user’s

powers set. Let P(n) := (P
(n)

1
, P

(n)

2
, · · · , P(n)

L
) denote the

updated all powers set after iteration-n.

Lemma 7. There exists a constant R∗ such that

R(P(n)) → R∗

Proof: We describe the proof for L = 2 user case. The

extension to higher L is straightforward. For every run of the

algorithm, the ergodic sum-rate improves i.e.

R(P
(n−1)

1
, P

(n−1)

2
) ≤ R(P

(n)

1
, P

(n−1)

2
) ≤ R(P

(n)

1
, P

(n)

2
).

In short, R(P(n)) ≥ R(P(n−1)) holds for all n. Since the rate

sequence R(P(n)) is non-decreasing and bounded from above,

it must converge i.e. R(P(n)) → R∗ for some R∗ ≤ Csum.

In our main Theorem 9, we show that the AM algorithm

attains the global optimum irrespective of the chosen starting

or initializing conditions. Towards this end, we define

∆R(P) = R(Pnext ) − R(P),

where Pnext is the updated powers set after an iteration of the

AM algorithm using P as previous powers set. Thus, ∆R(P)

is the increment in R(P) after an iteration of the algorithm.

Corollary 8. If ∆R(P) = 0 for any P ∈ P, then Pnext = P.

Proof: The condition ∆R(P) = 0 implies there is no

increment in the sum-rate in each of the partial optimizations.

This, in turn, implies Pnext, j = Pj, 1 ≤ j ≤ L due to

uniqueness of solutions of partial maximizations i.e. each Pj

is the partial optimizer when remaining powers are fixed.

Theorem 9. The AM Algorithm converges to global optimum

i.e.

R∗ = Csum.

Proof: The proof consists of two parts: (1) showing that if

R(P(n)) < Csum for any power P(n) , then R(P(n+1)) > R(P(n))

i.e. the algorithm does not get trapped if R(P(n)) < Csum, and

(2) showing that R(P(n)) necessarily converges to Csum.

Part (1): If R(P) < Csum for any P ∈ P, then

R(Pnext ) > R(P) or ∆R(P) > 0.

The proof is by contradiction. Consider any P ∈ P such that

R(P) < Csum. Assume ∆R(P) = 0. Since R(P) < Csum, there

exists Q ∈ P such that R(P) < R(Q). Consider the direction

from P to Q, we see that

Q − P = [Q1 − P1, 0, 0, · · · , 0] + [0, Q2 − P2, 0, · · · , 0]+

· · · + [0, · · · , 0, 0, QL − PL].

Rewriting the above in unit vector form, we get

~u = α1~u1 + α2~u2 + · · · + αL~uL,

where ~u is unit vector along Q − P, ~u1 along [Q1 −
P1, 0, 0, · · · , 0], ~u2 along [0, Q2 − P2, 0, · · · , 0] etc. and

αi = ‖Qi − Pi ‖/‖Q − P‖, 1 ≤ i ≤ L are the scalars. The

rate of change of R(P) in the direction from P to Q is given

by

∇R(P) · ~u = ∇R(P) · (α1~u1 + α2~u2 + · · · + αL~uL ),

= α1∇R(P) · ~u1 + α2∇R(P) · ~u2 + · · · + αL∇R(P) · ~uL .

Consider the direction ~u1:

[Q1 − P1, 0, 0, · · · , 0] = [Q1, P2, P3, · · · , PL]

− [P1, P2, P3, · · · , PL].

Corollary 8 implies P1 maximizes sum-rate R for the fixed set

of remaining powers {P2, P3, · · · , PL }. Hence ∇R(P) ·~u1 = 0.

By similar arguments, ∇R(P) · ~ui = 0, 1 ≤ i ≤ L holds. Thus,

∇R(P) · ~u =
∑L

i=1
αi∇R(P) · ~ui = 0. (8)



1089-7798 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2018.2856240, IEEE

Communications Letters

4

0 2 4 6 8 10
1.5

2

2.5

3

3.5

4

4.5

Power P avg (dB)

C
s
u
m

(b
it
s)

Centralized
Decentralized

(a)

L = 4

L = 3

L = 2

0 2 4 6 8 10

2

3

4

5

6

Power P avg (dB)

C
s
u
m

(b
it
s)

(b)

Fig. 2: (a) Capacity result for L = 2 non-identical users decentralized MAC with normalized Rayleigh and Rician fading

i.e. dΨ1(h1) = 2h1e−h
2
1 dh1, dΨ2(h2) = 2h2(K + 1)e−h

2
2

(K+1)−K I0(2h2

√
K (K + 1))dh2 and E [h2

1
] = E [h2

2
] = 1. Solid curve is

capacity of the centralized MAC [7]. (b) Capacity results for L-identical users decentralized MAC with all fadings Rayleigh

distributed: Dashed curves are the desired capacity of decentralized MAC, dotted curves are near closed-form lower bounds

to decentralized MAC capacity obtained in [5] and solid curves represent capacity of centralized MAC [7].

Since sum-rate R is concave, it satisfies

R(Q) ≤ R(P) + ∇R(P) · ‖Q − P‖ ~u, ∀P ∈ P, ∀Q ∈ P,

which, with (8), implies R(Q) ≤ R(P) which is a contradic-

tion. Therefore, ∆R(P) > 0.

Part (2): Convergence to the optimal is not established since

the algorithm may produce increments ∆R(P) > 0 arbitrarily

small. We now prove that the sum-rate sequence indeed

converges to Csum. To this end, we recall, from Lemma 7,

that the sum-rate R(P(n)) converges to say R∗. Thus, for any

δ > 0 and for all n sufficiently large, we have

R∗ − δ ≤ R(P(n)) ≤ R∗. (9)

Let µ = min
P̃
∆R(P),

where P̃ = {P ∈ P : R∗ − δ ≤ R(P) ≤ R∗}. Recall that R(P)

is continuous and has continuous partial derivatives. Thus,

∆R(P) is also continuous. Since P̃ is inverse image of a closed

interval under continuous R(P) and P is compact, we conclude

that the subset P̃ is also compact. Thus, µ exists.

If R∗ < Csum, then ∆R(P) > 0 for all power schemes in P̃
(Part (1)) and hence µ > 0. Since R(P(n)) satisfies (9), P(n) ∈
P1. Therefore, ∆R(P(n)) ≥ µ holds for all sufficiently large

n. Since µ > 0, this implies ∆R(P(n)) > 0 for all sufficiently

large n suggesting that R(P(n)) eventually exceeds R∗, which

is a contradiction. Therefore, R(P(n)) → Csum.
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Fig. 3: Powers for L-identical users decentralized MAC.

IV. NUMERICAL RESULTS

We demonstrate the utility of the proposed algorithm for

Gaussian MAC with independent fadings across users and

average power constraints assumed identical for simplicity.

Figures 2 and 3 illustrate the ergodic capacity computed for the

non-identical & identical users MAC and the optimal powers

for the identical users MAC respectively. Here, we do not

pursue detailed convergence-rate and complexity analysis of

the AM algorithm due to lack of space but empirical estimates

suggest that its convergence rate slows down significantly by

several orders of magnitude with number of MAC users.

V. CONCLUSIONS

We demonstrated, for the first time, the numerical approach

based on alternating optimization principle to solve the decen-

tralized powers and ergodic capacity of Gaussian MAC for the

general fading statistics and power constraints. The proposed

algorithm is simple to implement but the computational com-

plexity increases with MAC users, thus rendering it useful for

MAC with moderate number of users. As future work, we look

forward to explore strategies to improve convergence rates of

our iterative AM algorithm.

REFERENCES

[1] A. Das and P. Narayan, “Capacities of time-varying multiple-access
channels with side information,” Information Theory, IEEE Transactions

on, vol.48, no.1, pp. 4-25, Jan 2002.
[2] G. Caire and S. Shamai, “On the capacity of some channels with channel

state information,” Information Theory, IEEE Transactions on, vol. 45,
pp. 1468-1489, 1998.

[3] A. El Gamal and Y.-H. Kim, Network Information Theory, Cambridge
University Press, 2011.

[4] S. Shamai and E. Telatar, “Some information theoretic aspects of
decentralized power control in multiple access fading channels,” in
Information Theory and Networking Workshop, IEEE, June 1999.

[5] K. Singh, S. R. B. Pillai, “Decentralized power adaptation in ergodic
fading multiple access channels,” in NCC, 2015.

[6] N. Mital, K. Singh and S. R. B Pillai, “On the Ergodic Sum-Capacity
of Decentralized Multiple Access Channels,” in IEEE Communications

Letters, vol. 20, no. 5, pp. 854-857, May 2016.
[7] R. Knopp and P. Humblet, “Information capacity and power control in

single-cell multiuser communications," ICC ’95 Seattle, pp. 331-335.
[8] R. W. Yeung, Information Theory and Network Coding. Springer Press,

2008.


