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Abstract

The sum of Wishart matrices has an important role in multicgenmunication employing multiantenna elements, such as
multiple-input multiple-output (MIMO) multiple access atnel (MAC), MIMO Relay channel, and other multiuser chdsne
where the mathematical model is best described using ramdatrices.

In this paper, the distribution of linear combination of qdex Wishart distributed matrices has been studied. Weeptes
new closed form expression for the marginal distributiorthad eigenvalues of a weighted sum &f complex central Wishart
matrices having covariance matrices proportional to tleatity matrix. The expression is general and allows for aetyo$ linear
coefficients.

As an application example, we have used the marginal digioibb expression to obtain the ergodic sum-rate capacityhie
MIMO-MAC network, and the cut-set upper bound for the MIM@IRy case, both as closed form expressions.

We also present a very simple expression to approximate uhe of Wishart matrices by one equivalent Wishart matrix.
All of our results are validated by means of Monte Carlo sietiohs. As expected, the agreement between the exact algenv

distribution and simulations is perfect, whereas for thpragpimate solution the difference is indistinguishable.

Index Terms

Sum of Wishart matrices, eigenvalue distribution, muéipiput multiple-output, ergodic sum capacity, Meijer-@étion.

I. INTRODUCTION
A. Random matrices and MIMO single-user relation

andom matrix theory has evolved into a truly multidisciplip subject with its applications in fields as varied as commu
R nication theory, quantum transport, quantum chromodyosnguantum information theory, string theory, econoptsysi
number theory, etcl[1]. It is possible to representaperators relevant to study physical systems in matrix form and use its
properties to tackle difficult problems. Communicationdheis one of the prominent areas on which random matrix theor
has had huge impact. Random matrices gained special aftentiwireless communication field after the works of Winters
[2], Foschini [3], and Telatar [4]. They have shown that tlse wf multiple antennas could enhance capacity in systetins wi
limited bandwidth. In all cases, mathematical tools for meas were employed for the analysis.

In Telatar's paper [4], the multiple-input multiple-outpgMIMO) point-to-point ergodic channel capacity has beeunrfd.
He has shown that instead of dealing with the joint probgbdiensity function of a Wishart distributed matrix [5], whi is
not easy to handle even for small dimensions, it suffices ¢atlis joint eigenvalue probability density function givendames
[6]. Such a simplification is possible in view of the unitgrihvariant nature of the channel capacity and other metrihich
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are usually employed to characterize the MIMO systems.tdedapioneering work was the first one to establish a conmect
between MIMO communication and random matrix theory. Sithes, there has been a great deal of interest in exploring and
comprehending the properties of Wishart matrices.

As a special case of Hermitian matrices, Wishart matricesedn scenarios where MIMO systems are subject to Rician
or Rayleigh fading. As indicated above, the performance dfMM systems can be statistically predicted with the aid of
eigenvalues distribution of Wishart matriceés [4], [7]. Fotample, the channel matrix in a MIMO system relates to a Wish
matrix, whose eigenvalue statistics then leads to the kenbgé of the ergodic capacity of the MIMO channel [4]. On theeot
hand, the distribution of the largest and smallest eigemvahn be used to analyze the performance of MIMO maximal rati
combining systems and MIMO antenna selection technigespectively([7]. In[[8], the authors have shown that the syimb
error rate (SER) performance of MIMO systems employing imliéinnel beamforming in arbitrary-rank Ricean channels is
dominated by the subchannel SER corresponding to the mmichannel singular value. Their results are based on margina
ordered eigenvalue distributions of complex noncentralh&fit matrices. Since in the slow fading scenario it is nasifde to
determine the ergodic capacity, a metric denominated eupaigbability is required to evaluate the system perforrad@g
The outage probability is related to the cumulative eigervalistribution function of a Wishart matrix|[4].[8]._[10Due
to physical nature of wireless channel and all possiblengements for antennas arrays, different types of Wishatticea
have been studied, such as central and noncentral, aggbeiéth Rayleigh and Rician fading, respectively; uncated,
semi-correlated, and double-correlated, associated twéhantenna correlation at the transmitter side and at teiver side

1], [12).

B. Extension for MIMO multiuser case

All the works previously mentioned are concerned with thevi@l single-user channel where the majority of the problems
are already solved or at least well understood [13]. Howdgethe MIMO multiuser scenario there exists many open [aois,
such as the general capacity for the MIMO Relay channel.

In a wireless multiuser channel, we are generally more ameckin the overall information rate (capacity) of the sgste
than the individual user rates as in the single user chaddelGh. 15]. In this way, we could define metrics associatal thie
joint users performance. We have, for example, symmetpaciédy and sum capacity. The former is the maximum common
rate at which both users can simultaneously reliably comoate; the latter is the maximum total throughput that can be
achieved|[9, pg. 230] and can be seen as a constraint thas lih@ individual rates of each user. Since sum capacityctsfle
an overall system performance, this metric is of great @gefrom analytical and practical points of view.

As can be inferred from the sum capacity name, to evaluagerigtric we have to add up the rates of each user. This
operation leads to a summation of Wishart matrices assatiaith each one of the MIMO channels involved in the multiuse
system. For example, this situation occurs in two well-knawltiuser channels: (i) MIMO multiple access channel (MAC
where K users with multiple transmit antennas communicate with destination also with multiple receiving antennas [15];
and (ii) MIMO Relay channel, where a MIMO transmitter comriaates with a MIMO receiver with the help of a MIMO

relay [16]. For MIMO MAC the sum capacity is a desired metric merformance [13]. For MIMO Relay, the sum capacity is



used to determine the cut-set upper bound on the channetitaffed].

C. On the Paper Contribution

Based on our discussion in the preceding section about timecsyacity, hereinafter, we will analyze this metric under
fast-fading Rayleigh distribution. Therefore, our aim asdetermine theergodic sum capacity for MIMO multiuser scenario.
Our idea is to use the framework identical to that of a singler case. It means that we wish to obtain the ergodic sum
capacity using the marginal eigenvalue distribution of shen of Wishart matrices.

For a single-user case, the probability density functiothefeigenvalues of a Wishart matrix was givenin [6], andeitnen
many advances have been achieved for the most variate ch®éstart distributions. More recently, results on the prod
of rectangular random matrices have appeared_ih [17] landdd® the authors have investigated ergodic mutual infaomat
in MIMO communication channel with multifold scatteringy Bontrast, the progress for the eigenvalues distributiothe
sum of Wishart matrices has not been going at the same pace.

Although the most well-known result for the sum of Wisharttritces dates back to 1960’s, it is valid only for the specific
case where all matrices have the same covariance matiixjd®much is known for the general case of arbitrary covagan
matrices. In[[20], the authors have considered linear coatilin of central Wishart matrices with positive coeffi¢gerrhey
have proposed approximating the distributions of the lirmambination by central Wishart distributions. Furthermdn the
context of multivariate Behrens-Fisher problem, a simélpproximation to solve the linear sum of Wishart matrices haen
given in [21]. Therein the authors have approximated the byma single Wishart distribution by determining the assetia
degree of freedom and the parameter matrix. A very recenk wothis direction is by one of the present authors, whereexa
matrix distribution has been computed for the sum of two \Afismatrices with arbitrary covariance matrices|[22]. Mver,
explicit result for the eigenvalue statistics has been wdrkut for the case when one of the Wishart matrices possesses
covariance matrix proportional to the identity matrix. hetpresent work we are concerned with the eigenvalue statistr
the sum of arbitrary number of central Wishart matrices witlvariance matrices proportional to the identity matrix.

For the MIMO MAC channel, the ergodic sum rate capacity hagenbeen obtained due to the lack of analytical results
for the joint eigenvalue probability density function ofnsiof Wishart matrices. However, the capacity with perfeciroiel
state information at receiver and transmitter (CSITR) sidevery well studied. With perfect CSIT and CSIR the system c
be viewed as a set of parallel non interfering MIMO MACs. Thilie ergodic capacity region can be obtained as an average
of these parallel MIMO MAC capacity regions (s€el[13] and tbkerences therein). Another approach is to obtain asytiopto
results on the sum ergodic capacity of MIMO MAC channels.sTéan be done by considering that the number of receive
antennas and the number of transmitters tend to infihity. [13]

In order to solve these and related challenging problemshawe proposed two distinct approaches that are presented in
Sectior1ll. The first approach is the derivation of an exdosed-form expression for the marginal eigenvalue distidn of
the sum of Wishart matrices. The main idea behind this smius to demonstrate that the matrix resulting from the wieidh
sum of K Wishart matrices can be rewritten as the product of a singirimmand its conjugate transpose. This resulting

Wishart matrix happens to correspond to a covariance matrigh incorporates the information about the weights. €fane,



its eigenvalue distribution follows from the pre-existikgowledge about Wishart semicorrelated matrices. Theval@win of

this result is given in Appendicés A ahd B. Our second propasdution is to approximate the sum &f independent Wishart
matrices by just one equivalent Wishart matrix. This apphoa based on the idea of equating the cumulants, as doh@jin [2
for the case of general covariance matrices. We have founthplesand compact closed-form expression to determine the
degrees of freedom of this equivalent Wishart matrix.

In order to show that our proposed solutions are valid, wesldnosen the two MIMO multiuser scenario described before,
viz. MIMO MAC and MIMO Relay. First, by considering an arlatly set of parameters, we show that the Monte Carlo
simulated eigenvalue distribution of the sum of Wishart nmat is perfectly described by our exact expression. Then,
apply our approximation to find an equivalent Wishart matard compare its eigenvalue distribution with the simulate
results. The results are promising.

Moving a step forward, we present in Section IV a new closwdhfexpression for the ergodic sum capacity. This exprassio
takes as input the exact eigenvalue distribution of the stivishart matrices or the approximate eigenvalue distrdrubf
the equivalent Wishart. We show that the analytical ergadin rate capacity matches the simulation results perfeatly
these results are shown in Sectigh V and give basis for ourlgsions presented in SectibnlVI.

Besides all the sections mentioned above, we present samdariiental definitions about Wishart matrices in Sedtibn II.

Il. PRELIMINARIES

In this section we begin with the definition of complex Wighdrstribution, which depends crucially on variance and
degrees-of-freedom parameters. These are then used toumbrise matrix model of our interest, namely the weighteh ©f
central Wishart matrices. This, in turn, is used in latertisas for derivation of the probability density functiondarelevant
metric for our problem.

Given a randomm;-dimensional non-negative definite matrix with degrees of freedorW; € C™*™:. The distribution
law of W,

Pw, (W;) oc det(W;)P* "™ exp (— tr 2, 'W;), 1)

is calledcomplex central Wishart distribution [6], [23], and is denoted by

Here,3; is the covariance matrixiet(-) and t(-) represent determinant and trace operators, respectindlye following we
will considerX; = ¢71,,,,, wherel,,, is the identity matrix of dimensiom;.
ConsiderK independent matrices with the distribution given by (2). We interested in the eigenvalue statistics of the

weighted sum of thes& matrices normalized by their respective degrees of freeddm
K @
W = —~W; )

wherea; € RT. Note that the above sum is possible only if the's are identical, sayn.



It is known for the general case NV = Zfil W, with W; ~ W,,.(p;, ), that W ~ Wmi(zif;pi,z); see [19,
Theorem 7.3.2.]. On the other hand, if the covariance medt;'s are not proportional to identity matrix, then obtainirgpt
distribution of W and its eigenvalues is nontrivial; see for examplé [22]. e, if 3;'s are proportional to identity matrix,
then as shown in appendid AV actually corresponds to a semicorrelated Wishart diseibecase [24].

For the scenarid; « I,,, without loss of any generality we may considgf = ¢2I,,, as differents; values can be

absorbed imH. Let us define

vi = (ai/pi)o?, i=1,..,K; 4)
K

p= Zpi- (5)
i=1

With these definitions we now present the exact as well asoappate solution concerning the eigenvalue statistic3\of

IIl. PROPOSEDSOLUTION

This section presents our contribution to determine thereiglue distribution for the weighted sum &f Wishart matrices,
as defined above. First, we present a new exact closed-fgonession. Then, we propose an approximation that replaees t

weighted sum ofi’ Wishart matrices by an equivalent matrix.

A. Exact closed-form expression for the marginal eigenvalue distribution

The main result of our paper is given in the following proposition.

Proposition 1: The marginal density of eigenvalues W defined in [(B) is given by

0 [f.'l(vla/\)] 1= . [f (UKv)‘)]' =
Py(A) = cdet ’ her " Sl ()
9iNiz1 p i (V)] =1, (Pire jac (V)] ixe=1,....p
Ji=1,...,p1 jrk=1,...pK

The entriesf;(v, \), g:(\), h; j(v) inside the determinant in the above expression are respicgiven by

Fi(0,\) =T(j) o7 ™ exp(—A/v) L7V (A o), 7)
gi(N) = A" (m — i+ 1), ®)
hij(v) = % v ()]

HereT'(-) is the Gamma function given biy(z) = [, t*~'e" dt, andL{" (x) are the associated Laguerre polynomials [25,
eq. 22.5.38]. The normalizationin (@) is obtained using
¢t = —mdet [[hil W) i=1p o [Pk (VK)] ik=1,p |- (10)
Ji=1,...,p; Jr=1,....pKk
Proof: See Appendix A.

1o may also be absorbed iy. Therefore,W; corresponds essentially to ancorrelated Wishart case.



B. Approximation for Sum of Wishart matrices

Proposition 2: Given the weighted sum ok Wishart matrices normalized by their respective degreeseadom as[(3),

we propose the following approximation

Wzsw, (11)

whereS ~ CW,,. (ps, Bs), s = 021, andp, given by

K\
o= (2;7_) , 12)
i=1 p;

with |-] representing the nearest integer operator.

Proof: The rationality for the approximation is as follow. The egfesl value ofW; given in [2) is given by[[23],[[26]
E[W,] = p; %, (13)
The variance of the main diagonal elements are giveri_by [26]
varW;(j, j)] = pia*, (14)

where we have dropped the subscriptooés explained before.

Also, the expected value aV in @) is given by

) K ) K K
%W1‘| = ZCLZ&Z:l = ZCLZEZ = 0'21m Z a;, (15)
Di - P i=1 i=1

and the variance of the main diagonal elements is given by

K

=1

E[W_E[

K K
varfW (3, j)] = var lz a—Z:WZ-(j,j)] = Z %pigﬁl — ot Z a_ (16)

i=1 4"
Notice that the expectation value of RHS pf(11) is given by
S ai i i
E gs (Y] ls, =01, Y a, 17)
Ps i=1 s i=1
and the variance of the main diagonal elements is given by

[MSQ,]’)] —a4pSM 4M (18)

var =0
Ps

pg Ds

Here, we call attention to the similarities of results [of ) B5d [17), as well ag (16) and_{18). Therefore, it is posdible
state a relation between the degrees of freedom of difféhésihart distributions by equating_(116) arid(18) and obtajrthe
closed-form expression fqr, given by [12). Also, since, is related with the number of columns of ti$g it should be an

integer number, and this is why we have to apply the nearésgén operation in_(12).



IV. APPLICATION

Generally, a single user communication under fading canmtithas a received signal expression given[by [9, (5.86)]
y=hx-+z (19)

wherez ~ CN (0,1) is the noisex is the Gaussian distributed input signal with power comstrix||? < a;, andh is the
channel gain. Herein, we assume~ CN (0,02), therefore, the channel is under Rayleigh fading. Now, ssppthat the
source hasV/; transmitting antennas, and the destination Nageceiving antennas. Hence, the wireless channel is destrib

by the complexV; by M; random matrixH;, and the received signal is given hy [9, (7.1)]

wherez ~ CN (0,1,,,,) is the white Gaussian noise vector at a symbol time (not shese by simplicity),x € CA, and
y € CNNi. The entries ofI; are h,;, with 1 < < N, and1 < ¢t < M;. Define a matrixW; as [4]
HH N, <M,

W, = (22)
H/H; N; > M,

wheret denotes the transpose conjugated matrix operator. H&NGgehas real, non-negative eigenvalues| [27]. The madix
is distributed as[{2) witlp; = max(M;, N;) andm; = min(M;, N;).

Telatar has shown in his canonical papér [4], that the emyoapacity for the system described byl(20) is given by

C =Ew, [log2 det <Imi + %WZ)] = mi/ logy (1 + A)Pa(A) dA. (22)
i 0

K3

where Py () is the the marginal density of eigenvalues. Since in thiskwee are interested in multiuser scenario instead of

a single user described above, we should adapt the capagistiens for a multiuser case.
The first scenario is the MIMO MAC depicted in Flg. 1. The chaincapacity for a MIMO MAC network withK" sources
and one destination under Rayleigh fading is given[by [13]

K
log, det (Im + Z &Wl)}

=1 Pi

Cwac = Ew,

= Exy [log, det (I,, + W)]

Ew [tr log, (Im + W)} (23)

where we have used first the equality giver(ih (3), and theptoperty of matrices that asserts that(exp(A)) = exp(tr (A))
[28].
In order to solveCyac given in [23), we can use the eigenvalue distribution give(@) to obtain a closed-form expression

for the ergodic sum rate capacity given [in](25) with the appiated parameters of the Wishart matrices given in the lprob



H,
M,

[}
P

H2 -

N
-

Fig. 1. System Model of MIMO MAC channel. The destination (Bjuipped withN, receiving antennas, receives signal frdih sources, each one
equipped withM; transmitting antennas, with=1,..., K.
statement. In terms of the marginal density()\) of eigenvalues oW, we can write
o0
Cvmac = m/ P)\O\) log2(1 + /\) d\. (24)
0

As shown in the appendices, an exact closed form expressiotné ergodic capacity can be obtained in determinantah for

involving Meijer-G functions, and is given by

Cvwac = —mc Z det [[wff)Jl ()] ii=1,p - Wh(ﬁi)gx Wil in=t,.p | (29)
p=1 j1=1,...,p1 Jre=lypx
wherewff;)(v) is given by
gi,j (’U), 1= 122
o) (v) = .
hi J(U)7 i 7& H
with
vi7L 3,2 0,i=1,3 L
o) @ 2. (27)
P )Tm =i+ )T |

andh; ;(v) as in [9).
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Fig. 2. System Model of MIMO relay channel. The source (Syimoed with M, transmitting antennas, wants to communicate with the mi#tin (D),
equipped withN, receiving antennas. The relay (R), equipped with and N,. transmitting and receiving antennas, respectively, coolthborate in this
communication.

On the other hand, by using the proposed approximation givgfl), (23) becomes

K
Cvac = Ew, |log,det (Im + Z ﬂVVZ>‘|
i—1 Pt
K
~ Eg l10g2 det (Im + MS)] (28)
Ds

Hence, we can us€é€_(R5) withh = p, anda; = Zfil a;, and then se = 1 to obtainCyac.

Now, let's turn our attention to the MIMO Relay channel shoinrFig.[2. This channel can be viewed as a composition
of a MAC and broadcast channel (BC) wilti = 2. Suppose that the channel gains are known at the corresgpretieivers
only (CSI). In this scenario, an upper bound on the ergodpaciy of the MIMO relay channel is given by [16, Theorem
4.1]

Cupper= min(Cgc, Cmac) (29)

where
aq as
Cec = Ew, [10g2 det <Imi +—=W; + —Wz)] , (30)
P1 D2

andCwac as in [23). Notice thafpc is similar toCuac given in [23). Therefore a similar procedure can be impletetbiho

obtainCgc.

V. NUMERICAL RESULTS

In this section we have obtained numerical results for tieeed form expressions and for the proposed approximatios. T
results are compared with Monte Carlo simulations to vadidhe analytical expressions. For each one of the simulgtio
40,000 channel realizations were performed. In all cabesetis a perfect agreement between analytical and sironlegsults.
We have chosen three arbitrary scenarios and one well-kisoemnario from[[16].

Consider a MIMO MAC scenario shown in Figl 1 wifli = 5 users, each one with/; = 4 transmitting antennas, where
i =1,..., K. Destination node D had/; = 4 receiving antennas. The normalized signal to noise rdtigs at destination

were arbitrarily chosen, and are shown in Tdble | (Case I Marginal eigenvalue distribution is shown in Fig. 3. Netibe
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TABLE |
SIMULATION PARAMETERS AND RESULTS FORC

Ergodic Sum Rate Capacity (bits)
Case| a; (dB) MIMO Ps Simulation | Analytical | Approximation
a; = 19.8
as = 29.5
I a3 =29.8 | 4x4 13 44.20 44.20 44.15
as = 26.1
as = 21.7
a; = 28.3
a, =17.7
asz = 26.5
a4 = 27.3
Il a5 = 29.3 8x 8 51 93.86 93.86 93.85
ag = 21.5
a7 =19.5
ag = 27.9
ag = 9.3
ajp = 24.3
a1 = 9.7
1] as =176 | 2x2 | 3—4 10.94 10.94 11.01
az = 167
0.0004f ]
[ Simulatior
0.0002" —Bxac ]
= r === Approximatior |
5 b 4
& 0.0002; 1
0.0001 1
0.000Ck=L LT TH T T T e e ]
0 2000 4000 6000 8000
A

Fig. 3. Marginal distribution of eigenvalues &V for Case | (see Tablg I). Simulation results are in perfece@ment with the closed form analytical
distribution (red line). The distribution for the proposagproximation, shown with blue dashed line, is also vergeltm the exact result.

perfect agreement between the simulation and analytisaltse The approximate ergodic sum rate capacity was alsipuated
using the equivalent matri® (with p; = 13 degrees of freedom) and is shown in the last column of Tablé eigenvalue
distribution for the approximation is also shown in Higj. 3tBlhow close the approximation and the ergodic sum ratecitgpa
are to the exact values.

In the next scenario we have increased the number of useks t610 with MIMO 8 x 8. The a; coefficients are given
in Case Il of Tabld]l. Notice again in Fi§l 4 a perfect matchalgsn analytical and simulation results. The ergodic caypaci
results also agree, as can be seen in Table I. The eigenvialiibwtion from the approximation is shown in F[d. 4 as well

Now let us move on to a more involved scenario depicted in BigThe ergodic capacity was originally calculated in
[16] using convex programming. The parameters used arectéepin Case Il of Tablé]| and the plot for the eigenvalue
distribution is given in Fig[15. Fig.16 shows the eigenvalugtribution for the MAC channel with the following paramete

(a2 = 17.6, a3 = 16.7). The upper bound on ergodic capacity, as mentioned befordei minimum of the capacity of BC
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Fig. 4. Marginal distribution of eigenvalues 8 for Case Il (see Tablg I). Simulation results match perfeaith the closed form analytical distribution
(red line). The distribution for the proposed approximatie also shown using blue line.
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Fig. 5. Marginal distribution of eigenvalues 8 for Case Il (BC). Simulation results are in perfect matchhwthe closed form analytical distribution

(line).

and MAC, as given in Tablg I.

Besides the Case Ill, we have also reproduced the scenasa gi [16, Fig. 5] for MIMO Relay channel. This scenario is

well known because the upper bound and the lower bound “ecgeterhat is to say, the ergodic capacity of the MIMO relay

channel over Rayleigh fading can be characterized under this SNR condition [16]. The constraints for this scenario are= as,

a1 = 10a2, and0 < as < 30 dB. The ergodic capacity results for Monte Carlo simulatiord the proposed approximation

Py\(1)

0.008-
0.006-
0.004-

0.002-

0.000:/ . .

Simulatior

—— Analytical

50 100 150 200 250 300 3

A

50

Fig. 6. Marginal distribution of eigenvalues 8 for Case Il (MAC). Simulation results match perfectly witte closed form analytical distribution (line).
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Fig. 7. Ergodic Capacity Upper Bound versas with constraintsas = a2 anda; = 10a2. Based on[[16, Fig. 5]. The simulation results are in perfect
agreement with the analytical results obtained with theppsed approximation.
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0.1

Error (%)

0.01
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ar/az (dB)

Fig. 8. Error of approximation versus weight rati@ /a2 andaz = 5.

are given in Fig[]7. Notice again the perfect agreement ofrd¢iselts.

The results in Tablg | and in Figl 7 show that the proposedagipration results in a very small difference from the exact
result for all mentioned scenarios. Since the approximatiepends on the weight factor of each matrix, or in other word
depends on the SNR of each channel, it would be interestirigvistigate cases where these weight factors varies[Fig. 8
shows the percentage error as the ratiga, varies from 0 to 15 dB. Note that the error is less théh for 0 < aq/as < 2

andai/ag > 7.

VI. CONCLUSIONS

In this work we uncovered a one to one correspondence betireemeighted sum of arbitrary numberwicorrelated central
Wishart matrices and a single semicorrelated Wishart mdtising this observation we presented a closed form exjore$sr
the marginal distribution of the eigenvalues for the wedghsum of X' complex central Wishart matrices. To the best of our
knowledge this problem has not been tackled before. Herenthtevation for establishing a result emerged from the mskr
information theory area. However, since Wishart matrickesy grucial role in diverse fields, we believe that our resulte
relevant to these as well. We would like to remark that it sogbossible to obtain results for the joint probability dgnef
all eigenvalues, and correlation functions involving digition of two or more eigenvalues.

We applied our new closed-form expression for analyzing étgodic sum rate capacity of MIMO multiuser channels.
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Moreover, we also derived a closed form expression for tgedic channel capacity and used it to obtain the capacities f
MIMO MAC and MIMO Relay channel. Besides the closed form éx@gression for marginal distribution, we also proposed
an approximation that is very simple and presents promisgsglts when used to obtain ergodic sum capacity. In aduitio

we confirmed the validity of all our analytical expressiorysNMonte Carlo simulations.

APPENDIXA

MAPPING TO A SEMICORRELATEDWISHART DISTRIBUTION

Considerp; x m dimensional complex matricdd;, i = 1, ..., K, from the normal distribution:
Py(H,) x exp (tr Hizlej) : (31)

whereX,; = ¢21,,. Thenm x m-dimensional matrice3V, = HjHl are respectively from the complex-Wishart distribution

given in [2). The matrixW can be written as

K K
LSS R (;1) H,
=1 i=1

aq - -
p—llpl 0o - 0 H,
0 %Im ce 0 H,
= [HI H) ... H}(} P _
aK
0 0 1;11,,( | H |
= H'DH = G'G. (32)
We defined here
H' = [Hg " H}(] , (33)
D - diag |1, 251, | (34)
G =D'/?H. (35)

With the above information it is clear th& satisfies the distribution
Pg(G) x exp[—tr (GTV~IG)], (36)

whereV = diag[vi1,,, ..., vk I, ], with v; (andp) as defined in[(5). Therefore, we are looking essentially sgraicorrelated
Wishart case, with the diagonal-covariance matrix pogsgsome equal-value entriesfltiplicities/degeneracies). Thus, the
problem boils down to determining the eigenvalue staistitG'G. We start with the case of a diagonal covariance matrix
with unequal entries along the diagonal, i.e., we will 0&e= diag(1, ..., 0p) in the above distribution instead &f, work

out the results for this case, and eventually take adequmiis lto obtain the case ov.

For the semicorrelated Wishart matrices, exact resultfembarginal density of eigenvalues is available from sévertable
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works [29]-[32]. We use here the form derived In[31]./[32brGiderp x m dimensional complex matrice& taken from
the distribution[[3B), but with the covariance mathx as defined above. The marginal densitypodigenvalues ofGG', for

p < m, is given to be

1 i Lzl »»»»» Pl (37)

0 {CXP(T)\/@‘)

Py(\) = —————det

>\() pAp({ffl}) € [ ym—i } [{;?”1
=1 p :

T'(m—i+1) _

Here A, ({67'}) = det[o; '] =[], (6; ' —&; ') is the Vandermonde determinant. SirGéG and GG' share the same
nonzero eigenvalues, the above result holdgfor m as well, with the factop appearing in the denominator of the prefactor
replaced bym. Moreover, in this case the bottom— m entries of the first column in the determinant comprise djey
gamma function in the denominator, and hence become zero.

We now use the relatioi (22) to derive the ergodic channedcip To this end we expand (37) using the first column and

obtain
m I [exp(:i\/@j)}
Px(A) = —% Z(—l)“)\il det Ulj J=Lp (38)
m A ({071 = Flm = p+1) [07  ij=1,ep
(i#n)

Next we bring in theA™ #/T'(m — p 4 1) factors occurring before the determinants to the respediist rows, i.e., with

exp(—A/9;)/97". This gives

X . [F(Am*“ S CXP(*A/ﬁj)}
m—pu+ o3 i=1
PO = S e LT e )
mA,({071}) =1 I:ﬁl;l+1j|i7j:17...,p

(i#p)
The above equation serves as yet another expression forargnal density.

For ergodic capacity we use_{22) and obtain the followingresgion by interchanging theintegral and the summation:

m

1 L[
c_—mZ(—U/O dX | det

pn=1

[F(ww . exp(=A/9;)
m—pu+ om
e log, (1 + A). (40)
[0 ii=1,.p
' (i#p)

The A-integral can be brought into the first row of the determinafdng with the factotog,(1 + A) to yield

1 m [glt,j(ﬁ)]jzl,...,p
C=— N7 (—1)"det , , 41
A 2T ey )
(i#p)
where
P e ATmTH exp(—\/0;)
gw(v)_/o T Y (42)

This integral can be expressed in a closed form with the aill@fer-G function [33]. This is facilitated by consideririge
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following special cases of Meijer-G functions:

- 1,1
Gé:? 2| = 2Pz, G;g Tz | =In(1 + 2), (43)
B 1,0
We also use the convolution integral satisfied by Meijer-@ction:
oo al...ap Cl ...CU
/ dz G 7 nz | GLY 7 wz
0 by, - by di, -+ d-
—lGn+“7m+V _bla"' 7_bmaclv © Co, _b’m+17"' s _bq w (44)
- q+o,p+T n
—Q1, -, —0np, dla "'d‘ra —An41, ", —Qp
— 1 m~+v,n+up a1, " 0n, _dl’”' _dT’anJrl’”"ap n
=, Uptrato -
w w
bla"'ab’mv_cla"'_Ca’vbm+17"'abq

The restrictions on the indices for this integration forenaan be found in [33]. Therefore, we obtain a closed form esgion
for G, ;(0) as given below in[(47). Afterwards we perform row interchesiqn the determinants to brirgg, ; in the respective

uth row. This leads to the removal ¢f1)* factor. Consequently, we arrive at the following expresdir ergodic channel

capacity:
1 m
C=———= det [ (0)] . (45)
det[vjl- ij=1,...p ; J i=1,.,p
Here
gi-, ({))a 1=HU
p @) =4 (46)
b, i
with
. 1 3,1 t—1,4 1
7.7 == " G K e . 47
g,](v) (ln2)F(m—z+1) 2,3 Z’_Li_l’m o ( )
APPENDIX B
PROOFS FOR EQUATIONSB) AND (25)
To obtain equationd [6) an@ (25) we need to assigh= ... = Uy, = V1;0p, 41 = .. = Vp, = V25 ;Vppe_ 41 = oo =

px = Vi in (31) and [4b). However, direct substitution of these galmakes the determinant in the numerator, as well as
the determinant in the denominator to become zero. Tharefee must carry out this substitution in a limiting manner, a

described below.
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Let us pay attention to the columns involving upppin (@47). The ratio of the determinants appears as

0 ~—1\m vl EDY ~—1\m 112 DY o {)71 me{;;:)\
aet| (017) (0 )_ (pl)_
m (,Dl—l) —1 (62—1)171 o (f);ll)zfl (48)
ety @
Consider forj = 2,...,p1, ;' = 4; ' +; with small §;, and Taylor-expand up t6/ "
Jj—1 67‘ ar L
(65 1)me™ 2 Z rl ooy Ail)mevl g
r=0
.j_l 6 8T
A—1\i—1 ~—1
(Uj ) ~ TJ, W(’Ul )
Now, applying adequate column operations we obtain
Iym o7 'A 3 8 a—lvm 57 1A SN 9t lvmoaT A
det 0 | (Ul ) e 1!(?({)]1)(111 ) el (j_;j)ila—(ﬁfl)‘j,; (Ul ) el
A —1yi—1 8 (a—1lyi-1l i o s—1yi—1
Tim—i+1) (97 ) EEICh) (91 7) e G-D 9, )it (91 7)
det (A—l) 5 _ 0 (A—l) 5! o7t (A—l)ifl “9
o, H) V1 o GDlage, D\

The factors containing; and factorial can be canceled out after being pulled out efdablumns, both from numerator and

denominator. Therefore, we are left with

A—1\m o7} Aa—1ym o1 j—1 —1ym o1
det ’ (orh)men * gamm (O )men A gaEr (87t
e
m—1i _ o i 1 L
F(:r\zfiJrl) (07 1) -1 6(%1)(1}1 1) 1 a(gﬁ(vl 1) -1 50
H1yi— A—1yie o1 1
det | (o)1 8(%1)(”11) Lo W(vll) 1

We haveﬁ( 1)t = (D(#)/T(E —r + 1))(d; )"~". The derivatives ofd; Hyme?r A can be evaluated with the aid

of Rodrigues’ formula for the associated Laguerre polyrads)i

2 Ber Ok
k! 0zF

LECB)(Z) = (zkﬂ;efz) , (51)

using adequate scaling of the variables. By implementinglai steps for rest of the columns, we arrive[dt (6).

Similar steps can be used to arrive [afl (25), starting frlon). (#Be derivative of Meijer-G follows from the result

» 0" ai, az 0, a1, as
S G 2| =633 2, (52)
b17 b27 b3 b17 b27 b3a r
which is a special case of the following more general idgr88]:
Tar m,n ai, =+, Qp m,n+1 Ovala"'vap
Oar P 2 =Gl g - (53)
bi, -, by bi, -+, by, 7
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