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On the Exact and Approximate Eigenvalue
Distribution for Sum of Wishart Matrices

Santosh Kumar, Gabriel Fernando Pivaro, Gustavo Fraidenraich, and Claudio Ferreira Dias

Abstract

The sum of Wishart matrices has an important role in multiuser communication employing multiantenna elements, such as

multiple-input multiple-output (MIMO) multiple access channel (MAC), MIMO Relay channel, and other multiuser channels

where the mathematical model is best described using randommatrices.

In this paper, the distribution of linear combination of complex Wishart distributed matrices has been studied. We present a

new closed form expression for the marginal distribution ofthe eigenvalues of a weighted sum ofK complex central Wishart

matrices having covariance matrices proportional to the identity matrix. The expression is general and allows for any set of linear

coefficients.

As an application example, we have used the marginal distribution expression to obtain the ergodic sum-rate capacity for the

MIMO-MAC network, and the cut-set upper bound for the MIMO-Relay case, both as closed form expressions.

We also present a very simple expression to approximate the sum of Wishart matrices by one equivalent Wishart matrix.

All of our results are validated by means of Monte Carlo simulations. As expected, the agreement between the exact eigenvalue

distribution and simulations is perfect, whereas for the approximate solution the difference is indistinguishable.

Index Terms

Sum of Wishart matrices, eigenvalue distribution, multiple-input multiple-output, ergodic sum capacity, Meijer-G function.

I. I NTRODUCTION

A. Random matrices and MIMO single-user relation

Random matrix theory has evolved into a truly multidisciplinary subject with its applications in fields as varied as commu-

nication theory, quantum transport, quantum chromodynamics, quantum information theory, string theory, econophysics,

number theory, etc. [1]. It is possible to represent theoperators relevant to study physical systems in matrix form and use its

properties to tackle difficult problems. Communication theory is one of the prominent areas on which random matrix theory

has had huge impact. Random matrices gained special attention in wireless communication field after the works of Winters

[2], Foschini [3], and Telatar [4]. They have shown that the use of multiple antennas could enhance capacity in systems with

limited bandwidth. In all cases, mathematical tools for matrices were employed for the analysis.

In Telatar’s paper [4], the multiple-input multiple-output (MIMO) point-to-point ergodic channel capacity has been found.

He has shown that instead of dealing with the joint probability density function of a Wishart distributed matrix [5], which is

not easy to handle even for small dimensions, it suffices to use the joint eigenvalue probability density function given by James

[6]. Such a simplification is possible in view of the unitarily-invariant nature of the channel capacity and other metrics which
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are usually employed to characterize the MIMO systems. Telatar’s pioneering work was the first one to establish a connection

between MIMO communication and random matrix theory. Sincethen, there has been a great deal of interest in exploring and

comprehending the properties of Wishart matrices.

As a special case of Hermitian matrices, Wishart matrices arise in scenarios where MIMO systems are subject to Rician

or Rayleigh fading. As indicated above, the performance of MIMO systems can be statistically predicted with the aid of

eigenvalues distribution of Wishart matrices [4], [7]. Forexample, the channel matrix in a MIMO system relates to a Wishart

matrix, whose eigenvalue statistics then leads to the knowledge of the ergodic capacity of the MIMO channel [4]. On the other

hand, the distribution of the largest and smallest eigenvalue can be used to analyze the performance of MIMO maximal ratio

combining systems and MIMO antenna selection techniques, respectively [7]. In [8], the authors have shown that the symbol

error rate (SER) performance of MIMO systems employing multichannel beamforming in arbitrary-rank Ricean channels is

dominated by the subchannel SER corresponding to the minimum channel singular value. Their results are based on marginal

ordered eigenvalue distributions of complex noncentral Wishart matrices. Since in the slow fading scenario it is not feasible to

determine the ergodic capacity, a metric denominated outage probability is required to evaluate the system performance [9].

The outage probability is related to the cumulative eigenvalue distribution function of a Wishart matrix [4], [8], [10]. Due

to physical nature of wireless channel and all possible arrangements for antennas arrays, different types of Wishart matrices

have been studied, such as central and noncentral, associated with Rayleigh and Rician fading, respectively; uncorrelated,

semi-correlated, and double-correlated, associated withthe antenna correlation at the transmitter side and at the receiver side

[11], [12].

B. Extension for MIMO multiuser case

All the works previously mentioned are concerned with the MIMO single-user channel where the majority of the problems

are already solved or at least well understood [13]. However, for the MIMO multiuser scenario there exists many open problems,

such as the general capacity for the MIMO Relay channel.

In a wireless multiuser channel, we are generally more concerned in the overall information rate (capacity) of the system

than the individual user rates as in the single user channel [14, Ch. 15]. In this way, we could define metrics associated with the

joint users performance. We have, for example, symmetric capacity and sum capacity. The former is the maximum common

rate at which both users can simultaneously reliably communicate; the latter is the maximum total throughput that can be

achieved [9, pg. 230] and can be seen as a constraint that limits the individual rates of each user. Since sum capacity reflects

an overall system performance, this metric is of great interest from analytical and practical points of view.

As can be inferred from the sum capacity name, to evaluate this metric we have to add up the rates of each user. This

operation leads to a summation of Wishart matrices associated with each one of the MIMO channels involved in the multiuser

system. For example, this situation occurs in two well-known multiuser channels: (i) MIMO multiple access channel (MAC),

whereK users with multiple transmit antennas communicate with onedestination also with multiple receiving antennas [15];

and (ii) MIMO Relay channel, where a MIMO transmitter communicates with a MIMO receiver with the help of a MIMO

relay [16]. For MIMO MAC the sum capacity is a desired metric on performance [13]. For MIMO Relay, the sum capacity is
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used to determine the cut-set upper bound on the channel capacity [16].

C. On the Paper Contribution

Based on our discussion in the preceding section about the sum capacity, hereinafter, we will analyze this metric under

fast-fading Rayleigh distribution. Therefore, our aim is to determine theergodic sum capacity for MIMO multiuser scenario.

Our idea is to use the framework identical to that of a single-user case. It means that we wish to obtain the ergodic sum

capacity using the marginal eigenvalue distribution of thesum of Wishart matrices.

For a single-user case, the probability density function ofthe eigenvalues of a Wishart matrix was given in [6], and since then

many advances have been achieved for the most variate cases of Wishart distributions. More recently, results on the product

of rectangular random matrices have appeared in [17] and [18] and the authors have investigated ergodic mutual information

in MIMO communication channel with multifold scattering. By contrast, the progress for the eigenvalues distribution of the

sum of Wishart matrices has not been going at the same pace.

Although the most well-known result for the sum of Wishart matrices dates back to 1960’s, it is valid only for the specific

case where all matrices have the same covariance matrix [19]; not much is known for the general case of arbitrary covariance

matrices. In [20], the authors have considered linear combination of central Wishart matrices with positive coefficients. They

have proposed approximating the distributions of the linear combination by central Wishart distributions. Furthermore, in the

context of multivariate Behrens-Fisher problem, a similarapproximation to solve the linear sum of Wishart matrices has been

given in [21]. Therein the authors have approximated the sumby a single Wishart distribution by determining the associated

degree of freedom and the parameter matrix. A very recent work in this direction is by one of the present authors, where exact

matrix distribution has been computed for the sum of two Wishart matrices with arbitrary covariance matrices [22]. Moreover,

explicit result for the eigenvalue statistics has been worked out for the case when one of the Wishart matrices possesses

covariance matrix proportional to the identity matrix. In the present work we are concerned with the eigenvalue statistics for

the sum of arbitrary number of central Wishart matrices withcovariance matrices proportional to the identity matrix.

For the MIMO MAC channel, the ergodic sum rate capacity has never been obtained due to the lack of analytical results

for the joint eigenvalue probability density function of sum of Wishart matrices. However, the capacity with perfect channel

state information at receiver and transmitter (CSITR) sides is very well studied. With perfect CSIT and CSIR the system can

be viewed as a set of parallel non interfering MIMO MACs. Thus, the ergodic capacity region can be obtained as an average

of these parallel MIMO MAC capacity regions (see [13] and thereferences therein). Another approach is to obtain asymptotic

results on the sum ergodic capacity of MIMO MAC channels. This can be done by considering that the number of receive

antennas and the number of transmitters tend to infinity [13].

In order to solve these and related challenging problems, wehave proposed two distinct approaches that are presented in

Section III. The first approach is the derivation of an exact closed-form expression for the marginal eigenvalue distribution of

the sum of Wishart matrices. The main idea behind this solution is to demonstrate that the matrix resulting from the weighted

sum ofK Wishart matrices can be rewritten as the product of a single matrix and its conjugate transpose. This resulting

Wishart matrix happens to correspond to a covariance matrixwhich incorporates the information about the weights. Therefore,
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its eigenvalue distribution follows from the pre-existingknowledge about Wishart semicorrelated matrices. The derivation of

this result is given in Appendices A and B. Our second proposed solution is to approximate the sum ofK independent Wishart

matrices by just one equivalent Wishart matrix. This approach is based on the idea of equating the cumulants, as done in [20]

for the case of general covariance matrices. We have found a simple and compact closed-form expression to determine the

degrees of freedom of this equivalent Wishart matrix.

In order to show that our proposed solutions are valid, we have chosen the two MIMO multiuser scenario described before,

viz. MIMO MAC and MIMO Relay. First, by considering an arbitrary set of parameters, we show that the Monte Carlo

simulated eigenvalue distribution of the sum of Wishart matrices is perfectly described by our exact expression. Then,we

apply our approximation to find an equivalent Wishart matrix, and compare its eigenvalue distribution with the simulated

results. The results are promising.

Moving a step forward, we present in Section IV a new closed-form expression for the ergodic sum capacity. This expression

takes as input the exact eigenvalue distribution of the sum of Wishart matrices or the approximate eigenvalue distribution of

the equivalent Wishart. We show that the analytical ergodicsum rate capacity matches the simulation results perfectly. All

these results are shown in Section V and give basis for our conclusions presented in Section VI.

Besides all the sections mentioned above, we present some fundamental definitions about Wishart matrices in Section II.

II. PRELIMINARIES

In this section we begin with the definition of complex Wishart distribution, which depends crucially on variance and

degrees-of-freedom parameters. These are then used to construct the matrix model of our interest, namely the weighted sum of

central Wishart matrices. This, in turn, is used in later sections for derivation of the probability density function and relevant

metric for our problem.

Given a randommi-dimensional non-negative definite matrix withpi degrees of freedomWi ∈ Cmi×mi . The distribution

law of Wi,

PWi
(Wi) ∝ det(Wi)

pi−mi exp
(

− trΣ−1
i Wi

)

, (1)

is calledcomplex central Wishart distribution [6], [23], and is denoted by

Wi ∼ CWmi
(pi,Σi). (2)

Here,Σi is the covariance matrix,det(·) and tr(·) represent determinant and trace operators, respectively.In the following we

will considerΣi = σ2
i Imi

, whereImi
is the identity matrix of dimensionmi.

ConsiderK independent matrices with the distribution given by (2). Weare interested in the eigenvalue statistics of the

weighted sum of theseK matrices normalized by their respective degrees of freedom, viz.,

W =
K
∑

i=1

ai
pi
Wi (3)

whereai ∈ R+. Note that the above sum is possible only if themi’s are identical, saym.
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It is known for the general case ofW =
∑K

i=1 Wi, with Wi ∼ Wmi
(pi,Σ), that W ∼ Wmi

(
∑K

i=1 pi,Σ); see [19,

Theorem 7.3.2.]. On the other hand, if the covariance matricesΣi’s are not proportional to identity matrix, then obtaining the

distribution ofW and its eigenvalues is nontrivial; see for example [22]. However, ifΣi’s are proportional to identity matrix,

then as shown in appendix A,W actually corresponds to a semicorrelated Wishart distributed case [24].

For the scenarioΣi ∝ Im, without loss of any generality we may considerΣi = σ2Im, as differentσi values can be

absorbed inai1. Let us define

vi = (ai/pi)σ
2, i = 1, ...,K; (4)

p =

K
∑

i=1

pi. (5)

With these definitions we now present the exact as well as approximate solution concerning the eigenvalue statistics ofW.

III. PROPOSEDSOLUTION

This section presents our contribution to determine the eigenvalue distribution for the weighted sum ofK Wishart matrices,

as defined above. First, we present a new exact closed-form expression. Then, we propose an approximation that replaces the

weighted sum ofK Wishart matrices by an equivalent matrix.

A. Exact closed-form expression for the marginal eigenvalue distribution

The main result of our paper is given in the following proposition.

Proposition 1: The marginal density of eigenvalues ofW defined in (3) is given by

Pλ(λ) = c det







0 [fj1(v1, λ)]j1=1,...,p1
· · · [fjK (vK , λ)]jK=1,...,pK

[gi(λ)]i=1,..,p [hi1,j1(v1)] i1=1,...,p
j1=1,...,p1

· · · [hiK ,jK (vK)] iK=1,...,p
jK=1,...,pK






. (6)

The entriesfj(v, λ), gi(λ), hi,j(v) inside the determinant in the above expression are respectively given by

fj(v, λ) = Γ(j) vj−m−1 exp(−λ/v)L
(m−j+1)
j−1 (λ/v), (7)

gi(λ) = λm−i/Γ(m− i+ 1), (8)

hi,j(v) =
Γ(i)

Γ(i− j + 1)
vj−i. (9)

HereΓ(·) is the Gamma function given byΓ(z) =
∫∞

0 tz−1e−t dt, andL(ν)
µ (x) are the associated Laguerre polynomials [25,

eq. 22.5.38]. The normalizationc in (6) is obtained using

c−1 = −m det
[

[hi1,j1(v1)] i1=1,...,p
j1=1,...,p1

· · · [hiK ,jK (vK)] iK=1,...,p
jK=1,...,pK

]

. (10)

Proof: See Appendix A.

1σ may also be absorbed inai. Therefore,Wi corresponds essentially to anuncorrelated Wishart case.
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B. Approximation for Sum of Wishart matrices

Proposition 2: Given the weighted sum ofK Wishart matrices normalized by their respective degrees offreedom as (3),

we propose the following approximation

W ≈ S

(

∑K
i=1 ai

)

ps
, (11)

whereS ∼ CWms
(ps,Σs), Σs = σ2Im, andps given by

ps =











(

∑K
i=1 ai

)2

∑K
i=1

a2
i

pi











, (12)

with ⌊·⌉ representing the nearest integer operator.

Proof: The rationality for the approximation is as follow. The expected value ofWi given in (2) is given by [23], [26]

E[Wi] = piΣi, (13)

The variance of the main diagonal elements are given by [26]

var[Wi(j, j)] = pi σ
4, (14)

where we have dropped the subscript ofσ as explained before.

Also, the expected value ofW in (3) is given by

E
[

W
]

= E

[

K
∑

i=1

ai
pi
Wi

]

=

K
∑

i=1

ai
pi
pi
Σi =

K
∑

i=1

aiΣi = σ2Im

K
∑

i=1

ai, (15)

and the variance of the main diagonal elements is given by

var[W(j, j)] = var

[

K
∑

i=1

ai
pi
Wi(j, j)

]

=

K
∑

i=1

a2i
p2i
piσ

4 = σ4
K
∑

i=1

a2i
pi
. (16)

Notice that the expectation value of RHS of (11) is given by

E





(

∑K
i=1 ai

)

ps
S



 =

(

K
∑

i=1

ai

)

ps
ps

Σs = σ2Im

K
∑

i=1

ai, (17)

and the variance of the main diagonal elements is given by

var





(

∑K
i=1 ai

)

ps
S(j, j)



 = σ4ps

(

∑K
i=1 ai

)2

p2s
= σ4

(

∑K
i=1 ai

)2

ps
. (18)

Here, we call attention to the similarities of results of (15) and (17), as well as (16) and (18). Therefore, it is possibleto

state a relation between the degrees of freedom of differentWishart distributions by equating (16) and (18) and obtaining the

closed-form expression forps given by (12). Also, sinceps is related with the number of columns of theS, it should be an

integer number, and this is why we have to apply the nearest integer operation in (12).
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IV. A PPLICATION

Generally, a single user communication under fading conditions has a received signal expression given by [9, (5.86)]

y = hx+ z (19)

wherez ∼ CN (0, 1) is the noise,x is the Gaussian distributed input signal with power constraint ‖x‖2 ≤ ai, andh is the

channel gain. Herein, we assumeh ∼ CN
(

0, σ2
)

, therefore, the channel is under Rayleigh fading. Now, suppose that the

source hasMi transmitting antennas, and the destination hasNi receiving antennas. Hence, the wireless channel is described

by the complexNi by Mi random matrixHi, and the received signal is given by [9, (7.1)]

y = Hix+ z (20)

wherez ∼ CN (0, Imi
) is the white Gaussian noise vector at a symbol time (not show here by simplicity),x ∈ CNMi , and

y ∈ CNNi . The entries ofHi arehrt, with 1 ≤ r ≤ Ni and1 ≤ t ≤Mi. Define a matrixWi as [4]

Wi =











HiH
†
i Ni < Mi

H
†
iHi Ni ≥Mi,

(21)

where† denotes the transpose conjugated matrix operator. Hence,Wi has real, non-negative eigenvalues [27]. The matrixWi

is distributed as (2) withpi = max(Mi, Ni) andmi = min(Mi, Ni).

Telatar has shown in his canonical paper [4], that the ergodic capacity for the system described by (20) is given by

C = EWi

[

log2 det

(

Imi
+
ai
pi
Wi

)]

= mi

∫ ∞

0

log2(1 + λ)Pλ(λ) dλ. (22)

wherePλ(λ) is the the marginal density of eigenvalues. Since in this work we are interested in multiuser scenario instead of

a single user described above, we should adapt the capacity equations for a multiuser case.

The first scenario is the MIMO MAC depicted in Fig. 1. The channel capacity for a MIMO MAC network withK sources

and one destination under Rayleigh fading is given by [13]

CMAC = EWi

[

log2 det

(

Im +

K
∑

i=1

ai
pi
Wi

)]

= E
W

[

log2 det
(

Im +W
)]

= E
W

[

tr log2
(

Im +W
)]

(23)

where we have used first the equality given in (3), and then theproperty of matrices that asserts thatdet(exp(A)) = exp( tr (A))

[28].

In order to solveCMAC given in (23), we can use the eigenvalue distribution given in (6) to obtain a closed-form expression

for the ergodic sum rate capacity given in (25) with the appropriated parameters of the Wishart matrices given in the problem
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. . .1

M1

. . . D

Nd

H1

. . .2

M2

. . .K

MK

. . .

H2

HK

Fig. 1. System Model of MIMO MAC channel. The destination (D), equipped withNd receiving antennas, receives signal fromK sources, each one
equipped withMi transmitting antennas, withi = 1, . . . , K.

statement. In terms of the marginal densityPλ(λ) of eigenvalues ofW, we can write

CMAC = m

∫ ∞

0

Pλ(λ) log2(1 + λ) dλ. (24)

As shown in the appendices, an exact closed form expression for the ergodic capacity can be obtained in determinantal form

involving Meijer-G functions, and is given by

CMAC = −mc

m
∑

µ=1

det

[

[ψ
(µ)
i1,j1

(v1)] i1=1,...,p
j1=1,...,p1

... [ψ
(µ)
iK ,jK

(vK)] iK=1,...,p
jK=1,...,pK

]

, (25)

whereψ(µ)
i,j (v) is given by

ψ
(µ)
i,j (v) =















Gi,j(v), i = µ,

hi,j(v), i 6= µ,

(26)

with

Gi,j(v) =
vj−1

(ln 2) Γ(m− i+ 1)
G3,2

3,4







0, i− 1, i

i− 1, i− 1, m, j − 1

∣

∣

∣

∣

∣

1

v






, (27)

andhi,j(v) as in (9).
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. . .

. . . R

H1

. . .S

Ms

. . . D

Nd

H2

H3

Nr Mr

Fig. 2. System Model of MIMO relay channel. The source (S), equipped withMs transmitting antennas, wants to communicate with the destination (D),
equipped withNd receiving antennas. The relay (R), equipped withMr andNr transmitting and receiving antennas, respectively, couldcollaborate in this
communication.

On the other hand, by using the proposed approximation givenin (11), (23) becomes

CMAC = EWi

[

log2 det

(

Im +
K
∑

i=1

ai
pi
Wi

)]

≈ ES

[

log2 det

(

Im +

∑K
i=1 ai
ps

S

)]

(28)

Hence, we can use (25) withp1 = ps anda1 =
∑K

i=1 ai, and then setK = 1 to obtainCMAC.

Now, let’s turn our attention to the MIMO Relay channel shownin Fig. 2. This channel can be viewed as a composition

of a MAC and broadcast channel (BC) withK = 2. Suppose that the channel gains are known at the corresponding receivers

only (CSI). In this scenario, an upper bound on the ergodic capacity of the MIMO relay channel is given by [16, Theorem

4.1]

Cupper= min(CBC, CMAC) (29)

where

CBC = EWi

[

log2 det

(

Imi
+
a1
p1

W1 +
a2
p2

W2

)]

, (30)

andCMAC as in (23). Notice thatCBC is similar toCMAC given in (23). Therefore a similar procedure can be implemented to

obtainCBC.

V. NUMERICAL RESULTS

In this section we have obtained numerical results for the closed form expressions and for the proposed approximation. The

results are compared with Monte Carlo simulations to validate the analytical expressions. For each one of the simulations,

40,000 channel realizations were performed. In all cases, there is a perfect agreement between analytical and simulation results.

We have chosen three arbitrary scenarios and one well-knownscenario from [16].

Consider a MIMO MAC scenario shown in Fig. 1 withK = 5 users, each one withMi = 4 transmitting antennas, where

i = 1, . . . ,K. Destination node D hasNd = 4 receiving antennas. The normalized signal to noise ratios(ai) at destination

were arbitrarily chosen, and are shown in Table I (Case I). The marginal eigenvalue distribution is shown in Fig. 3. Notice the
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TABLE I
SIMULATION PARAMETERS AND RESULTS FORC

Case ai (dB) MIMO ps
Ergodic Sum Rate Capacity (bits)

Simulation Analytical Approximation

I

a1 = 19.8

4× 4 13 44.20 44.20 44.15
a2 = 29.5
a3 = 29.8
a4 = 26.1
a5 = 21.7

II

a1 = 28.3

8× 8 51 93.86 93.86 93.85

a2 = 17.7
a3 = 26.5
a4 = 27.3
a5 = 29.3
a6 = 21.5
a7 = 19.5
a8 = 27.9
a9 = 9.3
a10 = 24.3

III
a1 = 9.7

2× 2 3− 4 10.94 10.94 11.01a2 = 17.6
a3 = 16.7

Exact

Simulation

Approximation

0 2000 4000 6000 8000
0.0000

0.0001

0.0002

0.0003

0.0004

Λ

P
Λ
HΛ
L

Fig. 3. Marginal distribution of eigenvalues ofW for Case I (see Table I). Simulation results are in perfect agreement with the closed form analytical
distribution (red line). The distribution for the proposedapproximation, shown with blue dashed line, is also very close to the exact result.

perfect agreement between the simulation and analytical results. The approximate ergodic sum rate capacity was also computed

using the equivalent matrixS (with ps = 13 degrees of freedom) and is shown in the last column of Table I.The eigenvalue

distribution for the approximation is also shown in Fig. 3. Note how close the approximation and the ergodic sum rate capacity

are to the exact values.

In the next scenario we have increased the number of users toK = 10 with MIMO 8 × 8. The ai coefficients are given

in Case II of Table I. Notice again in Fig. 4 a perfect match between analytical and simulation results. The ergodic capacity

results also agree, as can be seen in Table I. The eigenvalue distribution from the approximation is shown in Fig. 4 as well.

Now let us move on to a more involved scenario depicted in Fig.2. The ergodic capacity was originally calculated in

[16] using convex programming. The parameters used are depicted in Case III of Table I and the plot for the eigenvalue

distribution is given in Fig. 5. Fig. 6 shows the eigenvalue distribution for the MAC channel with the following parameters

(a2 = 17.6, a3 = 16.7). The upper bound on ergodic capacity, as mentioned before, is the minimum of the capacity of BC
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Exact

Simulation

Approximation

2000 4000 6000 8000
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

Λ

P
Λ
HΛ
L

Fig. 4. Marginal distribution of eigenvalues ofW for Case II (see Table I). Simulation results match perfectly with the closed form analytical distribution
(red line). The distribution for the proposed approximation is also shown using blue line.

Simulation

Analytical

0 50 100 150 200 250 300
0.000

0.005

0.010

0.015

0.020

Λ

P
Λ
HΛ
L

Fig. 5. Marginal distribution of eigenvalues ofW for Case III (BC). Simulation results are in perfect match with the closed form analytical distribution
(line).

and MAC, as given in Table I.

Besides the Case III, we have also reproduced the scenario given in [16, Fig. 5] for MIMO Relay channel. This scenario is

well known because the upper bound and the lower bound “converge”. That is to say, the ergodic capacity of the MIMO relay

channel over Rayleigh fading can be characterized under this SNR condition [16]. The constraints for this scenario area2 = a3,

a1 = 10a2, and0 ≤ a2 ≤ 30 dB. The ergodic capacity results for Monte Carlo simulationand the proposed approximation

Simulation

Analytical

0 50 100 150 200 250 300 350
0.000

0.002

0.004

0.006

0.008

Λ

P
Λ
HΛ
L

Fig. 6. Marginal distribution of eigenvalues ofW for Case III (MAC). Simulation results match perfectly withthe closed form analytical distribution (line).
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Fig. 7. Ergodic Capacity Upper Bound versusa2 with constraintsa3 = a2 and a1 = 10a2 . Based on [16, Fig. 5]. The simulation results are in perfect
agreement with the analytical results obtained with the proposed approximation.
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Fig. 8. Error of approximation versus weight ratioa1/a2 anda2 = 5.

are given in Fig. 7. Notice again the perfect agreement of theresults.

The results in Table I and in Fig. 7 show that the proposed approximation results in a very small difference from the exact

result for all mentioned scenarios. Since the approximation depends on the weight factor of each matrix, or in other words

depends on the SNR of each channel, it would be interesting toinvestigate cases where these weight factors varies. Fig. 8

shows the percentage error as the ratioa1/a2 varies from 0 to 15 dB. Note that the error is less than 1% for 0 < a1/a2 < 2

anda1/a2 > 7.

VI. CONCLUSIONS

In this work we uncovered a one to one correspondence betweenthe weighted sum of arbitrary number ofuncorrelated central

Wishart matrices and a single semicorrelated Wishart matrix. Using this observation we presented a closed form expression for

the marginal distribution of the eigenvalues for the weighted sum ofK complex central Wishart matrices. To the best of our

knowledge this problem has not been tackled before. Here themotivation for establishing a result emerged from the multiuser

information theory area. However, since Wishart matrices play crucial role in diverse fields, we believe that our results are

relevant to these as well. We would like to remark that it is also possible to obtain results for the joint probability density of

all eigenvalues, and correlation functions involving distribution of two or more eigenvalues.

We applied our new closed-form expression for analyzing theergodic sum rate capacity of MIMO multiuser channels.
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Moreover, we also derived a closed form expression for the ergodic channel capacity and used it to obtain the capacities for

MIMO MAC and MIMO Relay channel. Besides the closed form exact expression for marginal distribution, we also proposed

an approximation that is very simple and presents promisingresults when used to obtain ergodic sum capacity. In addition,

we confirmed the validity of all our analytical expressions by Monte Carlo simulations.

APPENDIX A

MAPPING TO A SEMICORRELATEDWISHART DISTRIBUTION

Considerpi ×m dimensional complex matricesHi, i = 1, ...,K, from the normal distribution:

Pi(Hi) ∝ exp
(

trHiΣi
−1H

†
i

)

, (31)

whereΣi = σ2Im. Thenm ×m-dimensional matricesWi = H
†
iHi, are respectively from the complex-Wishart distribution

given in (2). The matrixW can be written as

W =
K
∑

i=1

ai
pi
H

†
iHi =

K
∑

i=1

H
†
i

(

ai
pi
Ipi

)

Hi

=

[

H
†
1 H

†
2 . . . H

†
K

]























a1
p1

Ip1 0 · · · 0

0
a2
p2

Ip2 · · · 0

...
. . .

...

0 0 · · ·
aK
pK

IpK









































H1

H2

...

HK



















= H†DH ≡ G†G. (32)

We defined here

H† =

[

H
†
1 H

†
2 . . . H

†
K

]

, (33)

D = diag

[

a1
p1

Ip1 , · · · ,
aK
pK

IpK

]

, (34)

G = D1/2H. (35)

With the above information it is clear thatG satisfies the distribution

PG(G) ∝ exp[− tr (G†V−1G)], (36)

whereV = diag[v1Ip1 , ..., vKIpK
], with vi (andp) as defined in (5). Therefore, we are looking essentially at asemicorrelated

Wishart case, with the diagonal-covariance matrix possessing some equal-value entries (multiplicities/degeneracies). Thus, the

problem boils down to determining the eigenvalue statistics of G†G. We start with the case of a diagonal covariance matrix

with unequal entries along the diagonal, i.e., we will useV̂ = diag(v̂1, ..., v̂p) in the above distribution instead ofV, work

out the results for this case, and eventually take adequate limits to obtain the case ofV.

For the semicorrelated Wishart matrices, exact result for the marginal density of eigenvalues is available from several notable
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works [29]–[32]. We use here the form derived in [31], [32]. Considerp ×m dimensional complex matricesG taken from

the distribution (36), but with the covariance matrix̂V as defined above. The marginal density ofp eigenvalues ofGG†, for

p ≤ m, is given to be

Pλ(λ) = −
1

p∆p({v̂−1})
det







0
[

exp(−λ/v̂j)
v̂m
j

]

j=1,...,p
[

λm−i

Γ(m−i+1)

]

i=1,...,p

[

v̂−i+1
j

]

i,j=1,...,p






. (37)

Here∆p({v̂−1}) = det[v̂−i+1
j ] =

∏

i>j(v̂
−1
i − v̂−1

j ) is the Vandermonde determinant. SinceG†G andGG† share the same

nonzero eigenvalues, the above result holds forp > m as well, with the factorp appearing in the denominator of the prefactor

replaced bym. Moreover, in this case the bottomp − m entries of the first column in the determinant comprise diverging

gamma function in the denominator, and hence become zero.

We now use the relation (22) to derive the ergodic channel capacity. To this end we expand (37) using the first column and

obtain

Pλ(λ) = −
1

m∆p({v̂−1})

m
∑

µ=1

(−1)µ
λm−µ

Γ(m− µ+ 1)
det









[

exp(−λ/v̂j)
v̂m
j

]

j=1,...,p
[

v̂−i+1
j

]

i,j=1,...,p
(i6=µ)









. (38)

Next we bring in theλm−µ/Γ(m − µ + 1) factors occurring before the determinants to the respective first rows, i.e., with

exp(−λ/v̂j)/v̂mj . This gives

Pλ(λ) = −
1

m∆p({v̂−1})

m
∑

µ=1

(−1)µ det









[

λm−µ

Γ(m−µ+1)
exp(−λ/v̂j)

v̂m
j

]

j=1,...,p
[

v̂−i+1
j

]

i,j=1,...,p
(i6=µ)









. (39)

The above equation serves as yet another expression for the marginal density.

For ergodic capacity we use (22) and obtain the following expression by interchanging theλ-integral and the summation:

C = −
1

∆p({v̂−1})

m
∑

µ=1

(−1)µ
∫ ∞

0

dλ









det









[

λm−µ

Γ(m−µ+1)
exp(−λ/v̂j)

v̂m
j

]

j=1,...,p
[

v̂−i+1
j

]

i,j=1,...,p
(i6=µ)

















log2(1 + λ). (40)

Theλ-integral can be brought into the first row of the determinant, along with the factorlog2(1 + λ) to yield

C = −
1

∆p({v̂−1})

m
∑

µ=1

(−1)µ det







[Gµ,j(v̂)]j=1,...,p
[

v̂−i+1
j

]

i,j=1,...,p
(i6=µ)






, (41)

where

Gµ,j(v̂) =

∫ ∞

0

dλ
λm−µ

Γ(m− µ+ 1)

exp(−λ/v̂j)

v̂mj
log2(1 + λ). (42)

This integral can be expressed in a closed form with the aid ofMeijer-G function [33]. This is facilitated by consideringthe
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following special cases of Meijer-G functions:

G1,0
0,1







β

∣

∣

∣

∣

∣

z






= zβe−z, G1,2

2,2







1, 1

1, 0

∣

∣

∣

∣

∣

z






= ln(1 + z), (43)

We also use the convolution integral satisfied by Meijer-G function:

∫ ∞

0

dz Gm,n
p,q







a1, · · · ap

b1, · · · bq

∣

∣

∣

∣

∣

ηz






Gµ,ν

σ,τ







c1, · · · cσ

d1, · · · dτ

∣

∣

∣

∣

∣

ωz







=
1

η
Gn+µ,m+ν

q+σ,p+τ







−b1, · · · ,−bm, c1, · · · cσ, −bm+1, · · · , −bq

−a1, · · · ,−an, d1, · · · dτ , −an+1, · · · , −ap

∣

∣

∣

∣

∣

ω

η






(44)

=
1

ω
Gm+ν,n+µ

p+τ,q+σ







a1, · · · , an, −d1, · · · − dτ , an+1, · · · , ap

b1, · · · , bm, −c1, · · · − cσ, bm+1, · · · , bq

∣

∣

∣

∣

∣

η

ω






.

The restrictions on the indices for this integration formula can be found in [33]. Therefore, we obtain a closed form expression

for Gi,j(v̂) as given below in (47). Afterwards we perform row interchanges in the determinants to bringGµ,j in the respective

µth row. This leads to the removal of(−1)µ factor. Consequently, we arrive at the following expression for ergodic channel

capacity:

C = −
1

det[v̂1−i
j ]i,j=1,...,p

m
∑

µ=1

det
[

ψ
(µ)
i,j (v̂)

]

i,j=1,...,p
. (45)

Here

ψ
(µ)
i,j (v̂) =















Gi,j(v̂), i = µ

v̂−i+1
j , i 6= µ.

(46)

with

Gi,j(v̂) =
1

(ln 2) Γ(m− i+ 1)
G3,1

2,3







i− 1, i

i− 1, i− 1, m

∣

∣

∣

∣

∣

1

v̂k






. (47)

APPENDIX B

PROOFS FOR EQUATIONS(6) AND (25)

To obtain equations (6) and (25) we need to assignv̂1 = ... = v̂p1 = v1; v̂p1+1 = ... = v̂p2 = v2 ; · · · ; v̂p(K−1)+1 = ... =

v̂pK
= vK in (37) and (45). However, direct substitution of these values makes the determinant in the numerator, as well as

the determinant in the denominator to become zero. Therefore, we must carry out this substitution in a limiting manner, as

described below.



16

Let us pay attention to the columns involving up top1 in (37). The ratio of the determinants appears as

det







0 (v̂−1
1 )mev̂

−1
1 λ (v̂−1

2 )mev̂
−1
2 λ . . . (v̂−1

p1
)mev̂

−1
p1

λ . . .

λm−i

Γ(m−i+1) (v̂−1
1 )i−1 (v̂−1

2 )i−1 . . . (v̂−1
p1

)i−1 . . .







det

[

(v̂−1
1 )i−1 (v̂−1

2 )i−1 . . . (v̂−1
p1

)i−1 . . .

] (48)

Consider forj = 2, ..., p1, v̂−1
j = v̂−1

1 + δj with small δj , and Taylor-expand up toδj−1
j :

(v̂−1
j )mev̂

−1
j

λ ≈

j−1
∑

r=0

δrj
r!

∂r

∂(v̂−1
1 )r

(v̂−1
1 )mev̂

−1
1 λ

(v̂−1
j )i−1 ≈

j−1
∑

r=0

δrj
r!

∂r

∂(v̂−1
1 )r

(v̂−1
1 )i−1

Now, applying adequate column operations we obtain

det







0 (v̂−1
1 )mev̂

−1
1 λ δj

1!
∂

∂(v̂−1
1 )

(v̂−1
1 )mev̂

−1
1 λ . . .

δj−1
j

(j−1)!
∂j−1

∂(v̂−1
1 )j−1

(v̂−1
1 )mev̂

−1
1 λ . . .

λm−i

Γ(m−i+1) (v̂−1
1 )i−1 δj

1!
∂

∂(v̂−1
1 )

(v̂−1
1 )i−1 . . .

δj−1
j

(j−1)!
∂j−1

∂(v̂−1
1 )j−1

(v̂−1
1 )i−1 . . .







det

[

(v̂−1
1 )i−1 δj

1!
∂

∂(v̂−1
1 )

(v̂−1
1 )i−1 . . .

δj−1
j

(j−1)!
∂j−1

∂(v̂−1
1 )j−1

(v̂−1
1 )i−1 . . .

] (49)

The factors containingδj and factorial can be canceled out after being pulled out of the columns, both from numerator and

denominator. Therefore, we are left with

det







0 (v̂−1
1 )mev̂

−1
1 λ ∂

∂(v̂−1
1 )

(v̂−1
j )mev̂

−1
1 λ . . . ∂j−1

∂(v̂−1
1 )j−1

(v̂−1
j )mev̂

−1
1 λ . . .

λm−i

Γ(m−i+1) (v̂−1
1 )i−1 ∂

∂(v̂−1
1 )

(v̂−1
1 )i−1 . . . ∂j−1

∂(v̂−1
1 )j−1

(v̂−1
1 )i−1 . . .







det

[

(v̂−1
1 )i−1 ∂

∂(v̂−1
1 )

(v̂−1
1 )i−1 . . . ∂j−1

∂(v̂−1
1 )j−1

(v̂−1
1 )i−1 . . .

] . (50)

We have ∂r−1

∂(v̂−1
1 )r−1

(v̂−1
1 )i−1 = (Γ(i)/Γ(i − r + 1))(v̂−1

1 )i−r. The derivatives of(v̂−1
j )mev̂

−1
1 λ can be evaluated with the aid

of Rodrigues’ formula for the associated Laguerre polynomials,

L
(β)
k (z) =

z−βez

k!

∂k

∂zk
(

zk+βe−z
)

, (51)

using adequate scaling of the variables. By implementing similar steps for rest of the columns, we arrive at (6).

Similar steps can be used to arrive at (25), starting from (45). The derivative of Meijer-G follows from the result

zr
∂r

∂zr
G3,1

2,3







a1, a2

b1, b2, b3

∣

∣

∣

∣

∣

z






= G3,2

3,4







0, a1, a2

b1, b2, b3, r

∣

∣

∣

∣

∣

z






, (52)

which is a special case of the following more general identity [33]:

zr
∂r

∂zr
Gm,n

p,q







a1, · · · , ap

b1, · · · , bq

∣

∣

∣

∣

∣

z






= Gm,n+1

p+1,q+1







0, a1, · · · , ap

b1, · · · , bq, r

∣

∣

∣

∣

∣

z






. (53)
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