Header menu link for other important links
Novel synthesis and phenotypic analysis of mutant clouds for hepatitis E virus genotype 1
Agarwal S., Baccam P., Aggarwal R.,
Published in American Society for Microbiology
PMID: 29167341
Volume: 92
Issue: 4
Many RNA viruses exist as an ensemble of genetically diverse, replicating populations known as a mutant cloud. The genetic diversity (cloud size) and composition of this mutant cloud may influence several important phenotypic features of the virus, including its replication capacity. We applied a straightforward, bacterium-free approach using error-prone PCR coupled with reverse genetics to generate infectious mutant RNA clouds with various levels of genetic diversity from a genotype 1 strain of hepatitis E virus (HEV). Cloning and sequencing of a genomic fragment encompassing 70\% of open reading frame 1 (ORF1) or of the full genome from variants in the resultant clouds showed the occurrence of nucleotide mutations at a frequency on the order of 10-3 per nucleotide copied and the existence of marked genetic diversity, with a high normalized Shannon entropy value. The mutant clouds showed transient replication in cell culture, while wild-type HEV did not. Cross-sectional data from these cell cultures supported the existence of differential effects of clouds of various sizes and compositions on phenotypic characteristics, such as the replication level of (+)-RNA progeny, the amounts of double-stranded RNA (a surrogate for the rate of viral replication) and ORF1 protein, and the expression of interferon-stimulated genes. Since mutant cloud size and composition influenced the viral phenotypic properties, a better understanding of this relationship may help to provide further insights into virus evolution and prediction of emerging viral diseases. © 2018 American Society for Microbiology.
About the journal
Published in American Society for Microbiology
Open Access
Impact factor