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Abstract. We consider an experimentally realizable scheme for manipulating

quantum states using a general superposition of products of field annihilation (â)

and creation (â†) operators of the type (sââ† + tâ†â), with s2 + t2 = 1. Such

an operation, when applied on states with classical features, is shown to introduce

strong nonclassicality. We quantify the generated degree of nonclassicality by the

negative volume of Wigner distribution in the phase space and investigate two other

observable nonclassical features, sub-Poissonian statistics and squeezing. We find that

the operation introduces negativity in the Wigner distribution of an input coherent

state and changes the Gaussianity of an input thermal state. This provides the

possibility of engineering quantum states with specific nonclassical features.
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1. Introduction

In recent years, the generation and manipulation of nonclassical states of the

electromagnetic field have gained much importance in active research in quantum optics

and quantum information theory [1, 2], in the context of physical realization of quantum

tasks, protocols and communications [3, 4, 5, 6] using continuous quantum variables.

Various methods of manipulation at the single-photon level have been suggested for

the preparation of nonclassical states of the optical field, based on operations of

photon addition (â†) [7] and subtraction (â) [8] on a classical field. Agarwal and

Tara [9] first proposed an m-photon-added scheme to create a nonclassical state from

any classical state. Zavatta et al [10] demonstrated a single photon-added coherent

state by homodyne tomography technology. A remarkable development has been the

experimental realization of a general scheme by Zavatta et al [11], based on single-

photon interference, for implementing superpositions of distinct quantum operations.

Hu et al [12] have recently investigated the nonclassical properties of the field states

generated by subtracting any number of photons from a squeezed thermal state. Lee

and Nha [13] have studied the action of an elementary coherent superposition of â and

â† on continuous variable systems.

We wish to consider a general superposition of the two product (SUP) operations,

sââ† + tâ†â on a classical state, where s and t are scalars with s =
√
1− t2. This

operation can be realized experimentally under suitable modification of the interference

set-up proposed by Kim et al [14]. The basic unit for photon addition is a twin-

photon source based on the nonlinear optical process of parametric down-conversion

[15]. The nonclassicality in the SUP operated states can be quantified and analyzed

using quasiprobability distributions in the phase space. The scalars s and t act as

control parameters for manipulation of the nonclassical character of the output state.

We observe that the SUP operation introduces nonclassicality in the classical

coherent state and there is a finite negativity in the Wigner distribution which is

analyzed for different scalar parameters. The nonclassical features of the SUP operated

coherent state can be further analyzed using observable features such as squeezing and

sub-Poissonian statistics. In case of input thermal state, no negativity of the Wigner

function is observed. The SUP operation introduces non-Gaussianity in the classical

thermal state. The nonclassical characteristics of the input thermal state is highlighted

by its sub-Poissonian distribution and squeezing effect.

This paper is organized as follows. We begin by outlining a practical SUP operation

scheme in section 2. Various nonclassicality indicators used in our study are defined

in section 3. In section 4, we present the results on SUP operated coherent and

thermal states, in terms of the Wigner distribution function, a general operator-ordering

parametrized quasiprobability function, Mandel’s Q parameter and also the quadrature

squeezing parameter. The last section contains a summary of our main results.
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2. SUP operation scheme

The generation of the desired quantum operation, sââ† + tâ†â, where â and â† are

the annihilation and the creation operators, respectively, and s and t are scalars with

s =
√
1− t2, involves proper sequencing of photon subtraction (â) and photon addition

(â†) operators [11, 14], and then coherent superposition of the ordered products by

removing which-path information between them.
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Figure 1. Experimental proposal for the generation of sââ† + tâ†â

The schematic of the experimental proposal for the generation of the quantum

operation s(ââ†) + t(â†â) is shown in figure 1. High transmissivity beam-splitters B1

and B2 are used for photon subtraction. When an input field is incident upon a high

transmissivity beam-splitter, with the other input in a vacuum mode, detection of a

photon in the photo-detector implies that a photon has been subtracted (â) from the

incident state. The parametric down-converter (PDC) is used to add photons. A PDC

produces twin photons into two different modes. If an incident field is passed through a

PDC, with the other input in a vacuum state, the detection of a photon in the detector

would imply that a photon (the undetected twin) has been added (â†) to the incident

field. The operation of this optical scheme is dependent on the photo-detectors, P1, P2

and P3, which detect the success of the addition or subtraction process in an optical

path. M is a highly reflective mirror. The variable transmissivity beam-splitter B3

is used to generate the desired superposition of the product states by removing the

which-path information.

As shown in the schematic in figure 1, the input state |ψ〉in is incident upon B1. The

subtraction of a photon at B1 will lead to a photon-subtracted state along path I and a

photon along path II after reflection from M. In the absence of B3, the photon can be

detected at P2. No detection at P2 would ensure that no subtraction has taken place at

B1. The input field then proceeds to the PDC. The detection of a photon at P1, along

path III, confirms the addition of a photon due to parametric down-conversion. Hence

the simultaneous detection of a photon at P1 and P2 (in the absence of B3) ensures the
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operation ââ†. The photon-added field then proceeds to B2. The subtraction of a photon

at B2 leads to a photon subtracted state along path I and a photon along path IV, which

would be detected by P3 in the absence of B3. Hence detection at P1 and P3 (in the

absence of B3), with no detection at P2 [16], ensures the operation â†â. No detection

at P3 would ensure that no subtraction has taken place at B2. The final output state

can either be ââ† or â†â depending on the detection at P2 or P3 respectively. Hence,

the two paths of detection II and IV are the two product operation indicators. The

beam-splitter B3 removes this path information, and produces a superposition of the

two paths and hence of the two operations.

The generation of the superposed product states can be shown mathematically

using standard operators for the various paths involved in the scheme. If |ψ〉in (mode

I) is incident upon a high transmissivity beam-splitter B1 (transmissivity, t1 ≃ 1), with

the other input in vacuum mode (mode II), we obtain

B̂B1|ψ〉in,I|0〉II ≃ (1− r∗1
t1
âIâ

†
II)|ψin, 0〉I,II. (1)

The state is now incident upon a PDC with a small coupling constant g and the other

input in vacuum mode (III). The resulting operation can be written as

(1− gâIâ
†
III)B̂B1|ψin, 0, 0〉I,II,III

≃ (1− gâIâ
†
III −

r∗1
t1
âIâ

†
II + g

r∗1
t1
âIâ

†
I â

†
IIâ

†
III)|ψin, 0, 0〉I,II,III. (2)

The photon addition occurs only when a photon is created in mode III at the PDC.

Hence the state producing one photon, detected by P1, corresponds to

(−gâ†I + g
r∗1
t1
â†I âIâ

†
II)|ψin, 0〉I,II

The state is then incident on the second high transmissivity beam-splitter B2

(transmissivity, t2 ≃ 1), with the other input in vacuum mode (IV). The operation

leads to

(1− r∗2
t2
âIâ

†
IV)(−gâ†I + g

r∗1
t1
â†I âIâ

†
II) |ψin, 0, 0〉I,II,IV

≃ (−gâ†I + g
r∗1
t1
â†I âIâ

†
II − g

r∗2
t2
âIâ

†
I â

†
IV − g

r∗1
t1

r∗2
t2
âIâ

†
I âIâ

†
IIâ

†
IV)|ψin, 0, 0〉I,II,IV.(3)

In the absence of beam-splitter B3, photon detection of mode II at P2 (along with

detection at P1 and no detection at P3) leads to the state (g
r∗
1

t1
â†I âI)|ψ〉in and photon

detection of mode IV at P3 (along with detection at P1 and no detection at P2)

leads to the state (−g r∗2
t2
âIâ

†
I |ψ〉in). Hence we can obtain the product state â†I âI (âIâ

†
I)

using consecutive photon addition (subtraction) and subtraction (addition). Finally,

we can use the beam-splitter B3 with transmissivity t3 and reflectivity r3 to produce

the superposition state. The operation of the beam-splitter can be represented by the

transformations b́ = t3b+ r3c, and ć = t∗3c− r∗3b, where b and c (b́ and ć) are the input

(output) modes of the beam-splitter. Using the above relations, the superposition states

we obtain are:

(gt3
r∗1
t1
â†I âI − r3g

r∗2
t2
âIâ

†
I)|ψ〉in,
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(−gr∗3
r∗1
t1
â†I âI − t∗3g

r∗2
t2
âIâ

†
I)|ψ〉in,

which can be conveniently cast in the general form (sââ† + tâ†â)|ψ〉in.

3. Nonclassicality indicators

Wigner function:The nonclassicality of a quantum state can be studied in terms of its

phase-space distribution characterized by the Wigner distribution. For a quantum state

ρ̂, the Wigner function of the system is defined in terms of the coherent state basis [17]

as

W (β, β∗) =
2

π2
e2|β|

2

∫

d2γ〈−γ|ρ̂|γ〉e−2(β∗γ−βγ∗), (4)

where |γ〉 = exp(−|γ|2/2 + γâ†)|0〉 is a coherent state. By using the relation [18]
∞
∑

n=k

nCk
yn−k = (1− y)−k−1, (5)

the Wigner function can be expressed in series form as [19]

W (β, β∗) =
2

π

∞
∑

k=0

(−1)k〈β, k|ρ̂|β, k〉, (6)

where |β, k〉 is the usual displaced number state.

The partial negative value of the Wigner function is a one-sided condition for the

nonclassicality of the related state [20], in the sense that one cannot conclude the state

is classical when the Wigner function is positive everywhere. For example, the Wigner

function of the squeezed state is Gaussian and positive everywhere but it is a well-

known nonclassical state. For a classical state, a necessary but not sufficient condition

is the positivity of the Wigner function. Hence a state with a negative region in the

phase-space distribution is essentially nonclassical.

We may consider a generalized distribution function, viz. a parametrized

quasiprobability function ℧
(F )(β) describing a field state ρ̂, defined as [21]

℧
(F )(β) ≡ 1

π
Tr{ρ̂T̂ (F )(β)}, (7)

where the operator T̂ (F )(β) is given by T̂ (F )(β) = 1
π

∫

exp(βξ∗ − β∗ξ)D̂(F )(ξ)d2ξ, with

D̂(F )(ξ) = eF |ξ|2/2D̂(ξ) and D̂(ξ) = eξâ
†−ξ∗â. The function ℧

(F )(β) can be rewritten in

the number-state basis as ℧
(F )(β) = 1

π

∑

n,m ρ(n,m)〈n|T̂ (F )(β)|m〉, where the matrix

elements of the operator T̂ (F )(β) are given by

〈n|T̂ (F )(β)|m〉 =
(

n!

m!

)1/2(
2

1− F

)m−n+1(
F + 1

F − 1

)n

β∗m−n

× exp

(

− 2|β|2
1− F

)

Lm−n
n

(

4|β|2
1− F 2

)

, (8)

in terms of the associated Laguerre polynomials Lm−n
n (x). The above equation gives

explicitly the F -dependence of ℧(F )(β). For the special values of F = 1, 0 and −1,
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℧
(F )(β) becomes the Glauber-Sudarshan P [22], the Wigner W and the Husimi Q [23]

functions, respectively. The negativity of ℧(F )(β) for any value of the parameter F

indicates nonclassical nature of the state.

The nonclassical nature of a positive Wigner function can be determined using

other features of the state, such as sub-Poissonian statistics and quadrature squeezing.

These features, discussed later, can be attributed to the negative values which arise due

to the dispersion of normally-ordered observables but are not captured by the Wigner

function [24]. In such cases, the nonclassicality is often manifested by the negativity of

the F -parametrized distribution.

Negative Volume: A good indicator of nonclassicality of quantum states was defined by

Kenfack et al [25]. It measures the volume of the integrated negative part of the Wigner

function as

V =

∫ ∫

d2β|W (β, β∗)| − 1. (9)

By definition, this quantity V is equal to zero only when the state under consideration

has non-negative Wigner function. For a classical system, the Wigner distribution is

positive, and the integration
∫ ∫

d2β|W (β, β∗)|=1. For a negative Wigner function of

a quantum state, the absolute value of the Wigner function can be calculated, and the

above integration can be evaluated numerically.

Sub-Poissonian statistics: Mandel’s Q parameter : The quantum character of a field

can be demonstrated either in measurements of time intervals τ between detected

photons demonstrating antibunching, or in photon counting measurements yielding

sub-Poissonian statistics. The condition for sub-Poissonian photon statistics is given

by 〈(∆n̂)2〉 − 〈n̂〉 < 0, which makes the normalized second-order intensity correlation

function, γ(0) < 1. The states with sub-Poissonian statistics have no classical

description.

To determine the photon statistics of a single-mode radiation field, we consider

Mandel’s Q parameter defined by [26]

Q ≡ 〈â†2â2〉 − 〈â†â〉2
〈â†â〉 . (10)

Q = 0 stands for Poissonian photon statistics. Q < 0 corresponds to the case of sub-

Poissonian distribution. This means that a nonclassical state often shows negative Q

values.

Squeezing : The quadrature squeezing of a field can be used to study its nonclassical

properties. To analyze the squeezing properties of the radiation field, we introduce two

hermitian quadrature operators

X̂ = â+ â†, Ŷ = −i(â− â†). (11)

These two quadrature operators satisfy the commutation relation [X̂, Ŷ ] = 2i, and, as

a result, the uncertainty relation (∆X̂)2(∆Ŷ )2 ≥ 1. A state is said to be squeezed if

either (∆X̂)2 or (∆Ŷ )2 is less than its coherent state value. To review the principle
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quadrature squeezing [27], we define an appropriate quadrature operator [28]

X̂θ = X̂ cos θ + Ŷ sin θ = âe−iθ + â†eiθ. (12)

The squeezing of X̂θ is characterized by the condition 〈: (∆X̂θ)
2 :〉 < 0, where the double

dots denote the normal ordering of operators. After expanding the terms in 〈: (∆X̂θ)
2 :〉

and minimizing its value over the whole angle θ, one gets [13]

Sopt = 〈: (∆X̂θ)
2 :〉min

= − 2|〈â†2〉 − 〈â†〉2|+ 2〈â†â〉 − 2|〈â†〉|2. (13)

The nonclassical states correspond to the negative values of Sopt, −1 ≤ Sopt < 0.

The negativity of the Q function and squeezing are not necessary conditions for

identifying nonclassical regimes of quantum states but are sufficient ones. In different

regimes of the scalars s and t, the nonclassicality of the SUP operated states are exhibited

via these indicators. As mentioned earlier, the Q function and the squeezing parameter

S can be negative and hence nonclassical for states that have a positive Wigner function,

as shown in [24, 29, 30]. Conversely, there are also instances where states with partial

negative Wigner functions have positive Q functions [31].

4. Results

4.1. SUP operated coherent state

Let the density matrix of an arbitrary quantum input state of the single-mode radiation

field be

ρ̂in =

∞
∑

m=0

∞
∑

n=0

ρ(m,n)|m〉〈n|. (14)

The output state, produced by applying the SUP operator (sââ† + tâ†â) on ρ̂in, is given

by

ρ̂out =
1

N
[s(ââ†) + t(â†â)]ρ̂in[s(ââ

†) + t(â†â)], (15)

where N is the normalization constant.

If we consider our input single-mode radiation field to be in a coherent state,

|α〉 = exp

(−|α|2
2

) ∞
∑

n=0

αn

√
n!
|n〉, (16)

where |α|2 is the average photon number, the SUP operated coherent state (SOCS) is

given by

ρ̂coh = N−1
1 [s(ââ†) + t(â†â)]|α〉〈α|[s(ââ†) + t(â†â)], (17)

where N1 = s2 + (s+ t)(3s+ t)|α|2 + (s+ t)2|α|4 is the normalization constant.

To analyze the nonclassicality of the SOCS, we need to obtain the phase-space

distribution of the density matrix in terms of the Wigner function. The expression for



Nonclassical properties... 8

the Wigner function in the series form is given in (6). For SOCS density matrix, the

displaced number state expectation value is given by the relation

〈β, k|(sââ† + tâ†â)|α〉
= 〈k|D†(β)(sââ† + tâ†â)|α〉
= 〈k|{s(â+ β)(â† + β∗) + t(â† + β∗)(â+ β)}D†(β)|α〉. (18)

Substituting the above expression (18) into the general expression (6), the Wigner

function for SOCS is obtained as

WSOCS(β, β
∗) = Wcoh(β, β

∗)N−1
1 [M1

2 + 2(s+ t)M1(α
∗β + αβ∗)

+ (s+ t)2|α|2(4|β|2 − 1)], (19)

where Wcoh(β, β
∗) = 2

π
e−2|β−α|2 is the Wigner function of the input coherent state

|α〉,M1 = s− (s+ t)|α|2, N1 = s2 + (s+ t)(3s+ t)|α|2 + (s+ t)2|α|4.
Figure 2 represents the Wigner distribution, WSOCS, in the phase space for fixed

value of |α| and different values of the scalar parameters s and t. The Wigner distribution

is plotted as a function of Re(β) and Im(β) in the phase space. The plots on the right

of figure 2 are the 2D plots of the Wigner distribution varying with Re(β) (Im(β)=0).

The negative dip of the Wigner distribution increases with t. It is clear that performing

the SUP operation transforms a purely classical coherent state to a nonclassical one in

terms of the negativity of the Wigner distribution [32].

Let us analyze the area of negativity of the Wigner function, WSOCS(β, β
∗), for

selected scalar parameters. For t = 1, the Wigner distribution is given by the relation

WSOCS(β, β
∗) =

8

π
(a2 + b2)e−2{(x−a)2+(y−b)2}

×
[

(

x− a

2

)2

+

(

y − b

2

)2

− 1

4

]

, (20)

where β = x + iy, α = a + ib. The negative region is represented by
{

(

x− a
2

)2
+
(

y − b
2

)2 − 1
4

}

< 0, bounded by a circle of radius 1/2 and centered at
(

a
2
, b
2

)

.

For t = 1/
√
2, the Wigner distribution is

WSOCS(β, β
∗) = Wcoh(β, β

∗)s2[1− 8|α|2 + 16|α|2|β|2 + 4|α|4

+ 4(1− 2|α|2)(α∗β + αβ∗)]. (21)

Thus the area of negativity is bounded by a circular region
{

x−
(

a
2
− a

4(a2+b2)

)}2

+
{

y −
(

b
2
− b

4(a2+b2)

)}2

= 1
4
.

For t = 0, the Wigner function is

WSOCS(β, β
∗) = Wcoh(β, β

∗)s2[1− 3|α|2 + 4|α|2|β|2 + |α|4

+ 2(1− |α|2)(α∗β + αβ∗)], (22)

and the corresponding negative region is again within a circle,
{

x−
(

a
2
− a

2(a2+b2)

)}2

+
{

y −
(

b
2
− b

2(a2+b2)

)}2

= 1
4
.
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Figure 2. Wigner function WSOCS of the state (sââ† + tâ†â)|α〉, where s =
√
1− t2,

on the left panel as a function of Re(β) and Im(β) for |α| = 0.4: (a) t = 0.1, (b) t = 0.5,

and (c) t = 0.9. (d), (e) and (f) on the right are the 2D plots corresponding to the

Wigner functions (a), (b) and (c), respectively, as a function of Re(β) with Im(β) = 0.

The negativity in the phase-space distribution is clearly seen.

Therefore, in all the cases, the negative region becomes a circle of radius 1/2, i.e.

the negative area is independent of the choice of the scalar t. The nonclassical nature
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of the SOCS is evident from the negative region of the Wigner function; however, the

degree of quantumness cannot be quantified for different scalar parameters.

The nonclassicality of SOCS can also be investigated using the F -parametrized

quasiprobability function. For the SOCS density matrix (17), using the relation for

℧
(F ) (7), we obtain

℧
(F )
coh(β) =

1

π
N−1

1

[

s2〈α|T̂ (F )(β)|α〉+ s(s+ t)α∗e−|α|2
∑

n

√
n + 1

(|α|2)n
n!

〈n+ 1|T̂ (F )(β)|n〉+ s(s+ t)αe−|α|2
∑

n

√
n+ 1

(|α|2)n
n!

〈n|T̂ (F )(β)|n+ 1〉

+(s+ t)2|α|2e−|α|2
∑

n

(n+ 1)
(|α|2)n
n!

〈n + 1|T̂ (F )(β)|n+ 1〉
]

,

where 〈α|T̂ (F )(β)|α〉 =
(

2
1−F

)

exp
[

−
(

2
1−F

)

|β − α|2
]

and 〈n|T̂ (F )(β)|m〉 is given by (8).

-1.0 -0.5 0.0 0.5 1.0

-0.2

-0.1

0.0

0.1

0.2

F

°
co

h
HF
L
H
Β
L

Figure 3. F -parametrized quasiprobability function ℧
(F )
coh(β) of a coherent state |α〉

after the operation (sââ† + tâ†â), where s =
√
1− t2, as a function of F for |β| = 0.8,

|α| = 0.4 and t = 0.5.

In figure (3) we observe the behavior of the F -parametrized function for different

values of the parameter F . The function is negative around F=0, which is consistent

with our observed nonclassicality of the Wigner function.

The nonclassical nature of SOCS can also be captured by its negative volume (9).

Figure 4 clearly shows that, for fixed t, the negative volume VSOCS increases with the

amplitude |α| of the input coherent field. VSOCS first increases and then decreases with

increasing t. The range of t for which SOCS shows nonclassicality is dependent on the

value of |α|.
The sub-Poissonian statistics of SOCS can be established by using the following:

QSOCS = −|α|2
K1

N−1
1

{

K1(K1 − 1)− (s+ t)2(2|α|2 + 3)− 2s(s+ t)
}

, (23)

where K1 = [(s+ t)|α|2 + (2s+ t)]
2
+ (s+ t)2|α|2.
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Figure 4. Negative volume as a function of t for a coherent state input with |α| =
0.2 (continuous), 0.4 (dashed) and 0.6 (dot-dashed).
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Figure 5. Mandel’s Q parameter as a function of t and with |α| = 0.2 (continuous),

0.4 (dashed) and 0.6 (dot-dashed), for a coherent state input.

In order to see the variation of the Q parameter with |α| (coherent field), we plot

the Q function against the parameter t in figure 5. Q exhibits the sub-Poissonian

character for the coherent input state and increases its negativity as |α| increases. But at
t = 1, the Q parameter suddenly changes its characteristics to indicate super-Poissonian

distribution.

The squeezing parameter for SOCS is calculated to yield the following:

SSOCS = 2N−1
1 (s+ t)2|α|2. (24)

From equation (24), we can see that SSOCS is positive for all t and |α|. The superposed

product (SUP) operation cannot inject squeezing property into the coherent state

character (see figure 6).

In general, the nonclassicality indicators can be compared to observe the signature

of quantumness introduced by the SUP operation on the input coherent field. We

observe from the phase space distribution, the negative region of the Wigner distribution

is an indicator of nonclassicality of the state but cannot quantify the degree of

nonclassicality. Another indicator of nonclassicality, viz. negative volume of the Wigner
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Figure 6. Contour plot for SSOCS as a function of t and |α| for an input coherent

state.

function is able to quantitatively classify the nonclassicality. The negative volume

decreases and the Q parameter increases when t becomes close to 1. The squeezing

parameter S does not exhibit any nonclassicality and hence fails as an indicator. A

comparison of the indicators is shown in figure 7.

−0.5 0 0.5 1
−1

−0.5

0

0.5

1

t

 

 

V
SOCS

Q
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S
SOCS

Figure 7. A comparison of the different nonclassical indicators for SOCS as a function

of the scalar parameter t with |α| = 0.4.

The generated nonclassical SOCS states can prove to be useful in a wide variety

of tasks and applications, with optical components effecting Gaussian processes being

readily available in the laboratory. The experimental and theoretical developments on

continuous-variable quantum information processes in the Gaussian realm can be found

in a recent review [33].
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4.2. SUP operated thermal state

If we consider an input single-mode thermal field with frequency ω and at absolute

temperature T , with the Fock state representation

ρ̂in =
1

(1 + n̄)

∑

n

(

n̄

1 + n̄

)n

|n〉〈n|, (25)

where n̄ = [e~ω/kT −1]−1 is the average photon number, k being the Boltzmann constant,

the resulting SUP operated thermal state (SOTS) is given by

ρ̂th = N−1
2 [s(ââ†) + t(â†â)]ρ̂in[s(ââ

†) + t(â†â)], (26)

where N2 = s2(1+ n̄)(1+2n̄)+ 4stn̄(1+ n̄)+ t2n̄(1+2n̄) is the normalization constant.

Using the series expression (6) for the Wigner function, the phase space distribution

for the thermal state is

WSOTS(β, β
∗) = Wth(β, β

∗)N−1
2 [(M2 + s)2 + (s+ t)M2], (27)

where Wth(β, β
∗) = 2

π
1

(1+2n̄)
e−

2|β|2

1+2n̄ is the Wigner function of the input thermal state,

M2 =
4n̄(1+n̄)
(1+2n̄)2

(s+ t)|β|2, N2 = s2(1+ n̄)(1+ 2n̄) + 4stn̄(1+ n̄) + t2n̄(1+ 2n̄). In figure 8,

we plot the Wigner distribution WSOTS(β, β
∗) as a function of t for fixed n̄ = 0.2. Unlike

the case of input coherent state, WSOTS has no negative region but the Wigner function

does not remain Gaussian. Hence, s(ââ†) + t(â†â) generates a non-Gaussian state from

the Gaussian thermal state. The nonclassical nature of SOTS cannot be captured by

the Wigner function, which remains positive. However this is not a necessary condition

for the nonclassicality of SOTS.

The nonclassicality of the state can be investigated using the F -paramterized

quasiprobability function (7). For the SUP operated thermal state, using the expression

for the output density matrix (26), we obtain

℧
(F )
th (β) =

1

π
N−1

2

(

1

1 + n̄

)(

2

1− F

)

exp

(

− 2|β|2
1− F

)

×
∑

n

[s+ (s+ t)n]2
{(

n̄

1 + n̄

)(

F + 1

F − 1

)}n

Ln

(

4|β|2
1− F 2

)

.(28)

In figure 9, we plot ℧
(F )
th (β) as a function of F . For t = 0.9, the F -parametrized

quasiprobability is positive for F < 0 and becomes negative for F > 0.3. The function

is always positive at F = 0 matching with non-negative Wigner function for SOTS.

℧
(F )
th (β) becomes highly negative as F → 1. Hence, the nonclassicality of SOTS can

be evidenced by the negativity of the normally ordered Glauber-Sudarshan P function.

Similar behavior is also observed for other values of the parameter t.

To further check the nonclassical effects of SUP operations on input thermal state,

we study the sub-Poissonian statistics of SOTS. Mandel’s Q parameter for SOTS is

found to be

QSOTS = − n̄

K2
N−1

2

{

K2(K2 − 3)− 6(n̄+ 1)2(s+ t)2 + t2
}

, (29)
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Figure 8. Wigner function WSOTS of a thermal state after the operation s(ââ†) +

t(â†â), where s =
√
1− t2, as a function of Re(β) and Im(β) for n̄ = 0.2: (a) t = 0.1,

(b) t = 0.5, (c) t = 0.9. (d), (e) and (f) on the right are the 2D plots corresponding

to the Wigner functions (a), (b) and (c) respectively, as a function of Re(β) with

Im(β) = 0. There is no negativity seen in the phase-space distribution.

where K2 = 2(n̄ + 1)(s+ t) [3n̄(s+ t) + 2s] + t2.
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Figure 9. F -parametrized quasiprobability function ℧
(F )
th (β) of a thermal state after

the operation (sââ†+tâ†â), where s =
√
1− t2, as a function of F for |β| = 0.5, n̄ = 0.2

and t = 0.9.
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Figure 10. Mandel’s Q parameter as a function of t and with n̄ = 0.1 (continuous),

0.2 (dashed) and 0.3 (dot-dashed), for an input thermal state.

We plot the Q parameter against t for different values of n̄ (thermal field) in

figure 10. Q exhibits sub-Poissonian character for the input thermal state, and increases

its negativity as n̄ increases. But at t = 1, the Q parameter suddenly changes its

characteristic to mark super-Poissonian statistics. Positive Q parameter values are also

observed in the negative range of t. We emphasize that though the SUP operated

thermal field has no negative Wigner function, it displays sub-Poissonian property.

Hence, Mandel’s Q parameter is a good indicator of the nonclassicality of the SUP

operated thermal states.

The nonclassical nature of SOTS can also be analyzed by studying the squeezing

parameter, which is calculated in terms of the average photon number n̄,

SSOTS = 2N−1
2 n̄

[

2n̄(5s+ 3t)(s+ t) + (2s+ t)2
]

. (30)

From figure 11, it is clear that the squeezing parameter SSOTS goes negative. Hence,

the SUP operator can introduce the squeezing property into the input thermal state

character.
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Figure 11. Contour plot for SSOTS as a function of t and n̄, for an input thermal

state.

Hence we observe here that the Wigner function fails to indicate any nonclassicality

for SOTS. Mandel’s Q parameter goes negative for some values of the control t. Unlike

the input coherent state, SOTS shows squeezing property, and hence SSOTS is a good

measure. A comparison of the nonclassical indicators is shown in figure 12. The reason

for the success of indicators such as the Q parameter and the squeezing parameter S

over the non-negative Wigner function could be the negative values of normally ordered

observables which are not realized by the Wigner function [24]. As shown by the F -

parametrized distribution function (figure 9), such observables are determined by the

Glauber-Sudarshan P function. There are other examples of generated states that have

non-negative Wigner functions and yet exhibit nonclassical features indicated by the Q

parameter [29, 30].
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Figure 12. A comparison of the different nonclassical indicators for SOTS as a

function of the scalar parameter t with n̄ = 0.2.

Non-Gaussian states are an important tool in quantum information processing and

allow for applications of quantum algorithms which cannot be done using nonclassical

Gaussian states. Nonclassical states with non-Gaussian Wigner function, as generated

in the operation, have been used in the design for an efficient and universal quantum
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computation device [34]. Non-Gaussian states have applications also in other quantum

tasks [35, 36].

5. Conclusions

The generation and manipulation of nonclassical field states is of great importance from

the perspective of quantum tasks and information processing. We have shown here that

in continuous variable systems, a nonclassical state can be generated from an input

classical state by the use of a general superposition of two product operations of the

type s(ââ†)+ t(â†â) = s+(s+ t)â†â. The nonclassical property has been analyzed using

the phase-space distribution of the generated state, its photon statistics and also the

quadrature squeezing parameter.

The Wigner function is used to study the phase-space properties. The negativity

of the Wigner distribution is a sufficient condition for the nonclassicality, and we have

checked the area of negativity for different values of the scalar parameter t. For input

coherent states, there is a distinct negativity in the Wigner function of the SUP operated

output state. The negative volume for the SUP operated coherent state is shown to

decrease with increasing t. Hence the negativity of the output state can be manipulated

using the control parameter. For input thermal states, the Wigner distribution is

positive for all values of t. However, the SUP operated thermal state is non-Gaussian in

nature. Thus the SUP operation can be used to generate non-Gaussian or nonclassical

state for quantum operations on classical coherent or thermal fields. For the input

coherent and thermal fields, we have checked for the negativity of the F -parametrized

quasiprobability function as the operator ordering parameter F is varied.

The photon statistics of the output state is another important indicator of

nonclassicality. Field states with the classically most random photon distribution has

a Poissonian character, in which the variance of the distribution is equal to the mean.

Hence, any field with a sub-Poissonian photon distribution is essentially nonclassical.

The sub-Poissonian statistics can be quantified using Mandel’s Q parameter. We have

observed that the Q parameter is negative (sub-Poissonian) for SUP operated coherent

states for most values of the scalar parameter t and is positive for values close to t =

1. For SUP operated thermal states, the Q parameter exhibits both super- and sub-

Poissonian statistics based on the values of the control parameter t. Hence, the photon

statistics of the output states can be controlled using t, which in turn generates the

necessary nonclassicality.

Another important indicator of nonclassicality is the squeezing property of the

output field state. The SOCS does not but the SOTS does exhibit squeezing property

and hence the nonclassicality of the SOTS is well-described by the squeezing property.

The importance of generating nonclassical states using SUP operations is the fact

that such operations can be realized experimentally using photon addition (â†) and

subtraction (â) properties of the input continuous variable states of the input field.

The experimental generation of photon added and subtracted states in the laboratories
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using parametric down converters and controlled beam-splitters makes the physical

realization of SUP operations. Hence one can generate nonclassical states from classical

distributions that can be suitably manipulated for specific quantum tasks with specific

negativity of phase space distribution or sub-Poissonian statistics. It can also generate

requisite non-Gaussianity from Gaussian states. These output states can thus have a

wide range of useful applications.

From the perspective of quantum information applications in continuous variable

regime, the generated output states can be used for various tasks that can be realized

and measured in the laboratory. As mentioned earlier, Gaussian nonclassical states

prove to be more useful than discrete quantum states in practical applications of various

information protocols. On the other hand, states with non-Gaussian Wigner function

can be used in the conceptual design of universal quantum computers and to implement

quantum algorithms.
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