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ABSTRACT In this overview, we examine recent developments in network approaches to drug design.
A brief overview of networks is followed by a discussion of how chemical similarity networks and their
properties address challenges in drug design. Multiple methods used to assess or enhance chemical
diversity for early-stage drug discovery are discussed, as well as methods that can be used for drug
repositioning and ligand polypharmacology. Drug Dev Res 75 : ••–••, 2014. © 2014 Wiley Periodicals, Inc.

Key words: chemical networks; drug design; diversity; similarity

INTRODUCTION TO MOLECULAR NETWORKS

The last two decades have seen an explosion of
interest in the applications of network concepts in the
biological and social sciences. While traditional science
takes a reductionist, bottom-up approach, seeking
explanations of natural phenomena in terms of the
interactions of their individual constituents, network
science looks for emergent properties of systems, taking
the topology of interactions or interconnections as fun-
damental [Csermely et al., 2013]. A network or
graph—in this overview, “graph” and “network” will be
used interchangeably—as any real-life system, either
physical or postulated, is amenable for study using the
mathematics of graph theory. The building blocks of
graphs are nodes, usually represented pictorially as
circles, and edges, with lines connecting nodes. In its
most general sense, a graph is a mathematical object
comprising a 3-tuple or triplet, given by G = (V, E, ψG),
where V is a nonempty set whose elements are termed
vertices, E is a set of edges that essentially form links
between vertices, and the incidence function, ψG,

defines the above link by mapping each edge to a pair of
vertices. The nodes may all belong to a single class, as in
a unipartite graph, or to distinct classes, as in a bipartite
graph. The edges may reflect an unsymmetrical rela-
tionship between the nodes, leading to a directed
graph, or a symmetrical relationship, leading to an undi-
rected graph. Molecular networks may thus be defined
as graphs where the nodes represent distinct molecular
entities, whether small molecules, macromolecules, or
molecular fragments [Csermely et al., 2013; Bolouri,
2014].
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Three distinct classes of molecular networks may
be distinguished, based on the specific relationship rep-
resented by the edges:

1. Interaction networks
2. Chemical transformation/reaction networks
3. Similarity networks

In interaction networks, the edges represent
physical contacts between molecules, or intermolecular
interactions. Such networks include protein–protein
interaction networks (a unipartite graph), drug–target
networks [Yildirim et al., 2007], and transcription
factor–gene binding site networks [Matys et al., 2003]
(bipartite graphs). Metabolic networks belong to the
second class, where the nodes represent metabolites
and the edges represent enzymatic reactions or chemi-
cal transformations connecting them. Both these kinds
of networks are widely studied in systems biology.
Chemical synthetic schemas, like that in Figure 1, and
synthetic accessibility networks [Boda et al., 2007] also
belong to this latter class of networks.

The third category includes molecular networks
where the edges represent a chemical or mathematical
similarity relationship between molecules. Chemical
similarity can include obvious similarity in the molecu-
lar framework or scaffold, and similarity in molecular
properties or biological activities. Often (but not always)
the two go together, an expression of the molecular
similarity principle [Pearlman and Smith, 1998; Martin
et al., 2002]. Molecular similarity is also amenable to
quantitative assessment—the subject of molecular simi-
larity analysis. This is accomplished through a set of
descriptors or molecular fingerprints (numerical repre-
sentations of molecular structure), together with a simi-
larity metric (an algorithm that computes a numerical
similarity measure from a pair of molecular descriptors
or fingerprints). It is this class of network that will be
the focus of the present overview. Such networks are
said to span a chemical space—an abstract representa-
tion of the molecular network. The structure and
dynamics of molecular networks have been extensively
reviewed by Csermely et al. [2013]. Network informa-

tion has been employed to predict cross-reactivity
assessment [von Eichborn et al., 2011] and for drug
repositioning [Das et al., 2010b].

MOLECULAR SIMILARITY ANALYSIS

The goal of molecular similarity analysis is to find
molecules that are chemically and structurally similar to
known drugs or drug leads. This is because structurally
similar molecules are presumed to display similar activi-
ties in biological assays (the similarity principle of quan-
titative structure–activity relationships—QSAR).
Similarity can be assessed using any combination of
molecular descriptors and similarity metric. There are
thousands of descriptors that can be generated with
readily available software tools, and many kinds of
descriptor representations of molecules, from constitu-
tional and topological descriptors that can be computed
simply from the chemical formula or the molecular
graph (two-dimensional structure), fragment-based
descriptors to surface area descriptors, shape descrip-
tors and electron density-derived descriptors, that are
sensitive to the molecular conformation and capture the
physics of electrostatic and nonbonded intermolecular
interactions. The advantages and shortcomings of dif-
ferent families of molecular descriptors have been
the subject of considerable research and debate
[Todeschini and Consonni, 2000; Sukumar et al., 2012].
The choice of descriptors sensitively affects the com-
puted similarity—for instance, two molecules might be
constructed from the same molecular scaffold and thus
be very similar in size and shape, but have very different
properties because of the different chemical natures of
the functional groups or substituent atoms. Conversely,
molecules with very different molecular scaffolds might
look similar for binding to a protein, because of a similar
shape and electrostatics. The pharmaceutical literature
is replete with examples of drugs where one enantiomer
is several orders of magnitude more potent than the
other, or even where one is an agonist while the other is
an antagonist [Sukumar et al., 2012]. Thus, it is not an
exaggeration to say that similarity lies in the eye of the

Fig. 1. Distribution of molecules obtained from different synthetic pathways (left: target-oriented synthesis TOS, middle: combinatorial
synthesis, and right: diversity-oriented synthesis DOS) in a three-dimensional chemical space.
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beholder. In the final analysis, a choice must be made in
dataset representation, in terms of the myriad chemical
descriptors and comparison methods available. This
decision is usually based on prior knowledge, to strike a
balance between interpretation of the significance of
changes in that space (low-dimensional structure of the
chemical space) and the fidelity of reproduction [Krein
et al., 2012].

A good descriptor representation leads to a
smooth structure–property or structure–activity rela-
tionship, whereas an inappropriate descriptor represen-
tation for a particular application leads to a rough
structure–activity landscape, or the presence of “activity
cliffs” [Maggiora, 2006]. Such activity cliffs represent
failures of the similarity principle of QSAR, but they
also represent opportunities for medicinal chemists to
quantitatively improve the potency of a drug lead
through small structural modifications. Much interest
has therefore been devoted to the identification and
quantification of activity cliffs [Stumpfe and Bajorath,
2012]. One popular measure of the roughness of a
structure–activity landscape is the structure–activity
landscape index, SALI [Guha and Van Drie, 2008b]
(Table 1 and Fig. 2):

SALIij
i j

=
−

− ( ){ }
A A

sim i j1 ,
,

where Ai and Aj are the activities of molecules i and j in
some bio-assay, and sim(i,j) is a coefficient of similarity
between the molecules i and j. The SALI is computed
for all pairs of molecules in a dataset, and a cutoff value
for SALI is chosen for constructing the SALI graph: any
pair of molecules i, j with SALIi,j greater than the cutoff
is connected by a SALI edge. The SALI graph thus
focuses attention on the steepest activity cliffs [Guha
and Van Drie, 2008a], i.e., pairs of structurally similar
molecules displaying large differences in their activities
toward some biological target. Plotting the SALI value
against the similarity threshold (the SALI curve) gives a
measure of the ability of a QSAR model to correctly
rank order pairs of molecules by activity. The value of
the SALI curve at the highest similarity threshold is a
measure of the model’s ability to correctly identify the
steepest activity cliffs; the value at zero similarity
threshold measures the ability of the model to correctly
rank order all the molecules.

From the above discussion, it should be clear that
activity cliffs also represent boundaries between the
domains of applicability of different structure–activity
relationships or QSAR models. Any QSAR model is
valid for predictions within its domain of applicability,
but fails when attempting to make predictions across an

activity cliff. A cluster of k molecules connected
through a similarity relationship forms an undirected
graph that forms the basis of the k-nearest neighbor
prediction method. The SALI graph, on the other hand,
is a directed network, connecting molecules across
activity cliffs, with each edge leading (by convention)
from the molecule of lower activity in the pair to that of
higher activity (Fig. 2).

Network-like similarity graphs [Wawer et al.,
2008] represent another way in which to display
structure–activity landscapes and identify discontinui-
ties therein. Here, nodes are color-coded by the
potency, and the size of each node is proportional to the
local discontinuity in potency. Such network measures
are important in the analysis and design of molecular
libraries, and for construction of structure–activity
relationships.

DESIGNING FOR MOLECULAR DIVERSITY

Strategies for designing molecular screening
libraries differ based on the available information and
objectives. If the designer already has one or more good
lead(s), the objective might be to look at molecules that
are chemically similar to known actives, i.e., to look
within the same chemical space to exploit the similarity
principle—this is known as focused library design. If,
however, there are no good leads, or if the known drugs
exhibit adverse side effects, the designer might be
better off casting the net wide in the hopes of finding
molecules that exploit a different mode of action. Given
the enormously high dimensions of the chemical space
spanned by all possible drug-like molecules, identifying
drug leads in this manner is an extremely difficult task
with no guarantee of success [Bohacek et al., 1996;
Triggle, 2009; Virshup et al., 2013]. There has been
much debate over the utility of combinatorial synthetic
strategies to increase molecular diversity or sample
unexplored areas of chemical space [Kodadek, 2011].

To overcome the shortcomings of traditional
combinatorial libraries, Schreiber [2000] proposed the
concept of diversity-oriented synthesis (DOS), a novel
synthetic approach to design and generate molecular
libraries possessing structural complexity and diversity.
The concept relies on the fact that small molecules
interact with biomacromolecules like DNA, RNA, and
protein at the surface. Hence, diversity in structural
framework will improve the scope of binding of these
molecules to various targets (protein–protein interac-
tions, protein–DNA/RNA interactions, and many
more), thereby improving the biological activity of the
library. Among the several strategies exploited by DOS,
one of the most effective and popular is an old idea: to
“build” the starting material and “couple” with various

CHEMICAL LIBRARY DESIGN 3
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reagents to design a diverse set of structurally unique
compounds. The compounds thus obtained from the
coupling step are again paired with another set of
diverse reagents to end up with skeletal, stereo-
chemical, and biologically diverse compounds. This
approach has recently been applied to the synthesis of
natural product-inspired compounds [Galloway et al.,
2010] and privileged scaffolds [Evans et al., 1988;
Welsch et al., 2010; Surakanti et al., 2013].

Computational strategies for the design of diver-
sity libraries have exploited substructural descriptors
known as BCUT descriptors [Pearlman and Smith,
1998; Stanton, 1999] in a cell-based representation of
chemistry space designed to optimize chemical diver-
sity [Mason and Beno, 2000]. Painter et al. [2011] have

used BCUT metrics [Pearlman and Smith, 1998;
Stanton, 1999] to analyze the structural diversity of a
virtual library, with the objective of designing molecules
that explored new regions of chemical space in a DOS
strategy. They employed a large virtual library of 11,748
compounds constructed from different scaffolds
obtained from a DOS strategy. Analysis of the structural
diversity showed that the designed virtual library
occupied new chemical space as compared to 32,700
compounds from the Mmolecular Libraries Small
Molecule Repository (MLSMR: http://mli.nih.gov/mli/
secondary-menu/mlscn/ml-small-molecule-repository/).
This allowed the authors to select 53 chemically diverse
compounds from the virtual library for synthesis and
biological activity testing.

Fig. 2. Similarity network (dotted lines) and structure–activity landscape index (SALI) edges (thick arrows) computed from the data in Table 1.
The similarity network was generated using Tanimoto similarity cutoff >0.6 to define an edge between a pair of nodes. The cutoff for the SALI
graph was chosen such that all nodes with SALI > 12 are connected with a SALI edge pointing from the molecule of lower activity (IC50) to that
of higher activity. This demonstrates the existence of activity cliffs in the network due to variation in the activity between pairs of structurally
similar molecules, e.g., molecules 7 and 8. It is also seen that not all structurally similar compounds are connected by SALI edges.
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NETWORK MEASURES IN DRUG DESIGN
AND DISCOVERY

Networks (including chemical, biological, com-
puter, and social) fall into distinct classes, characterized
by well-defined measures that are manifested in differ-
ences in the network organization, communication
within the network, and evolution of the network.
Small-world networks are graphs in which most vertices
are not neighbors of one another, but most vertices can
be reached from every other vertex in V by a small
number of hops. Such classes of networks demonstrate
an architecture that falls between that of the classical
random graphs and the regular lattices. Random graphs
are graphs constructed from randomly connected
nodes. The simplest example is the Erdös–Rényi graph
[Erdös and Renyi, 1959, 1960], which can be con-
structed from a complete graph by randomly delinking
the nodes [Gilbert, 1959] or by inserting a link between
randomly selected pair of nodes [Erdös and Renyi,
1960]. Random graphs characteristically follow Pois-
son’s distribution, with high entropy and low clustering
coefficients compared with scale-free networks. The
probability that a randomly selected node has degree k

is given by p k
e

k

k

( ) =
−λ λ

!
, where λ = k is the average

degree of all nodes in the network.
The structural properties of small-world networks

are quantified by prescribing two metrics:

(i) the characteristic path length L(p), which gives the
number of edges in the shortest path connecting
two vertices from V, averaged over all pair of ver-
tices. L(p) measures the typical separation between
two vertices in the network, and thus is a global
property of the graph. If n be the number of verti-
ces in the network, then the small-world property is
characterized by L ∝ log n.

(ii) the clustering coefficient C(p), which measures the
cliquishness of a typical vertex neighborhood, thus
characterizing a local property. If a vertex in G has
kv neighbors, then at most kv(kv − 1) / 2 edges can
exist between them, implying that each pair of
neighbors of v is in turn neighbors of each other. If
Cv be the fraction of these allowable edges that
actually exist, then clustering coefficient C is
defined as the average of Cv over all v. Any small-
world network is characterized by a C(p) that is
much larger than that for a corresponding random
network.

The shape of the degree distribution of a small-
world network is Poisson like, which is similar to that of
a random network. The topology of such a network is
relatively homogeneous, with all vertices having nearly
the same degree [Watts and Strogatz, 1998].

Scale-free networks are graphs whose vertex
degree distribution follows (often asymptotically) a
power law. If P(k) be the fraction of vertices in the
network that have degree k, then P(k) ≈ k−γ, where γ is
the scaling parameter, typically having a value in the
range [2,3] [Barabási and Albert, 1999]. The most
important characteristic in a scale-free network is the
occurrence of a subset of V containing vertices that
have degree vertices significantly higher than the
average in the graph. The highest degree vertices are
the hubs in the network, and often play a central role in
determining the properties of the network, and in
determining the dynamics and evolution of such net-
works [Albert and Barabási, 2002; Park and Barabási,
2007]. The presence of hubs in biological and computer
networks render such networks resistant to random
failure of even a large proportion of nodes or edges
[Albert and Barabási, 2002; Park and Barabási, 2007].
The global properties of such chemical space networks
has been explored [Benz et al., 2008; Tanaka et al.,
2009; Krein and Sukumar, 2011]. It has been demon-
strated that large chemical space networks constructed
with different similarity metrics show the small-world
property, with power law scaling of the degree distribu-
tion at high degree [Krein and Sukumar, 2011]. The
local properties of chemical space networks have also
been the subject of considerable investigation [Guha
and Van Drie, 2008b; Bajorath et al., 2009; Stumpfe
and Bajorath, 2012] due to their implications for
structure–activity relationships and lead optimization,
as mentioned above.

Clusters of molecules belonging to different
structure–activity relationships are often not isolated
into disconnected networks, but connected by “chemi-
cal bridges,” i.e., molecules that belong to both clusters
[Wawer et al., 2008]. These bridging molecules possess
high “betweenness centrality” (Fig. 3), essentially
describing the frequent occurrence of a vertex on the
shortest paths between pair of vertices throughout the
network [Freeman, 1977]:

C v
vst

sts v t V

B ( ) =
( )

≠ ≠ ∈

∑
σ

σ

where
σst = σts denotes the number of shortest paths from
s ϵ V to t ϵV (set of vertices),
σst(v) = number of shortest paths from s to t that some
v ϵV lies on.

Raaf and Messabih [2010] have employed
betweenness centrality as an algorithm to predict the
influential reactions in a metabolic reaction network
(described as an “elementary network system”), and
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also to identify the decomposition of the metabolic
system to subnetwork structure. In the pertinent study,
the metabolic reactions were treated as nodes, and the
reaction conditions as edges.

Networks wherein clusters combine in a hierar-
chical manner are characterized by coexistence of
modularity, local clustering, and scale-free topology. In
hierarchical networks, the clustering coefficient follows
C(k) ∼ k-1 (a straight line of slope −1 on a log–log plot).
Relating local and global network measures thus
enables identification of key molecules responsible for
“scaffold hopping” [Rush et al., 2005; Barker et al.,
2006; Renner and Schneider, 2006; Nettles et al., 2007;
Vogt et al., 2010; Sun et al., 2012].

Sheftel et al. [2013] have reported the social
network behavior of interconnected aminoacid residues
of the β-adrenergic receptor (GPCR family) using
“closeness centrality” measured. Closeness centrality
describes the “neighborhoodness” [Sabidussi, 1966] of
the clustered vertices in the graph:

C v
d v t

c
Gt V

( ) =
( )

∈∑
1

,
,

where dG = distance between the vertices v and t in
graph G and v, t ϵ V (set of vertices).

Centrality measures based on eigen-
decomposition of the matrix form of networks, often

referred to as graph spectral analysis, have been used
to identify clusters and subclusters in complex biologi-
cal networks [Kannan and Vishveshwara, 1999;
Vishveshwara et al., 2002]. The eigenvalues represent
the flow of information between vertices within clusters
or subclusters of the protein domain. Graph spectral
analysis [Balasubramanian et al., 2006] is also used to
correlate the structure and functions of protein chains
in clusters.

Clique-based methods are also used to assess clus-
tering [Barker et al., 2006; Nettles et al., 2007; Milletti
and Vulpetti, 2010] where cliques are network subsets
where every pair of vertices in the subset is connected
by an edge. Thus, those molecules belonging to cliques
have a high degree of structural similarity to one
another.

Koutsoukas et al. [2014] recently conducted a
benchmark study to determine the effectiveness of dif-
ferent descriptor sets in assessing the diversity of a
molecular library in bioactivity space. These authors
analyzed several popular families of descriptors, includ-
ing those for pharmacophore-based descriptors,
extended connectivity fingerprint descriptors [Rogers
and Hahn, 2010] (ECFP4 and FCFP4), MACCS
keys [Durant et al., 2002], shape-based descriptors
ROCS [Grant et al., 1996; Rush et al., 2005]) and prin-
cipal moments of inertia (PMI), BCUT descriptors
[Pearlman and Smith, 1998; Stanton, 1999],
physicochemical property descriptors and Bayes affin-
ity fingerprints [Koutsoukas et al., 2013]. They found
that a higher coverage of bioactivity space was achieved
using Bayes affinity fingerprints; the latter being
descriptors that represent molecules in terms of their
in silico predicted bioactivity profiles against a broad
spectrum of human protein drug targets. Descriptors
such as PMI showed no correlation between diversity
in the PMI space and diversity in bioactivity space.
Studies such as this underscore the importance of the
choice of descriptors in molecular diversity assessment,
and that different measures of chemical diversity may
not necessarily correlate with diversity in bioactivity
space.

Chemogenomic approaches that consider protein
target space in addition to the ligand space [Bredel and
Jacoby, 2004; Mestres, 2004; Klabunde, 2007; Rognan,
2007; Das et al., 2009, 2010a; Kinningss and Jackson,
2009; Kinnings et al., 2009; Sheridan et al., 2009;
Milletti and Vulpetti, 2010; Sukumar and Das, 2011]
have been employed to get around the limitation that
ligands that are dissimilar on the basis of structural
similarity may nevertheless bind to the same protein
target. Network pharmacology is thus emerging as a
new paradigm in drug discovery [Hopkins, 2008; Zhao
and Iyengar, 2012].

Fig. 3. Similarity network of a of a polymer dataset. A few nodes with
high and low betweenness centrality values are identified: these
bridge clusters of polymers.
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EVOLUTION OF CHEMICAL SPACE NETWORKS

One of the most important mechanisms for the
dynamic evolution of networks is via preferential
attachment—essentially a stochastic process. As the
essence of this process, the higher the degree of a vertex
in the network, the more likely it is to receive new
edges. Thus, the hubs show a significantly stronger
ability compared with other vertices to acquire new
links added to the network during its dynamic evolution
[Albert and Barabási, 2002; Park and Barabási, 2007].

Molecular libraries are not designed by a series of
random acts. New molecules are synthesized from exist-
ing precursors using well-established synthetic
schemes. The new molecules bear a degree of chemical
similarity to their precursors, but differ in important
ways. Thus, the process of molecular library design is
that of evolution of a network, where new nodes are
added and connected to existing nodes. Preferential
attachment of new nodes to existing nodes of high
degree (hubs) leads to the formation of a scale-free
network [Albert and Barabási, 2002; Park and Barabási,
2007], as in social networks and computer networks.
The power law degree distribution and small-world
nature of chemical space networks [Benz et al., 2008;
Tanaka et al., 2009; Krein and Sukumar, 2011] lead one
to speculate that such networks are likewise formed by
preferential reuse of favored precursors or well-studied
molecular scaffolds. In practice, awareness of a net-
work’s limited diversity can suggest a modification to
synthetic strategy that explicitly seeks increasing chemi-
cal diversity when there is a failure to discover new
leads with novel molecular scaffolds. Analysis of the
network properties of chemical libraries and assessment
of their molecular diversity thus assume increased sig-
nificance for the design of new chemical entities.

The temporal characteristics of chemical libraries
(and associated network characteristics) are also note-
worthy. Public databases such as PubChem [Wang
et al., 2010], ZINC [Irwin and Shoichet, 2005], and
PDB [Berman et al., 2002] have grown significantly
within a very short span of time. Temporal behaviors of
complex systems, such as e-mail patterns and earth-
quakes, have been studied using measures such as
memory (a measure of temporal correlations) and
burstiness (a measure of intervening time distribution
between consecutive events) [Goh and Barabási, 2008].
Such measures may suggest research directions for
cheminformatics and provide quantification of histori-
cal biases and assay performance.

CONCLUSIONS

We have briefly reviewed the basic characteristics
of molecular similarity and dissimilarity networks,

focusing on their use in the design of chemical libraries.
Large chemical space networks have been shown to
possess the small-world property [Krein and Sukumar,
2011] characteristic of many physical, biological, and
social networks. Exploring new areas of chemical space
in a finite library demands maximization of chemical
diversity. Assessment of molecular similarity and
chemical diversity are nontrivial problems, due to the
large number of possible descriptors, and due to the
presence of activity cliffs. SALI networks [Guha and
Van Drie, 2008a, 2008b] quantify the roughness of a
structure–activity landscape. Similarity and diversity
depend sensitively upon the choice of descriptor repre-
sentation and choice of similarity metrics. Chemical
diversity may not translate into diversity in the
bioactivity space, due to the presence of activity cliffs
[Maggiora, 2006], and the efficacy of a descriptor rep-
resentation in quantifying diversity in bioactivity space
may further depend upon the size and nature of the
chemical library [Koutsoukas et al., 2014]. Targeting
diversity in bioactivity space is the objective behind
DOS.

Chemogenomic and network pharmacology
[Klabunde, 2007; Rognan, 2007; Hopkins, 2008; Zhao
and Iyengar, 2012] are attempting to overcome the
limitations of traditional structure-based and ligand-
based drug discovery by utilizing structural information
about both the ligands and their target proteins, where
available, and exploiting structural and chemical simi-
larities between molecules known to target a protein, as
well as structural and sequence similarities between
protein binding sites. Such approaches explicitly
employ a network formalism.

Local graph invariants are also of interest. Hubs in
a similarity network identify clusters that are well
defined by a structure–activity relationship. Such mol-
ecules are expected to confer robustness to a QSAR
model. Molecules that possess high betweenness cen-
trality in a graph act as chemical bridges connecting
local clusters belonging to different structure–activity
relationships. Inclusion of such molecules in a training
set renders a QSAR model more capable of scaffold
hopping. The evolution of chemical libraries and their
network invariants with time are interesting subjects
that have not as yet received significant attention from
the cheminformatics community, but they may hold the
keys to understanding the social aspects of the disci-
pline at designing new routes to chemical synthesis and
drug discovery.
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clarity. Please check and confirm it is correct.
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14 AUTHOR: For references Albert & Barabási,
2002, Erdös & Renyi, 1959, Erdös & Renyi,
1960, Galloway et al., 2010, Goh & Barabási,
2008, Maggiora, 2006, Nettles et al., 2007 and
Sheftel et al., 2013. If these are not one-page
articles please supply the first and last pages for
these articles.

15 AUTHOR: In Evans et al., 1988, if there are
fewer than 11 authors, please supply all of their
names. If there are 11 or more authors, please
supply the first 10 authors’ names then et al.

16 AUTHOR: Please supply the volume number for
Freeman, 1977.

17 AUTHOR: Please supply the article title for
Nettles et al., 2007.

18 AUTHOR: Please supply the city location of
publisher for Pearlman & Smith, 1998.

19 AUTHOR: For Stumpfe & Bajorath, 2012 and
Wawer et al., 2008, Please supply the forename
of author Bajorath Jr.

20 AUTHOR: Please confirm if the year of
publication ″2011″ for Sukumar & Das is correct.

21 AUTHOR: Please supply the chapter name, city
location of the publisher and page range for
Todeschini & Consonni, 2000.

22 AUTHOR: Figures 1–3 are of poor quality
(labels and lines are blurry). Please check
required artwork specifications at
http://authorservices.wiley.com/bauthor/
illustration.asp


