Header menu link for other important links
Naphthalenediimide-Linked Bisbenzimidazole Derivatives as Telomeric G-Quadruplex-Stabilizing Ligands with Improved Anticancer Activity
S. Sur, V. Tiwari, D. Sinha, M.Z. Kamran, , G. Suresh Kumar, V. Tandon
Published in American Chemical Society
Volume: 2
Issue: 3
Pages: 966 - 980
Human telomeric G-quadruplex DNA stabilization has emerged as an exciting novel approach for anticancer drug development. In the present study, we have designed and synthesized three C2-symmetric bisubstituted bisbenzimidazole naphthalenediimide (NDI) ligands, ALI-C3, BBZ-ARO, and BBZ-AROCH2, which stabilize human telomeric G-quadruplex DNA with high affinity. Herein, we have studied the binding affinities and thermodynamic contributions of each of these molecules with G-quadruplex DNA and compared the same to those of the parent NDI analogue, BMSG-SH-3. Results of fluorescence resonance energy transfer and surface plasmon resonance demonstrate that these ligands have a higher affinity for G4-DNA over duplex DNA and induce the formation of a G-quadruplex. The binding equilibrium constants obtained from the microcalorimetry studies of BBZ-ARO, ALI-C3, and BBZ-AROCH2 were 8.47, 6.35, and 3.41 μM, respectively, with h-telo 22-mer quadruplex. These showed 10 and 100 times lower binding affinity with h-telo 12-mer and duplex DNA quadruplexes, respectively. Analysis of the thermodynamic parameters obtained from the microcalorimetry study suggests that interactions were most favorable for BBZ-ARO among all of the synthesized compounds. The ΔGfree obtained from molecular mechanics Poisson-Boltzmann surface area calculations of molecular dynamics (MD) simulation studies suggest that BBZ-ARO interacted strongly with G4-DNA. MD simulation results showed the highest hydrogen bond occupancy and van der Waals interactions were between the side chains of BBZ-ARO and the DNA grooves. A significant inhibition of telomerase activity (IC50 = 4.56 μM) and induced apoptosis in cancer cell lines by BBZ-ARO suggest that this molecule has the potential to be developed as an anticancer agent. © 2017 American Chemical Society.
About the journal
Published in American Chemical Society
Open Access
Impact factor