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We consider the non-dissipative multi-fluid equations, and demonstrate how multi-Beltrami equili-

bria emerge as natural relaxed states of the model, representing an evolution towards the minimum

energy. General properties of these states are studied, and a wide class of solutions is obtained. We

specialize to the cases of double and triple Beltrami states and highlight their connections with the

appropriate physical invariants, viz., the generalized helicities and the energy. In particular, we

demonstrate that different field configurations can give rise to distinct or identical values of the

invariants, depending on the nature of the roots of the multi-Beltrami equation. Moreover, we also

highlight equivalences between (outwardly) unconnected models allowing us to treat them in a

unified manner. Some observations regarding the nature of the solutions for certain special cases of

these models are presented. Potential applications for astrophysical plasmas are also highlighted.

VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4931069]

I. INTRODUCTION

Ever since the pioneering work of Lord Kelvin in the

19th century, the notions of vorticity and helicity, though the

word helicity was introduced later by Moffatt,1 have played

a key role in advancing the development of fluid dynamics.

The recognition of their topological properties, and the fact

that many simple plasma (charged fluid) models, like magne-

tohydrodynamics (MHD) and Hall MHD, have similar

mathematical structures,1–10 has proven to be useful in fusion

and astrophysical plasmas. The exploitation of the central

topological property, the conservation of helicity in “ideal

dynamics” (non-dissipative limit) created one of the central

developments in plasma physics—the ideas of relaxation and

self-organization in plasmas.2–8 In this paper, we will

explore the possibility of relaxed states in a more encom-

passing model: a multi-fluid plasma.

Although this field originated with the work of Woltjer,2

it was Taylor’s research3,6 that converted a mostly complex

result into something that led to an easily solvable system

with immediate predictions—the Woltjer-Taylor states of

ideal MHD. The Woltjer-Taylor state is a specific example

of what will be called a Beltrami state obtained by aligning a

“vorticity” along its corresponding “velocity,” i.e., it is found

via r�P¼ aP. The principles of self-organization and

relaxation in the context of the Woltjer-Taylor Beltrami

states have been successfully used in modeling fusion and

astrophysical plasmas.9,11–19 However, it must be recognized

that this paradigm is not an exact one, and deviations from

this principle have been observed.20–22

Subsequently, the same paradigm was transported to

extended MHD models in Refs. 7, 8, 23, 24, who established

the existence of double and triple Beltrami relaxed states.

Such states are of considerable importance; they emerge via

a variational principle that extremizes a given “target” invar-

iant (typically the energy) whilst holding the helicities (and

other invariants) fixed. It is common to interpret such states

as the minimum energy states6,25 of the system; it is impor-

tant, however, to recognize that this is not always the case.8

It has also been suggested26–28 that the relaxation process

may be viewed as evolution towards a maximum entropy

state, instead of a minimum energy state. It is well known29

that the former paradigm is of considerable importance in a

wide range of fields, further cementing the importance of

relaxed states.

The relaxed states, a fundamental (and abstract) expres-

sion of a plasma’s ability to find its “suitable” configuration,

have been applied in a variety of contexts: the single and

double Beltrami states have been used in modeling fusion

plasmas, such as spheromaks,30 field-reversed configura-

tions,31,32 and plasma boundary layer transport.33–35 In an

astrophysical context, Beltrami states, and their associated

invariants, have found usage in modeling solar flares,36–39

solar arcades and loops,40,41 coronal heating,42,43 large-scale

dynamos,44–47 scale hierarchies in flows,48 and turbulence.49

For a highly unusual, speculative, and interesting applica-

tion, which entails the exploration of the double-Beltrami

system to model “classical perfect diamagnetism,” we refer

the reader to Ref. 50.

The preceding discussion indicates that generalizations

of the Beltrami states, obtained via a variational principle for

multi-fluid models, are likely to be of some use in studying

astrophysical environments, such as the ones where dust

plays a significant role. This investigation forms the subject

of our paper. The outline of the paper is as follows. We

construct, motivate, and analyze the multi-Beltrami states in

Section II, as well as presenting a simple, but general, set of

solutions. We discuss some of the uses and implications of

the multi-Beltrami states in Sections III and IV. Finally, we

conclude in Section V by presenting avenues for further

work.
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II. THE MULTI-FLUID DYNAMICS—MULTI BELTRAMI
STATES

We introduce the relevant equations for the non-

dissipative multi-fluid model, and their connections to

relaxed states and invariants. Next, we present the multi-

Beltrami solutions for this model.

A. The evolution of generalized vorticity (GV)

We begin by writing the equation of motion obeyed by

the species a (with mass ma and charge qa)

qa
@

@t
þ Va � r

� �

Va ¼ qana Eþ
Va � B

c

� �

�rpa þ qarU; (1)

where qa, Va, and pa represent, respectively, the density, ve-

locity, and pressure of each species. U represents the gravita-

tional potential (or any other gradient force). By using (i)

E ¼ �c�1@A=@t�r/, where A and / are the vector and

electrostatic potentials, respectively, (ii) the vector calculus

identity F � rð ÞF ¼ 1
2
rF2 þ r� Fð Þ � F, and (iii) invoking

a barotropic equation-of-state which yields q�1
a rpa ¼ rHa,

where Ha is the enthalpy, we convert (1) to

@Pa

@t
¼ Va �Xa �rwa; (2)

which, along with its curl,

@Xa

@t
¼ r� Va �Xað Þ; (3)

represent, respectively, the evolution equations for the gener-

alized vector potential (GVP), Pa ¼ AT þ
mac
qa

Va, and the

GV, Xa ¼ r� Pa ¼ BT þ
mac
qa

r� Va ¼ BT þ
mac
qa

xa. The

potential, wa ¼
c
qa

maV
2
a

2
þ maUþ maHa þ qa/

h i

, contains all

the potential forces that play no direct role in the evolution

of GV. The set of Eqs. (2) and (3), the latter corresponding

to the standard Helmholtz vortical dynamics, constitutes a

representative dynamics of a system of collisionless charged

particles with a barotropic thermodynamics.51

The GVP (Pa), combining the kinetic and electromag-

netic components of the momentum, is just the standard

canonical momentum. The GV ðXaÞ, therefore, could also be

called the canonical vorticity. In the definitions of GVP and

GV, the suffix “T” stands for “total,” as the magnetic field BT

could also accommodate an ambient/vacuum field. The term

rwa in (2) contains contributions from the kinetic, electro-

magnetic, and thermodynamics components, respectively.

All species, evolving independently from each other,

however, are connected through Ampère’s law

$� B ¼
4p

c
J ¼

4p

c

X

Ja ¼
4p

c

X

naqaVa; (4)

since they all contribute to the electrical current. In this non-

relativistic treatment, we are neglecting the displacement

current.

We shall now distinguish between two different scenar-

ios, which can be handled within the same formalism:

1. There is no ambient magnetic field and the total field is

just the dynamic field, BT¼B. In this case, Eqs. (2) and

(3) will serve as the starting point for further analysis.

2. There is a finite ambient magnetic field, and the total field

is split as

BT ¼ B0êz þ B; (5)

where B is the dynamic field, and B0 is a guide field main-

tained by currents outside the plasma.

Even for this case, the dynamics can be cast exactly in the

form (2)–(3) for the restricted system with (1) r� Va¼ 0,

signifying incompressibility, and (2) translational symmetry,

represented by @/@z¼ 0. Referring the reader to Ref. 50 for

details, the final equation for the evolution of the dynamical

part of the generalized momentum turns out to be

@Pa

@t
¼ Va �Xa �r~wa; (6)

where the velocity field has the form Va ¼ V
ðzÞ
a êz þ êz

�rva. Notice that B0 and va are fully absorbed in the poten-

tial ~wa ¼ wa � B0va, and do not affect the vortex dynamics

directly.

Before concluding this section, a couple of important

geometric observations are in order. Let us recall (3) along

with r �Xa ¼ 0. Hence, we can rewrite (3) as

@Xa

@t
þXa r � Vað Þ þ Va � rð ÞXa � Xa � rð ÞVa ¼ 0: (7)

Two different geometric interpretations are possible:

1. It can be viewed as the Lie-dragging of a vector density

of weight 1, akin to the magnetic field (in ideal MHD)

and the vorticity (in ideal hydrodynamics).

2. More importantly, one can rewrite (7) as

@

@t
þ LVa

� �

Xa � dS ¼ 0; (8)

implying that Xa � dS is a Lie-dragged 2-form. In turn,

this implies that the flux conservation of the generalized

vorticity holds true, akin to magnetic flux conservation in

ideal MHD.

In both cases, the Lie-dragging is undertaken with respect

to the velocity Va, which serves as the flow vector field.

The generalized vorticity at any arbitrary time is related to

the generalized vorticity at t¼ 0 via a relation analogous

to the Cauchy vorticity formula,52 and is given by

X
j
a ¼ J �1

X
i
a t ¼ 0ð Þ

@qj

@ai
; (9)

where X
i
aðt ¼ 0Þ is the generalized vorticity at t¼ 0 and

q(a, t)� r is the Lagrangian trajectory as a function of the

label a and t; the former is given by the initial position of the

fluid particle at t¼ 0. Moreover, J denotes the Jacobian and

is equal to detj @q
j

@ai j.
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It is, perhaps, the right place to state a useful conse-

quence of the Helmholtz vortical dynamics: if X
i
aðt ¼ 0Þ

¼ 0, then it remains zero for all times, i.e., Xi
aðtÞ ¼ 0 for

arbitrary t; see for, e.g., Refs. 50 and 53. This can be seen by

inspecting (9), or directly deduced from (3). Thus, we see

that a theoretical basis exists for a closely associated

phenomenon that was observed in the detailed Hall MHD

simulations of Ref. 54; the latter are indicated to be useful in

explaining the evolution of protoplanetary discs.

B. On conservation laws and variational principles

The vortex dynamics of (2) and (3) will, by a straightfor-

ward demonstration, lead to a conserved generalized helicity

(GH)

ha ¼
1

8p
hPa �Xai (10)

for each a. The notation ½
Ð

d3x � � � ¼ h� � �i� will be adopted

henceforth. In addition to the generalized helicities, the total

energy

E ¼
X

a

1

2
manaV

2
a þ

B2

8p

* +

(11)

is also conserved. Thus, for an N species system, there are

Nþ 1 constants of motion. The conservation of generalized

helicities can also be interpreted geometrically, which we

shall investigate in greater detail elsewhere; earlier studies in

this area include Refs. 55–58.

The exploitation of the system invariants has led to

many important advances in finding accessible equilibrium

states for these complex systems. This includes the famous

Woltjer-Taylor states of ideal MHD,2,3,6 the double Beltrami

states of Hall MHD,7,8 and the multi-Beltrami states of

extended MHD (Ref. 23)—each of these are applicable for

the non-relativistic models. We shall explore this method in

further detail in Secs. III and IV.

The “constrained” variational principle is constructed

based on the implicit assumption that the generalized helic-

ities (10) are more robust against dissipation than the energy

(11). Consequently, we choose the latter as the target func-

tional and extremize it subject to the former serving as the N

constraints. We demand that

dQ ¼ d E�
X ha

la

� �

¼ 0; (12)

where l’as are the Lagrange multipliers, and Va and A are in-

dependent variables but are connected through the Ampère’s

law (4). Working out the variation (12), we obtain

mac

4pqa

X

a

Xa

la
�
4p

c
naqaVa

� �

� dVa

�
1

4p
$� B�

X

a

Xa

la

 !

� dA ¼ 0: (13)

By equating the coefficients of dVa to zero independently,

for each species a, yields the N Beltrami conditions:

Xa ¼ la
4p

c
naqaVa ¼ la

4p

c
Ja; (14)

which amounts to aligning the GV (Xa) of each species

along its corresponding velocity (Va). Notice that in the light

of (4) and (14), the coefficient of dA is automatically zero; it

is just the manifestation of Ampère’s law. We also observe

that each of the l’s is endowed with the dimensions of

length, thereby giving rise to a hierarchy of length scales in a

multi-fluid system.

It is easy to verify that the multi-Beltrami states, with

the condition Va �Xa ¼ 0, define an equilibrium state pro-

vided that the gradient forces, rwa, are separately con-

strained to be zero. The latter gives rise to generalized

Bernoulli conditions, necessary for closure, but they are not

directly relevant to the analysis presented in this work. The

equilibrium state defined by Eq. (14) and Ampère’s law con-

stitutes the minimum energy, or relaxed, states of this N-

component system. We remind the reader that this equilib-

rium pertains only to systems that are overall charge neutral.

The equilibrium has many features of interest, some of

which we shall explore below.

A straightforward consequence of (14) is

ha �
1

8p
hPa �Xai ¼

la
2c

Aþ
mac

qa
Va

� �

� naqaVa

* +

;

from which we can derive

X

a

ha

la
¼
X

a

1

2
hmanaV

2
ai þ

X

a

1

2c
hA � Jai

¼
X

a

1

2
manaV

2
a þ

B2

8p

� �

� E: (15)

Combining Eqs. (12) and (15), we find

Q ¼ E�
X ha

la
¼ 0; (16)

showing that the total variational target functional is zero for

the multi-Beltrami solutions. It must be noted that the van-

ishing of the target functional Q, and the resulting relation-

ship between energy and helicities, is true only for the multi-

Beltrami states; other equilibria may not be so constrained.

For the multi-Beltrami equilibria, however, Eq. (16) pro-

vides us with a helpful relation between the Lagrange multi-

pliers in terms of the system invariants. Hence, in the

subsequent sections, it must be implicitly understood that we

shall not view the energy as an independent invariant, but

one that is fixed by the Lagrange multipliers and the helic-

ities. In the special case of a single helicity invariant—the

MHD Taylor states for instance—(16) reduces to the well-

known relation that the Lagrange multiplier (determining the

scale length of the system) is the ratio of the helicity to the

total energy, viz., l ¼ h
E
.

C. A simple class of multi-Beltrami solutions

The N equilibrium Beltrami equations allow for general

solutions from which special cases of interest can be further
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derived. Substituting the expression for the generalized vor-

ticity into the Beltrami conditions equation (14), we find

Bþ
mac

qa
$� Va ¼

4p

c
laJa: (17)

The velocity and the current contributed by each species are

related through ðmac=qaÞr � Va ¼ ð4p=cÞk2ar� Ja, where

k2a ¼ c2=x2
pa and x2

pa ¼ 4pnaq
2
a=ma; ka is the appropriate

skin depth corresponding to the species labelled by a. Using

this relation, Eq. (17) may be written as

B ¼
4p

c
laJa � k2ar� Ja
� �

; (18)

and formally manipulated into a set of linear equations

laBþ k2ar� B
� 	

¼
4p

c
l2aJa þ k4ar

2Ja
� �

; (19)

where we have used r� Ja¼ 0, which follows from the

assumption of incompressibility. Naturally, the linearity of

the set (19) allows a Fourier expansion

X ¼ Xke
ik�x; (20)

with each Fourier coefficient obeying

laBk þ ik2a k� Bkð Þ ¼
4p

c
l2a � k4ak

2
� �

Jak: (21)

Invoking the Fourier-expanded Ampère’s law

ik� Bk ¼
4p

c
Jk ¼

4p

c

X

a

Jak; (22)

we can transform (21) into an equation determining Bk

X

a

la

l2a � k4ak
2
Bk ¼ i 1�

X

a

k2a

l2a � k4ak
2

 !

k� Bk: (23)

Thus, we conclude that the relaxed state equilibria of this

highly complex multi-fluid system can be found by solving a

single algebraic vector equation, namely, the single Fourier-

Beltrami equation

ABk ¼ ik� Bk; (24)

where A � Aðk; la; kaÞ. Equation (24) gives rise to the fol-

lowing dispersion relation:

A ¼ 6k ¼
X

a

1

la7kk2a
; (25)

which is obtained by observing that B is a complex-valued

field. The fields are characterized by the properties

k � Bk ¼ 0

B2
k ¼ 0 ) B2

kR ¼ B2
kI andBkR � BkI ¼ 0; (26)

where the subscripts R and I denote the real and imaginary

parts, respectively. The above expressions imply that BR/BR

and BI/BI and k/k define a right-hand orthogonal triad of unit

vectors; for example, k ¼ kêx and B ¼ ðêy þ iêzÞB.

Thus, it is evident that our problem is reduced to solving

a polynomial in k, as seen from (25). Notice that the degree

of the polynomial is, in general, (Nþ 1), where N is the num-

ber of independent species. Thus, one needs Nþ 1 independ-

ent spatial scales kj, with j ranging from 1 to Nþ 1, to

describe an N species plasma. The most general solution is

B ¼
X

Nþ1

j¼1

Bje
ikj�x þ c:c: (27)

Since all coefficients in (25) are real—the skin depths and

Lagrange multipliers—the complex roots occurring in the set

{kj} must be conjugate pairs.

We end the section by showing two well-known elemen-

tary limits of the general dispersion formula:

• For ideal MHD Woltjer-Taylor states, we note that ka¼ 0,

which is equivalent to the statement that there is no effec-

tive “independent” species; this is consistent with the

entirely scale-free nature of ideal MHD. Thus, we find that

(25) reduces to k¼6l�1 and l is fixed through the ratio

of the (magnetic) helicity to the energy.
• For normalized Hall MHD, there is only one effective

independent fluid, the ion fluid. The neglect of electron

inertia results in ke¼ 0, i.e., a vanishing electron skin

depth. Thus, there is only the ion skin depth ki which is

normalized to unity by adopting suitable units. However,

there are two invariants, the magnetic and the ion general-

ized helicities, implying the existence of two Lagrange

parameters, le¼�a0 and li¼ a1. The normalized two

scale lengths, determined by the quadratic

6k ¼ �
1

a0
þ

1

a17k
; (28)

or equivalently

6k þ
1

a0

� �

a17kð Þ ¼ 1; (29)

which forms the basis of the much studied double

Beltrami equilibria.

The close connections between the multi-Beltrami states and

the constrained variational principles in Section II B, consti-

tute the raison d’être for envisioning the latter as the relaxed

states of the system. However, a cautionary word must be

added as the variational problem may not always be mathe-

matically well-posed; see, e.g., Ref. 8 for a discussion of the

same in the context of Hall MHD and double Beltrami states.

Furthermore, we also wish to caution that the scenario with

complex roots, viz., exponentially growing or damping solu-

tions, must also be handled with care. There is obviously no

problem for a finite domain, but growing solutions will not

be permitted over large domains.

III. HALL MHD AND EQUIVALENT MODELS, DOUBLE
BELTRAMI STATES AND PHYSICAL INVARIANTS

In this section, we concentrate on Hall MHD and estab-

lish its connections with other relevant models in the
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literature. Next, we use the multi-Beltrami formalism in Hall

MHD to obtain some interesting relations in the context of

the two helicities (and the energy).

A. Hall MHD and its relation to other models

In their simplest manifestation (in ideal MHD), the

Beltrami states are described by purely sinusoidal solutions,

i.e., a single Beltrami system admits only real values of

k¼6l�1, since l is real. The situation changes fundamen-

tally when we take the next step—when we consider models

ranging from Hall MHD onwards; the existence of quadratic

and higher degree polynomials can give rise to complex

roots, which manifest themselves as hyperbolic functions.

The consequences are illustrated by the following list of

applications:

• Pressure confining states become possible.7

• Perfectly diamagnetic states, limiting the magnetic field to

an appropriate skin depth near the edge of the system,

become accessible to classical systems.50

• States with zonal-flow structures can also emerge.

In fact, the latter class of structures was observed in

Ref. 54, where Hall MHD simulations gave rise to zonal flows,

whilst ideal MHD does not (typically) do so. Thus, (25) pro-

vides an elegant and concise physical explanation of this phe-

nomenon observed in simulations. For systems with multiple

species, more complex than ideal MHD, a wider range of

length scales and structures are accessible through (25).

Yet, it is not just Hall MHD that exhibits the above

properties. Let us suppose that we consider an electron-

positron-ion plasma, wherein there exists only one species

(ions) which is much more massive than either the electrons

or the positrons. Such a composition is expected to exist in

pulsar and AGN winds; see, e.g., Ref. 59 for a discussion of

the same. As the electrons and the positrons are effectively

massless, we can set ke¼ kp¼ 0 with the suffices e and p

denoting the two species, respectively. Let us set le¼ ae,

lp¼ ap, and li¼ a1. We shall work in normalized units

where ki¼ 1 just as in Hall MHD. Upon substitution into

(25) and defining �a�1
0 ¼ a�1

e þ a�1
p , we recover (28). As a

result, we see that our model is indeed “equivalent” to Hall

MHD.

In fact, it is easy to show that in a model with N� 1

massless species and one much-heavier species, one arrives

at (28), rendering each of these models equivalent to Hall

MHD. This equivalence occurs not just on the level of multi-

Beltrami solutions but also at the level of the dynamical

equations. Other examples of such models include those

where the sole massive species is ionized dust—we shall

examine a two-species dust model in Section IV.

B. Double Beltrami states and helicity invariants

The double Beltrami states were first proposed in the

context of Hall MHD (Ref. 7) and have been used exten-

sively since then. These states constitute, perhaps, the sim-

plest system in which we could examine what we believe

is a fundamentally interesting question: Do two field config-

urations have to be identical in order to have identical

invariants, or, is it possible for two independent configura-

tions could also give rise to identical invariants?

Following the (normalized) notation adopted in Ref. 7,

the double Beltrami conditions reduce to

b�1B ¼ V�r� B; Bþr� V ¼ aV: (30)

The system has three invariants:

h1 ¼
1

2
hA � Bi;

h2 ¼
1

2
h Aþ Vð Þ � Bþr� Vð Þi ¼

a

2
h Aþ Vð Þ � Vi;

E ¼
1

2
hB2 þ V2i;

(31)

and exhibits two independent solutions: r� B6 ¼ a6B6

where a6 ¼ 1
2

a� b�1
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ b�1ð Þ2 � 4

q

� �

could be both

real or form a complex conjugate pair.

For real roots, (30) and (31) imply

h16 ¼
1

2a6
hB2
6
i;

h26 ¼
a

2
b�1 þ a6
� 	

b�1 þ a6 þ a�1
6

� 	

hB2
6
i;

E6 ¼
1

2
1þ b�1 þ a6

� 	2
h i

hB2
6
i:

(32)

It must be borne in mind that only two of these three invari-

ants are independent since a�1h2 � b�1h1 ¼ E. Now, we

seek the conditions under which Dh1 ¼ h1þ � h1� ¼ 0. It is

possible only when hB2
�i ¼

a�
aþ
hB2

þi. We use this relation and

also demand that DE ¼ Eþ � E� ¼ 0 (note that Dh2¼ 0 will

automatically follow). For real roots, then, DE¼ 0 if and

only if aþ b�1 ¼ 2, which implies that aþ ¼ a�.

In other words, for the case with real roots, we find that

the physical invariants are identical only when the field con-

figurations themselves are identical.

If the roots are a complex conjugate pair, a very differ-

ent situation prevails. Two independent real magnetic

fields, BR ¼ 1
2
Ba þ B?

a

� �

and BI ¼ � i
2
Ba � B?

a

� �

may be

constructed from the central equation r� Ba ¼ aBa, its

complex conjugate ðaþ ¼ a; a� ¼ a?Þ, and (30) and (31).

From these relations, we calculate

hAR � BRi ¼ hAI � BIi ¼
1

2

1

a
þ

1

a?

� �

hBa � B
?
ai; (33)

hB2
Ri ¼ hB2

I i ¼
1

2
hBa � B

?
ai; (34)

hV2
Ri ¼ hV2

I i ¼
1

2
hBa � B

?
ai; (35)

and

hAR � VRi ¼
1

4

b�1 þ a?

a
þ
b�1 þ a

a?

� �

hBa � B
?
ai ¼ hAI � VIi;

(36)

after using the relation ðb�1 þ aÞðb�1 þ a?Þ ¼ 1.
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The results, (33)–(36), pertaining to the field configura-

tions flowing from the complex roots, are rather revealing:

• All invariants—the magnetic helicity, the generalized hel-

icity and the total energy—are equal for the two independ-

ent configurations denoted by BR and BI.
• For each of these solutions, there is an equipartition in ki-

netic and magnetic energies. One must ascertain, however,

that these configurations do imply different magnetic and

flow fields.

To show this, let us examine the Cartesian ABC solu-

tions of the double Beltrami system. The two solutions can

be constructed from

Ba ¼Aðêx þ iêyÞe
iaz þ Bðêy þ iêzÞe

iax

þCðêz þ iêxÞe
iay; (37)

and this leads us to

BR ¼ ½A cos az� C sin ay�êx þ ½B cos ax� A sin az�êy

þ ½C cos ay� B sin ax�êz; (38)

BI ¼ ½A sin azþ C cos ay�êx þ ½B sin axþ A cos az�êy

þ ½C sin ayþ B cos ax�êz; (39)

which are, indeed, distinct and independent. We have, thus,

identified the complex conjugate solutions as distinct and

special (double Beltrami) states that lead to exactly identical

values of the physical invariants. As the roots comprise both

real and imaginary components, the ABC states can exhibit

exponential (and thereby unbounded) behavior in addition

to the sinusoidal functions. In some domains, similar struc-

tures have been reported in Hall MHD astrophysical

simulations.54

Finally, the very interesting nature of this class of

solutions (different fields but same invariants) raises a rather

profound question—how do we distinguish between these

flows if not through invariants?

IV. DUSTAND TWO-FLUID MODELS

We shall analyze the properties of two-fluid model in

detail in this section, and point out the connections with

two-species dust model. The nature of the triple Beltrami

states of an electron-positron plasma, and the connections

with the physical invariants of the system, are also

studied.

A. An analysis of dust models and their connection to
two-fluid models

To explore the multi-Beltrami flows a bit further, we

consider a four-species system with positively and negatively

charged dust, in addition to electrons and ions. As the masses

of the latter duo are negligible in comparison, we set

ki¼ ke¼ 0 in (25) for a four-species system. Thus, we arrive

at a dispersion relation

6k ¼
1

lei
þ

1

lp7kk2p
þ

1

ln7kk2n
; (40)

where the subscripts n and p denote the negatively and posi-

tively charged dust, respectively; we also have l�1
ei ¼ l�1

i

þl�1
e . The dispersion relation is cubic in k since there are

only two effective (dust) species. Our system is endowed

with three Lagrange multipliers, and two physically specified

skin depths. The three scales (the number of independent k

roots) are likely to be tied to one “macroscopic” scale (the

system size), and to the two “microscopic” scales (the two

dust skin depths). In a possible model for a protoplanetary

disc, we assume qd � 1 g=cm3; md � 10�12 gm, and

Zd� 3� 103, where qd¼ eZd.
60–62 Upon solving for the dust

skin depth, we find that it is on the order of 0.1 km. Hence, it

is seen that the “microscopic” scale structures that can form

lie within the range of planetesimal sizes. This has immedi-

ate secondary implications—the formation of zonal flow

structures with finite vorticity is feasible. It is well known

that such structures can “trap” particles, leading to planetesi-

mal and planet formation.63–65 Since the vortices are already

quite large (dust skin depths) in this system, the process of

trapping is likely to be efficient.

Now, we consider a system that is a near-equivalent of

the two-dust species system described above. For a two-

species plasma with comparable species masses, necessitat-

ing the inclusion of both skin depths, the dispersion relation,

from (25), may be written as

6k ¼
1

l17kk21
þ

1

l27kk22
: (41)

We see that (41) is identical to (40) if we let l�1
ei ! 0 in the

latter. Once again, we emphasize that a species with N� 2

massless species and two heavy species will be (almost) equiv-

alent to the conventional two-fluid plasma. Consequently, an

analysis of (40) will suffice to also cover the two-fluid model

as well. Let us begin by introducing the dimensionless varia-

bles x ¼ kkp; ~lei ¼ lei=kp; ~lp ¼ lp=kp; ~ln ¼ ln=kp, and

d ¼ k2n=k
2
p. We find that (40) transforms to

dx37ð~ln þ d~lp þ d~l�1
ei Þx

2

þ½~lnð~lp þ ~l�1
ei Þ þ d~l�1

ei ~lp þ dþ 1�x

7ð~l�1
ei ~lp~ln þ ~lp þ ~lnÞ ¼ 0: (42)

As the above expression is a cubic, it is not easy to investi-

gate the conditions under which one can have either three

real roots or one real root (and two complex conjugate roots).

To do so, one must investigate the discriminant of the above

equation, which is rather cumbersome. For the special

case of the two-fluid model (~l�1
ei ¼ 0), the discriminant

reduces to

D ¼ð~ln þ d~lpÞ
2ð~ln~lp þ dþ 1Þ2 � 4dð~ln~lp þ dþ 1Þ3

� 4ð~ln þ d~lpÞ
3ð~lp þ ~lnÞ � 27d2ð~lp þ ~lnÞ

2

þ18dð~ln þ d~lpÞð~ln~lp þ dþ 1Þð~lp þ ~lnÞ; (43)

and this is still a very cumbersome expression. However, in

the two-fluid model with quasineutrality, it must be noted

that d¼mn/mp. Thus, for an electron-positron plasma, we

have d¼ 1 but for an electron-ion plasma, we typically have
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d � 1. Indeed, if we take d¼ 0 in (42), we recover the Hall

MHD quadratic dispersion relation. In the case where d � 1,

the discriminant to linear order in d is

D ¼ ~l2
n½ð~ln~lp þ 1Þ2 � 4~lnð~ln þ ~lpÞ�

þ d½�2~l2
nð~l

2
p � 10þ ~ln~lpð~l

2
p � 4ÞÞ þ 4ð2~ln~lp � 1Þ�:

(44)

By evaluating the expression in the second line of the RHS

for given values of the l’s, one can use it as a quick (albeit

not fully correct) check to see whether three or one real roots

emerge. Now, we shall specialize to the case where d¼ 1,

and study the properties of the electron-positron plasma in

detail; as noted earlier, these plasmas are expected to be rele-

vant in domains, such as pulsar magnetospheres.

B. The electron-positron plasma

When we set d¼ 1 in (43), we find that

D ¼ ~l4
n~l

2
p � 4~l4

n � 2~l3
n~l

3
p þ 6~l3

n~lp þ ~l2
n~l

4
p � 4~l2

n~l
2
p

þ13~l2
n þ 6~ln~l

3
p � 22~ln~lp � 4~l4

p þ 13~l2
p � 32; (45)

and one can use this expression to gauge the nature of the

roots. For instance, if ~ln 	 ~lp � 1, we find that D< 0 lead-

ing to the emergence of one real and two complex

(conjugate) roots. Alternatively, consider the case where

~ln 	 ~lp 
 1, three real roots emergence since D> 0. Let us

now investigate two interesting cases:

• We choose ~ln � 1 and ~lp 
 1. With this choice, the

largest term in (45) is likely to be �4~l4
p implying that

D< 0 and leading to complex conjugate roots (and one

real root). Even if we choose the converse, viz., ~lp � 1

and ~ln 
 1, we find that the largest term in D is likely to

be �4~l4
n, leading to D< 0 once again.

• Let us operate with ~ln 	 ~lp 	 1. We end up with D< 0

which implies the existence of a complex conjugate pair

and one real root.

If we hold the energy fixed, we see that the helicities

and the l’s are related via (16) for multi-Beltrami states.

Hence, if we consider the case where all the l’s are very

“small” (as considered in one of the above cases), it is rea-

sonable to suppose that the helicities must be small as well

in order for the ratio ha/la to be finite and thus give rise to

the fixed energy. Similarly, the existence of large l’s will

necessitate large values of the helicity as per the same rea-

soning. Thus, we see that knowledge of the helicities and

energy will enable some degree of knowledge of the l’s,

which in turn enable us to determine the nature of the multi-

Beltrami solutions, as described previously.

To conduct a more quantitative analysis, we introduce

the auxiliary variables ~l ¼ ~lp þ ~ln and � ¼ ~lp � ~ln for the

electron-positron plasma in (42); there are two possibilities

owing to the 7 present, and we choose to work with the ‘–’

case here. Using the variables defined above, we arrive at

x�
~l

2

� �

x x�
~l

2

� �

þ 2

� �

¼
�4

4
x: (46)

We shall provide some information about the nature of roots

by evaluating some limiting cases.

• We set �¼ 0 in (46). This leads us to the following roots

x1 ¼
~l

2
;

x6 ¼
~l

4
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~l2

16
� 2

s

;

(47)

and this clearly indicates that three real roots are obtained

when ~l2 > 32. Similarly, for ~l2 < 32, we find that x6
constitutes a pair of complex conjugate roots. This result

is in agreement with the more qualitative results presented

earlier.
• Now, suppose that j�=~lj � 1. We find that the corrections

to (47) can be computed in a straightforward manner,

although the exact results are not reproduced here. Once

again, we find that ~l2 ¼ 32 remains the critical point at

which the nature of the roots changes (from three real

roots to one real and two complex conjugate roots).
• Next, consider the case where ~l ¼ 0 and � is finite. The

roots are found to be

X1 ¼ 0;

X6 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffi

�2

4
� 2

r

;
(48)

and this clearly implies that �2> 8 leads to three real roots,

and �2< 8 implies the existence of one real root and two

complex conjugate roots given by X6.
• We look at the scenario where j~l=�j � 1. The nature of

the roots does not exhibit any significant changes, with

�2¼ 8 still serving as the critical point.

C. Physical invariants and triple Beltrami states for the
electron-positron plasma

Before proceeding further, we recollect that a quasineutral

electron-positron plasma exhibits the same scale lengths. We

normalize the multi-Beltrami states in terms of the Alfvenic

units, and the length scale by the (common) skin depth. In

these dimensionless units, the trio of equations is

Bþr� Vp ¼ apVp;

B�r� Vn ¼ anVn;

r� B ¼ Vp � Vn:

(49)

In the above expressions, the a’s are proportional to the ~l’s

employed in Section III. The three invariants are known to

be

hp ¼
1

2
h Aþ Vpð Þ � Bþr� Vpð Þi ¼

ap

2
h Aþ Vpð Þ � Vpi;

hn ¼
1

2
h A� Vnð Þ � B�r� Vnð Þi ¼

an

2
h A� Vnð Þ � Vni;

E ¼
1

2
hV2

p þ V2
n þ B2i: (50)
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From (50), it is easy to establish that hp=ap � hn=an ¼ E,

once again demonstrating that the three invariants are not

linearly independent. Next, suppose that we choose

r� B ¼ jB, where j represents any of the three real roots

of the cubic equation for the triple Beltrami states. We find

that the two helicities hp and hn are given by

hp ¼
ap

ap � j

� �2 hB2i

2j
;

hn ¼
an

an þ j

� �2 hB2i

2j
;

(51)

and we employ the same analysis used in Section III B. By

computing Dhp and Dhn for two real roots j1 and j2, we find

that Dhp¼Dhn¼ 0 occurs when ðj1 � j2Þðap þ anÞ ¼ 0. As

before, it is evident that the trivial choice j1¼ j2 leads to

identical values of the helicities. But, we also witness the

emergence of the additional condition apþ an¼ 0, which

was altogether absent in the double Beltrami case. If we use

this expression in (49) as well as the Beltrami condition

r�B¼ jB, we find that the one of the three roots is given

by j3¼�an. The other two roots exhibit the property

j1j2¼ 2, and the results are identical to the ones derived in

(47) under a suitable relabelling of variables. Moreover, if

we use apþ an¼ 0 in (51), we find that hp¼ hn for the

two roots j1 and j2. Consequently, we arrive at the result

hp/ap¼�hn/an¼E/2 for this particular case.

Hence, we are led to the rather remarkable result that

the special choice apþ an¼ 0 can give rise to two different

field configurations that admit the same values of the physi-

cal invariants. The other case, involving complex conjugate

roots, is more subtle, and a comprehensive treatment is

reserved for the future.

V. CONCLUSION

This paper is devoted to constructing relaxed states for

multi-fluid system. We derived them by invoking a general

variation principle—extremizing the total (magnetic and

fluid) energy subject to the constraints of helicity conserva-

tion (which, in fact, are readily derivable from the fluid

equations of motion). These equilibria, dubbed the multi-

Beltrami states, were then simplified and a particular class of

solutions was presented in a simple and elegant form, encap-

sulated by (25).

The relation (25) yielded useful information, including

the existence of a wide range of length scales, determined

through the skin depths, helicities, and the total energy of the

system. We explored some of the implications of the multi-

Beltrami system in Sections III and IV. Amongst others, we

showed that the electron-positron-ion plasma could be

viewed as equivalent to Hall MHD, and those models with

positively and negatively dust exhibited a close relation to

two-fluid model. We also analyzed the properties of the latter

via the cubic discriminant by considering some limiting

cases, which yielded useful information about the nature of

the roots, and thus, the Beltrami states of the system. The

establishment of such equivalences is of considerable impor-

tance since many of these models are endowed with a

common Hamiltonian structure.10 The work undertaken

herein lends further credence to these results, suggesting that

one can find suitable variable transformations that map all of

these models to a common underlying noncanonical Poisson

bracket.

A key result that emerged via our analysis was that dou-

ble Beltrami states of Hall MHD under certain conditions

(complex conjugate roots) yielded different field configura-

tions that gave rise to identical values of the three physical

invariants. In other words, we demonstrated through this

simple, but revealing, example that knowledge of the physi-

cal invariants is not sufficient to determine and distinguish

between different field configurations. Rather curiously,

when we considered the double Beltrami solutions with two

real roots, we were able to use the physical invariants as a

marker to distinguish between different field configurations.

We also carried out a similar procedure for the triple

Beltrami states of an electron-positron plasma, and demon-

strated that a very special case (with Lagrange multipliers of

equal magnitude and opposite sign) led to the physical invar-

iants, for the two real roots j1 and j2, becoming identical.

Thus, a clear hierarchy begins to emerge:

• In single Beltrami states (for ideal MHD), there is no

possibility of the invariants being equal unless the field

configurations are identical.
• In double Beltrami states, the physical invariants are

identical even with differing field configurations, but the

double Beltrami system must comprise complex conjugate

roots. When the case with real roots is considered, only

identical field configurations yield identical values of the

invariants.
• In triple Beltrami states, the physical invariants are identi-

cal even when the system is endowed with real roots that

constitute distinct field configurations (provided that a

special condition is met).

In other words, we see that the inclusion of more

Beltrami states widens the modes of behavior accessible to

the system; it is the additional degree(s) of freedom that

makes it possible for the “degeneracy” in the physical invari-

ants to occur, even when one considers distinct field

configurations.

We hypothesize that a broad spectrum of problems can

be investigated within the multi-Beltrami paradigm. For

instance, a multi-fluid dynamo, with the concomitant genera-

tion of flows and magnetic fields, could be constructed

following the prescription in Refs. 44–47, 66, which would

entail the use of these multi-Beltrami states. We could

also use the multi-Beltrami states to model highly energetic

eruptions, such as supernovae and gamma ray bursts. In a

non-relativistic Hall MHD context, this was successfully

implemented in Refs. 36–38—the transitions in the number

of real roots available to the system led to such eruptions.

The relaxed states resulting from the quenching of magneto-

rotational turbulence in astrophysics67–71 also remain unex-

plored via this paradigm. Although we have restricted

ourselves herein to Newtonian systems, one can easily

extend the formalism to incorporate relativistic51 and
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quantum-mechanical72–74 effects, and thereby study compact

objects, AGN jets, etc.

Thus, it is clear that the multi-Beltrami solutions

represent a unique means of studying a diverse range of

astrophysical phenomena, and we shall investigate some of

the aforementioned issues in subsequent works.
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