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In non-mandatory vaccination policies, 
individual choice can be a major driver 

of vaccine uptake. Choice thereby influ-
ences whether public health targets can 
be achieved. Individual vaccinating deci-
sions can be influenced by perceptions of 
vaccine risks or infection risks. There is 
also the potential for non-vaccinators to 
strategically “free-ride” on herd immu-
nity provided by vaccinators. This stra-
tegic interaction between individuals 
generates a social dilemma—a conflict 
between self-interest and what is best for 
the group as a whole. Game theory and 
related mathematical approaches that 
couple mechanistic models of vaccinat-
ing decisions with mechanistic models 
of disease spread can capture this social 
dilemma and address relevant questions. 
The past decade has seen significant 
growth in the theoretical literature devel-
oping and analyzing such models. Here, 
we argue that using these models to 
address specific public health challenges 
will require more work that integrates 
information from empirical studies into 
the development and validation of such 
models, as well as more collaboration 
between mathematical modelers, psy-
chologists, economists and public health 
experts.

Distorted perception of vaccine risks 
and infection risks can lead to failure to 
achieve public health vaccine coverage 
targets. Nowhere is this better exempli-
fied than in “vaccine scares,” such as the 
whole cell pertussis vaccine scare during 
the 1970s and Measles-Mumps-Rubella 
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(MMR) vaccination during the late 1990s 
in Great Britain, both of which saw signif-
icant declines in vaccine coverage despite 
lack of good evidence for vaccine risks.1 
This is also exemplified by seasonal influ-
enza vaccination, which is non-mandatory 
in most of the countries including the US 
and Canada:2 despite influenza vaccine’s 
excellent safety record, vaccine coverage 
in many populations remains sub-opti-
mal.3 Sub-optimal coverage also occurs 
among health care workers (HCWs). For 
example, Gharbieh et al. studied influ-
enza vaccination rates among HCWs in 
three Middle East countries [United Arab 
Emirates (UAE), Kuwait and Oman], and 
found suboptimal rates for various reasons 
including doubts about vaccine efficacy, 
lack of information about the importance 
of immunization, and concerns about vac-
cine side effects. A low perceived risk of 
becoming infected, whether justified by 
historically low infection rates or not, can 
contribute as much as inflated perception 
of vaccine risk does: studies identify per-
ceived lack of infection risk as a factor in 
non-uptake of influenza vaccine.3

The dependence of vaccine decision-
making on perceived disease burden 
in population suggests a feedback loop 
whereby individual vaccinating decisions 
influence disease transmission through 
vaccinating activities, and the level of 
disease prevalence in turn influences how 
many individuals choose to seek vaccina-
tion (Fig. 1). More specifically, the phe-
nomenon of “herd immunity” or “indirect 
protection,” whereby unvaccinated indi-
viduals experience a reduced risk of 
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case of vaccines, the emergence of free-rid-
ing non-vaccinators represents the policy 
resistance. The systems can also exhibit 
“outcome inelasticity,” where a health 
outcome remains unchanged over a broad 
range of possible conditions. In the case of 
voluntary vaccination during a pandemic, 
it has been predicted that the timing of 
an epidemic peak will remain unchanged 
across a broad range of transmission rate, 
due to behavioral feedbacks.23 Finally, pol-
icy reinforcement is also possible, where 
the behavioral response actually helps 
facilitate implementation of a policy. This 
can occur in game theoretical models of 
chickenpox vaccination, where the Nash 
equilibrium vaccine coverage can actu-
ally exceed the socially optimal vaccine 
coverage.13

Among other predictions, these models 
have suggested that a universal influenza 
vaccine conferring long-lasting immunity 
could actually increase the frequency of 
occasional but severe epidemics,24 that 
free-riding behavior could emerge surpris-
ingly quickly in a new pediatric vaccine 
program, even in the first few years,25 that 
long cycles in disease prevalence could 
emerge when self-interested vaccination 
decisions are based on delayed informa-
tion,18 and how imperfect vaccines can 
aggravate the social dilemma of voluntary 
vaccination.26

The models have also suggested solu-
tions to the social dilemma, such as taxes 
and subsidies,9 or offering several years 
of free vaccines to individuals who pay 
for one year of vaccination,27 though it 
has also been shown that some incen-
tive programs could be detrimental. For 
example, incentive programs that put the 
decision to vaccinate a group in the hands 
of one individual, rather than in all the 
members of the group, could thereby 
lead to greater variation (stochasticity) in 
vaccine uptake over time, which in turn 
might lead to greater variability in epi-
demic size and, potentially, more severe 
epidemics.27

These recent enhancements in behav-
ior-prevalence models make possible 
their application to real-world situations 
where individual choice is a significant 
driver of vaccine uptake, such as vaccine 
scares. Such models may also be useful to 
national/state level decision-makers for 

vaccine coverage to be suboptimal due 
to aforementioned free rider effects.8,10-12 
However, others have explored exceptions 
to the rule, which may occur when taxes 
or subsidies are applied9 or for specific dis-
ease features such as when infection sever-
ity increases with age.13 Even when these 
models are not strictly game theoretical 
(i.e., seeking to prove that a vaccine cov-
erage level is a Nash equilibrium), they 
are motivated by the problem of feedback 
between disease dynamics and vaccinat-
ing behavior.

The state-of-the-art of such behavior-
prevalence models incorporates increasing 
realism with respect to both vaccinat-
ing behavior and disease dynamics. For 
example, models have abandoned the 
classical game theoretical assumption 
that individuals are purely rational by 
incorporating a distinction between real 
vs. perceived risk,14 allowing risk percep-
tion to evolve with vaccine coverage over 
time,15 accounting for social learning and 
imitation processes15-17 and incorporating 
the effect of delayed information on dis-
ease.18 On the disease dynamic side, trans-
mission through a network of contacts is 
being studied,16,19,20 and features like age 
structure15,21 and seasonal forcing18 are 
being incorporated into models.

Due to the nonlinear feedback inher-
ent in such systems (Fig. 1), these 
models exhibit patterns of distinct 
dynamical behavior that can be catego-
rized. For instance, they exhibit “policy 
resistance,” where the response of a sys-
tem to introduction of a new intervention 
tends to defeat the intervention.22,31 In the 

infection due to others having vaccinated, 
can create an enduring social dilemma: 
non-vaccinators who benefit from herd 
immunity provided by vaccinators are 
essentially “free-riding,” as well as imped-
ing disease elimination goals.5

This social dilemma describes a game 
theoretical (strategic) interaction, where 
the “payoffs” (costs/benefits) of a “strat-
egy” (action) depend upon what strategies 
are adopted by others in the population. 
Game theory provides a useful tool to 
analyze and predict such strategic interac-
tions6 and has been applied to the social 
dilemma of voluntary vaccination.7-9 In 
deciding whether to vaccinate themselves 
or their children, individuals weigh up 
the cost and risk related to vaccines vs. 
the benefit of reducing the risk of infec-
tion, which can depend implicitly on oth-
ers’ vaccinating decisions—through the 
level of disease prevalence observed by 
the individual—or explicitly—through 
knowledge of how many others choose a 
‘vaccinate’ strategy.

The pace of research applying game 
theoretical and related approaches to 
modeling behavior-disease interactions 
in the context of vaccination is increas-
ing rapidly (see Funk et al.7 for a review). 
These “behavior-incidence” models often 
seek the “Nash equilibrium” level of vac-
cine coverage, which is the solution of the 
game: at the Nash equilibrium vaccine 
coverage, no individual could be better 
off by unilaterally changing to a different 
strategy, hence the population is expected 
to remain at this level of coverage. Many 
models have found the Nash equilibrium 

Figure 1. Interacting feedbacks arising from vaccinating behavior and disease incidence.
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deciding how to optimize budget alloca-
tion among various regions or states to 
elimination or eradication goals.28,29 On 
the theoretical side, many of the required 
developments are already happening. For 
instance, models are incorporating more 
sophisticated treatments of disease trans-
mission processes, and also abandoning 
the convenient but simplistic classical 
picture of individuals as purely rational 
optimizers. However, for such models to 
contribute to public health policy, this 
rapid theoretical development must be 
accompanied by a closer integration of 
these models with empirical data. With a 
few exceptions,14,21 this is occurring more 
slowly than purely theoretical develop-
ments. In particular, better information 
is needed regarding (1) how individuals 
perceive vaccine and infection risks, espe-
cially (a) how these perceptions depend on 
real vaccine adverse events or infections 
experienced/observed by individuals and 
(b) how that varies over time, (2) how 
these risk perceptions translate into vacci-
nating behavior, (3) how individual deci-
sion-making interacts with influence from 
the media and medical professionals and 
(4) how the opinions and actions of other 
individuals influences an individual’s vac-
cinating behavior, through social influ-
ence for example. There is also a need to 
think about exactly how to the outcomes 
of modeling studies can be used to inform 
public health policies regarding vaccine-
preventable diseases.

Human behavior is a central and fun-
damental aspect of public health policies 
regarding infectious disease interven-
tions.30 Game theoretical and related 
approaches that integrate perceptions of 
risk and mechanisms of disease transmis-
sion into health policy models can help 
us meet public health goals but will also 
require fruitful collaboration among psy-
chologists, economists, epidemiologists, 
public health experts, and mathematicians.


