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ABSTRACT

Motivation: Recently, we made synthetic proteins from non-coding

DNA of Escherichia coli. Encouraged by this, we asked: can we arti-

ficially express pseudogenes into novel and functional proteins? What

kind of structures would be generated? Would these proteins be

stable? How would the organism respond to the artificial reactivation

of pseudogenes?

Results: To answer these questions, we studied 16 full-length protein

equivalents of pseudogenes. The sequence-based predictions indi-

cated interesting molecular and cellular functional roles for pseudo-

gene-derived proteins. Most of the proteins were predicted to be

involved in the amino acid biosynthesis, energy metabolism, purines

and pyrimidine biosynthesis, central intermediary metabolism, trans-

port and binding. Interestingly, many of the pseudogene-derived pro-

teins were predicted to be enzymes. Furthermore, proteins showed

strong evidence of stable tertiary structures. The prediction scores for

structure, function and stability were found to be favorable in most of

the cases.

Impact: To our best knowledge, this is the first such report that

predicts the possibility of making functional and stable proteins from

pseudogenes. In future, it would be interesting to experimentally

synthesize and validate these predictions.
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Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The term ‘pseudogene’ has been derived from the term ‘pseudo’

meaning false. These genes are also known as ‘genomic fossils’

(Lafontaine and Dujon, 2010). The first pseudogene was re-

ported in 5S DNA of Xenopus laevis (Jacq et al., 1977).

Pseudogenes are obsolete stretches of DNA sequences that lack

protein-coding potential owing to the presence of the frame shift

mutation and premature stop codons even though they resemble

functional genes (Mighell et al., 2000). They are considered

dysfunctional relatives of ancestral functional genes that might

have lost function during evolution (Balakirev and Ayala, 2003).

Pseudogenes have been reported in plants (Loguercio and

Wilkins, 1998), bacteria (Ochman and Davalos, 2006), yeast

(Harrison et al., 2002), insects (Ramos-Onsins and Aguad�e,

1998), nematodes (Harrison et al., 2001) and mammals (Zhang

and Gerstein, 2004).

Based on their origins, pseudogenes have been categorized into

(i) processed pseudogenes—formed by retrotransposition of

mRNA and have paralogs in the same genome (Li et al.,

2013); (ii) duplicated pseudogenes—sometimes called unpro-

cessed pseudogenes arise because of the duplication of functional

genes that later on acquire mutation and finally become non-

functional; and (iii) unitary or disabled pseudogenes—thought

to originate through disruptive mutation in the functional

protein-coding genes (Mighell et al., 2000). As new duplicated

genes, they could serve as a source of genomic innovations,

resulting in novel functions (Presgraves, 2005). Unprocessed

and duplicated pseudogenes have intron–exon structures,

whereas processed pseudogenes have exonic region only

(Nishioka et al., 1980). The long protein-coding genes tend to

produce non-processed pseudogenes, whereas short protein-

coding genes tend to produce processed pseudogenes

(Goncalves, 2000).

Currently, the origin, evolution and function of pseudogenes

are incompletely understood. The biological role of pseudogenes

were first reported nearly 15 years ago (Korneev et al., 1999) in

the form of regulating neuronal nitric oxide synthase gene

expression. Recent studies have indicated more functional roles

for pseudogenes (Li et al., 2013; Pink et al., 2011; Poliseno et al.,

2010). The relationship between pseudogenes and long non-

coding RNAs (lncRNAs) is beginning to be understood.

Antisense RNA derived from PTEN pseudogene has been

found to regulate the transcription and mRNA stability of

PTEN tumor suppressor gene (Johnsson et al., 2013).

Pseudogene-derived non-coding RNAs amplified the expression

level of their parent gene and functioning as endogenous RNAs

with the PTEN pseudogene. Further, pseudogene-derived small

RNAs have been found to play a role in regional chromatin

repression (Guo et al., 2014).
Recent evidences indicate involvement of pseudogenes in reg-

ulating the growth of organism (Li et al., 2013) by acting as

miRNA decoy (Marques et al., 2012) encoding short peptides

or proteins (Bertrand et al., 2002; Kandouz et al., 2004).

Studies show that siRNAs derived from pseudogenes of*To whom correspondence should be addressed.
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African Trypanosoma brucei suppress the gene expression
through RNA interference (Wen et al., 2011).

Given their mechanisms of origins, development of these se-

quences over evolutionary scale of complexity and their potential
functional roles, pseudogenes make a strong case for understand-

ing fundamental biology and generating novel applications.

In this bioinformatics study on pseudogenes, our aim was to
predict profile of proteins that can be made on demand. This

thought has origins in our previous study (Dhar et al., 2009)

where the feasibility of experimentally making novel and func-

tional proteins from non-coding DNA was demonstrated.
Saccharomyces cerevisiae is among the most well-studied

organism where pseudogenes have been identified and analyzed

(Lafontaine and Dujon, 2010). It is also one of the most precisely

sequenced and annotated eukaryotic genome (Brachat et al.,

2003). Due to this reason, S.cerevisiae was considered in the

present study.

2 METHODS

The Saccharomyces Genome Database version of Saccharomyces

cerevisiae S288C was used in the present study. A total of 20 pseudogene

sequences were retrieved using the yeast mine tool and computationally

translated into protein sequences using Transeq tool of European

Bioinformatics Institute (EBI) (Alvarez-P�erez et al., 2013; Goujon

et al., 2010; Hoefman et al., 2014; Rice et al., 2000). From this dataset,

16 full-length pseudogenes were found that translated into complete pro-

tein sequences without any intervening stop codons. 4 pseudogenes with

intervening stop codons was excluded. Thus, in this work, only 16 se-

quences were considered for detailed study.

2.1 Sequence-based functional prediction

The functional relatives of pseudogene-derived proteins were identified

using the BLAST analysis (Altschul et al., 1990). The function of pseudo-

gene-derived protein and its relatives was studied using ProtFun tool

(Jensen et al., 2002, 2003). Protein localization of these sequences was

studied using the WoLF PSORT server (Horton et al., 2007). STRING

database (Franceschini et al., 2013) was used to predict physical and

functional association network of proteins. The physiochemical proper-

ties of pseudogene sequences [molecular weight, theoretical pI, aliphatic

index (Ikai, 1980) and GRAVY (Kyte and Doolittle, 1982)] were pre-

dicted using the Expasy Protparam server (Gasteiger, 2003), and mRNA

secondary structure or folding patterns of pseudogenes were predicted

using Mfold server (Zuker, 2003). The 3D structures of pseudogenes

were predicted using I-TASSER (Zhang, 2008). Of the 16 sequences

considered for the study, five sequences that displayed functional features

were finally selected for stability prediction.

2.2 Stability of proteins

To compute the number of stabilization centers, pseudogene sequences

were evaluated using SCide (Dosztanyi et al., 2003). Sequences showing

evidence of stabilization centers were considered for calculating the total

energy, including bonds, angles and torsion, improper, non-bonded and

electrostatic constrains. While the total energy of the molecule was cal-

culated using GROMAS69 force field implemented in Swiss pdb viewer

(Guex and Peitsch, 1997), the cation–� interaction energies were calcu-

lated using the CaPTURE program (Gallivan and Dougherty, 1999). The

non-covalent interactions such as hydrogen bonds, hydrophobic inter-

actions, disulphide bridges and salt bridges (Baker and Hubbard, 1984;

Berman, 1993; Creighton, 2005; Dill, 1990; Horovitz et al., 1990; Lins and

Brasseur, 1995; Pace et al., 1996) were computed using WHAT IF

(Vriend, 1990) and PIC Web server (Tina et al., 2007). The RASMOL

(Sayle, 1995) molecular visualization software was used to visualize the

interactions wherein non-canonical interactions, i.e. C–H . . . .�,

C–H . . . .O and N–H . . . .� interactions were computed using HBAT pro-

gram (Tiwari and Panigrahi, 2007). These intermolecular interactions

calculated by HBAT were visualized using RasMol, implemented as an

add-on program in HBAT. The instability index was calculated based on

a weight value using the Expasy Protparam server.

3 RESULTS

3.1 Sequence-based function prediction

3.1.1 Predicting the function of the pseudogene Pseudogene-
encoded proteins were evaluated for their functions using

ProtFun tool leading to the following functions: amino acid

biosynthesis (25%), energy metabolism (19%), central intermedi-

ary metabolism (13%), purines and pyrimidines biosynthesis

(13%), cell envelope (6%), regulatory functions (6%), fatty

acid metabolism (6%), translation (6%), transport and binding

(6%) (Table 1).

3.1.2 Identifying functional relatives Of the 16 pseudogene pro-

teins, 8 of them (50%) showed the same function as their imme-

diate relatives (Table 1). Pseudogene-derived proteins were found

to map to central intermediary metabolism, energy metabolism,

amino acid biosynthesis, purine and pyrimidine synthesis, trans-

port and binding.

3.1.3 Predicting subcellular localization Localization of proteins

is an indication of their probable role in the cell. The WoLF

PSORT predicted most of the proteins to be localized to cytosol

(31%), cytosol and nucleus (25%), nucleus (19%), mitochondria

(13%), plasma membrane (6%) and extracellular membrane

(6%) (Table 1).

3.1.4 Predicting protein-protein interactions Certain pseudo-

gene-derived proteins were found to have interacting partners

showing functions like hexose transporter (sugar transporter),

L-serine/threonine dehydratases, dehydrogenase and serine

hydrolase (Supplementary Fig. S1). Approximately one-third

(31.25%) of the proteins were found to have interacting partners

with either uncharacterized or hypothetical proteins. 12.5% of

the pseudogene-derived protein sequences did not show any

interacting partners.

As an example to highlight the importance of interaction in-

formation, the protein–protein network of EKA-9 (Fig. 1)

showed interaction with serine dehydratases signature proteins.

Pseudogene-derived proteins are shown to interact with various

proteins that are experimentally validated further involving

various biochemical pathways. From the pathway analysis, we

observe that some of these pseudogenes interact with hexose

transporter (HXT) families, which are linked to several unknown

physiological functions further showing strong similarity with

cell cycle mediators apart from its peers. These are involved in

pathways specific to the cell cycle and glucose, whereas proteins

shown interacting with pseudogenes are involved in glycine,

serine and threonine metabolism, cysteine and methionine

metabolism, biosynthesis of amino acid and citrate cycle

pathways.
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3.1.5 Predicting physiochemical properties Pseudogene proteins

were studied for physicochemical properties (molecular weight,

theoretical isoelectric point, aliphatic index and hydropathicity).

Molecular weight of proteins was found to range from 7.42KDa

to 127.18KDa. The isoelectric point (pI) value of proteins was

found to vary from 4.67 to 9.54 (pI 57 show acidic nature

whereas pI47 indicate basic nature), aliphatic index value ran-

ging from 64.03 to 102.57 (relatively higher value shows greater

stability), hydropathicity value (return of GRAVY score) ran-

ging from –0.734 to 0.443 indicates better interaction with water,

as value ranges are low (Table 2).

3.1.6 Tertiary structure prediction The tertiary structure of 16
pseudogene-encoded protein sequences was predicted using

I-TASSER server. The I-TASSER confidence score indicates

the quality of predicted models based on ab initio and threading

algorithm. Structures were predicted with C-score varying from

–4 to 0.62 (optimal range –5 to 2) while considering the paradigm

greater the C-score, greater is the possibility of a good tertiary

structure (Supplementary Table S1).

3.2 Predicting stability

3.2.1 Stabilization centers, cation–�, non-covalent and non-cano-
nical interactions Based on the results obtained from the func-
tion prediction, five pseudogenes showing top-most function hits

were considered for stability prediction. All predicted protein

sequences showed low negative value for the total energy indicat-

ing that pseudogene-derived proteins would be probably stable, if

expressed (Table 3). Approximately 40% of the proteins ex-

hibited stabilization centers ranging from 40 to 100 with rest of
the proteins equally distributed (20% each) across the rest of the

stabilization centers (Table 3).

Studies on protein stability among the five sequences con-
sidered revealed remarkable observations with one showing

420 cation–� interactions, three showing the presence of55 cat-

ion–� interactions and one not showing any cation–� interaction

(Table 3). EKA-16 showed highest number of non-covalent

interactions (1018) and non-canonical interactions (218) followed

by EKA-8 and EKA-15. Table 4 describes non-covalent inter-

actions, and Table 5 describes non-canonical interactions.
The MFOLD results (Table 3) showed EKA-13 (–73.1kcal/

mol) and EKA-9 (–95.2 kcal/mol) with higher "G, whereas

EKA-16 (–740kcal/mol) and EKA-15 (–201.6kcal/mol)
showed relatively lower "G.

3.2.2 Predicting instability index Sequences showed instability
index ranging from 29.92 to 51.4 (Table 3) indicating that most

of the proteins are likely to be stable, if expressed.

3.3 Correlation of stability parameters

A nearly consistent trend for all stability parameters was found

for all the pseudogene-encoded proteins (Fig. 2). From these

data, we infer that the total energy of the folded structures is

in the favorable range (Fig. 3). Further, non-canonical

Table 1. Functional summary of pseudogenes and their relatives
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interaction and non-covalent interaction trends indicate stability

of the structures predicted (Figs 4 and 5).

4 DISCUSSION

The present study is an extension of previous work (Dhar et al.,

2009) where Escherichia coli non-coding DNA sequences were

artificially expressed into functional proteins. This gave rise to a

new question—what would happen if we artificially expressed

pseudogene sequences? Would they make stable and functional

proteins? How would their structure look like? What kind of

molecules would they interact with? Given their increasingly

complex role at both genetic and epigenetic levels (Guo et al.,

Table 2. Physicochemical properties of pseudogenes
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Table 5. Non-canonical interactions
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Fig. 3. Trend for Total Energy

Fig. 2. Trend for Instability index and Stabilization Centers
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2014), this study attempts to present a novel way of understand-

ing pseudogene biology by artificially expressing candidate

sequences that show most promising leads.
Of the 20 pseudogenes that were computationally translated to

protein sequences, 16 sequences gave full-length open reading

frames (ORF) without any stop codons and were considered in

this study. To understand potential property of pseudogene pro-

teins, sequence-based and structure-based prediction studies were

performed using the best computational tools available.

Before this step, pseudogene sequences were sent for RNA

structure prediction based on the reasoning that if pseudogene

mRNA assumes a rigid secondary structure, it would be difficult

to artificially synthesize proteins. Reports suggest that ‘highly

expressed genes’ may not show stable mRNA secondary

structure, whereas ‘low expressed genes’ may show highly stable

mRNA secondary structure (Drummond et al., 2005; Mukund

et al.,1999). Thus, higher the value of "G, lower the possibility

of forming a stable mRNA secondary structure. All pseudogene

proteins exhibited "G ranging from –740kcal/mol to –73.1 kcal/

mol (Table 3) indicating that pseudogenes may have been possibly

low-expressing genes in the past when they were in an active state.

It would be interesting to see how they behave when artificially

expressed using both a weak and a strong promoter.

To strengthen pseudogene predictions for experimental valid-

ation, it is important to address the reliability of function pre-

dictions. Functions of selected pseudogenes and its relatives were

predicted using sequence information, as tools have been
developed that reliably predict the function from sequence data
(Jensen et al. 2002, 2003). It was found that many pseudogene-

encoded proteins (EKA-1, EKA-4, EKA-5, EKA-7, EKA-8,
EKA-10, EKA-14 and EKA-15) had function similar to that
of their relatives (Table 1). Furthermore, several pseudogene

proteins were predicted to play a role in amino acid biosynthesis
and energy metabolism. We found that three pseudogenes
(EKA-8, EKA-9 and EKA-15) from the set of 16 pseudogenes

showed similar functions based on both protein–protein
interaction network and Gene Ontology predictions.
Majority of pseudogene proteins were found to localize to

cytosol. Interestingly, pseudogene-encoded proteins (EKA-5,
EKA-12 and EKA-15) that show up in the energy metabolism
category also localize to cytosol (cytoplasm), thus strengthening

the belief in predictions. Proteins with regulatory functions
(EKA-2) were also localized to cytosol (cytoplasm).
Interestingly, EKA-7 and EKA-11 showing up under purines

and pyrimidines biosynthesis functional category were found to
be localized to the nucleus subcellular compartment (Table 1).
It was encouraging to observe that predicted pseudogene

proteins showed high aliphatic index values and lower instability
index indicating greater stability, if expressed. The low hydro-
phobicity score of predicted proteins indicate their polar nature.

Tertiary structure of potential pseudogene proteins was deter-
mined by using I-TASSER because of the wide acceptance of this
tool in the community. The quality of model is estimated based

on the C-score. The convergence parameters of the structure
assembly simulations and threading template alignments are
used for calculating the C-score. Typically, C-score value is be-

tween –5 and 2, where higher value of C-score indicates a model
with a high confidence and vice versa. The C-score value for all
pseudogene proteins was found to be in the range of –4 to 0.58,

indicating a strong foldability of the predicted proteins
Structural stability of proteins is an important indicator of

their potential function (Ramanathan et al., 2011). To further
understand the strength of structural predictions, we studied

proteins using stability parameters like stabilization centers,
total energy, cation–� interaction energies, non-covalent, non-
canonical interaction and instability index, and encouraging evi-

dence of protein structure stability was found (Tables 3–5).
Further, the total energy of the proteins was calculated using

GROMACS force field—wherein the lower the energy, the
higher the possibility of stable configuration. The total energy
of all the proteins individually was found to be negative (Table 3)

indicating that all the proteins are likely to exhibit a stable struc-
ture, if expressed. Further, 5 of the 16 proteins exhibited several
stabilization centers. Among all the proteins, EKA-8 and EKA-

16 were found to have the lowest energy and highest numbers of
stabilization centers (Table 3).
We also studied non-covalent interactions like hydrogen

bonds, hydrophobic interactions, disulphide bridges, salt bridges

and cation–� interactions in these proteins. The data obtained
under all these categories give a strong indication of stable fold-
ability of proteins. Among all the proteins, EKA-16 and EKA-8

show presence of higher non-covalent interaction indicating
better stability (Table 4). These two proteins also showed the
highest number of non-canonical interactions suggesting higher

structural stability of proteins thus lending support to the 3D

Fig. 4. Trend for non-canonical interactions, non-covalent interaction

and cation–� interactions

Fig. 5. Cation–� interaction energy and "G
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structure stability profiles (Ramanathan et al., 2011; Umezawa

and Nishio, 1998).
Finally, to validate the strength of stability predictions, we

performed tests that examine instability of these proteins. The

instability index indicates whether a protein would be unstable

in vivo (Guruprasad et al., 1990)—the instability index of540 is

considered as a good evidence of stability (Ramanathan et al.,

2011). Interestingly, EKA-15 sequence exhibited the lowest

instability followed by EKA-9, EKA-8 and EKA-16 (Table 3).
Overall, this study suggests that EKA-8 (Fig. 6) and EKA-16

(Fig. 7) are the two most promising pseudogenes for artificial

expression into proteins. Experiments have been started to

validate these predictions. It would be interesting to see how

cell responds to deliberate expression of sequences that nature

decided to switch off. Given the context dependency and emer-

gent properties arising from protein interactions (Banerji, 2013),

it would be interesting to see the experimental outcome of

artificial pseudogene expression.

5 CONCLUSION

This work explores the possibility of making stable and func-

tional proteins from pseudogenes. A comprehensive multi-para-

metric study, based on sequence and structural evidences

identifies two pseudogenes (EKA 8 and EKA 16) as the most

promising candidates for the future artificial protein synthesis

and functional studies.
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