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Magnetoresistance (MR) anisotropy in LaAlO3/SrTiO3 (LAO/STO) interfaces is 

compared between samples prepared in high oxygen partial pressure (PO2) of 10
-4

 

mbar exhibiting quasi-two-dimensional (quasi-2D) electron gas and low PO2 of 10
-6

 

mbar exhibiting 3D conductivity. While MR of an order of magnitude larger was 

observed in low PO2 samples compared to those of high PO2 samples, large MR 

anisotropies were observed in both cases. The MR with the out-of-plane field is 

always larger compared to the MR with in-plane field suggesting lower dissipation 

of electrons from interface versus defect scattering. The quasi-2D interfaces show a 

negative MR at low temperatures while the 3D interfaces show positive MR for all 

temperatures. Furthermore, the angle relationship of MR anisotropy for these two 

different cases and temperature dependence of in-plane MR are also presented. 

Our study demonstrates that MR can be used to distinguish the dimensionality of 

the charge transport and various (defect, magnetic center, and interface boundary) 

scattering processes in this system.  



With the recent observation of electronic phase separation, strong negative MR and 

room temperature ferromagnetism at the LAO/STO interface prepared at higher PO2 

(~1×10
-2

 mbar) [1], understanding the role of magnetic ordering and various 

scattering processes in the transport of quasi-2D electron gas has become important in 

addition to the variety of fascinating transport properties observed such as 

superconductivity, Kondo and field effect [2-6]. To differentiate between various 

magnetic states, the behavior of the MR can be studied as a function of field and the 

angle between the current and field direction [7-9]. For example, MR anisotropy 

measurements have been used to distinguish between weak localization and Kondo 

scattering [10].In the case of the LAO/STO interfaces, several MR studies [11-14] 

have been done to study interface anisotropy, long-range magnetism, magnetic 

inhomogeneities and spin-orbit scattering. Based on the observation of negative MR, 

Shalom et al. [14] proposed the existence of magnetic ordering below 35 K for the 

samples prepared at the canonical PO2 from 5x10
-5

 to 1x10
-3

 Torr where quasi-2D 

electron gas is dominant. However, there has not been any study of the comparison of 

MR between the quasi-2D and the 3D conductivity cases or the angular dependence 

of the MR as a function of field and the angle between the current and field direction. 

Such MR anisotropy measurements would be able to give us further information 

about magnetic ordering, transport dimensionality and various (interface) scattering 

processes that can exist in electronic transport of a confined system. 

 

In this paper, we report on temperature dependent MR anisotropy measurement for 

atomically sharp interfaces between LaAlO3 and SrTiO3 not only for the quasi-2D 

electron gas prepared under the conditions of PO2 = 10
-4

 mbar, but also the 3D 

electron gas at PO2 = 10
-6

 mbar. Fundamental differences were observed in MR 



behavior of high PO2 samples, where a quasi-2D electron gas is expected, compared to 

those of low PO2 samples, where the electronic transport is 3D. In samples prepared at 

high PO2, the MR behavior is strongly influenced by the existence of magnetic 

scattering centers near the interfaces (a magnetic scattering plane), too small to be 

detected by other means which accounts for a negative low temperature MR, and the 

scattering most probably due to the vicinal steps of the substrate which accounts for 

the linear MR observed even for out-of-plane configuration. 

 

In our experiment, samples of 26 unit cells (uc) LaAlO3 were grown layer-by-layer on 

atomically flat TiO2 terminated SrTiO3, under two different PO2 of 10
-4

 and 10
-6

 mbar. 

Reflection high energy electron diffraction (RHEED) oscillations obtained from both 

types of interface samples during growth are shown in Fig. 1a and 1b. These 

oscillations indicate good layer-by-layer growth up to the 26 uc thick of LaAlO3. The 

electrical measurement was done by linear four-probe geometry. 

 

Figure 1c shows the resistances of the two types of interfaces. A large difference of 2 

orders of magnitude in resistance values between the 2D and 3D samples was 

observed at room temperature and increases to 4 orders at 2 K. As commonly believed, 

the resistance difference is one of the key differences between the quasi-2D and 3D 

interfaces with the carriers in the latter case arising from oxygen vacancies. 

Furthermore the growth pressure of 10
-4

 mbar also matches well with reported critical 

PO2, above which SrTiO3, when annealed, will remain an insulator and conductance is 

generally from interface [15]. 

 



MR anisotropy investigation was done in linear geometry with two different 

directions of magnetic field applied, namely, in-plane MR and out-of-plane MR as 

shown in Fig. 2a and 2b. One thing to be noticed is that the magnetic fields were 

always applied perpendicular to current. The field was in the plane of the film at 0 

degrees and normal to the film at 90 degrees. 

 

For the oxygen vacancies dominated 3D interfaces, a very large out-of-plane MR of 

~1500% (Fig. 2c) and an order of magnitude lower in-plane MR of ~100% (Fig. 2d) 

were observed when magnetic field was increased up to 9 Tesla (T) at 2 K. While the 

out-of-plane MR has a quadratic relation, the in-plane MR has a linear relation with 

applied magnetic field. The behavior of the out-of-plane MR (quadratic dependence) 

is understood as due to increased defect scattering resulting from enhanced transit 

path of electrons [16]. On the other hand the in-plane MR is mainly dominated by 

interface scattering, primarily at the LAO/STO interface as the estimated cyclotron 

radius for the electron is of the order of macrometer  at a 1 T field which is 

significantly larger than the thickness of the LaAlO3 layer. As a result the frequency 

of the interface scattering will be proportional to the cyclotron frequency which has a 

linear dependence on magnetic field. Further, the reduced magnitude of the MR 

indicates that the interface scattering is significantly less dissipative (elastic scattering) 

than the defect scattering.  

 

The MR at 2 K for the quasi-2D interfaces shows much more interesting phenomena. 

The out-of-plane MR in quasi-2D interfaces is linear instead of quadratic (Fig. 2e). 

The magnitude of the MR is also an order of magnitude smaller compared to the 3D 

case under 9 T and closer to the case of in-plane 3D MR. Both observations support 



the idea of the 2D electrons scattering from the vicinal steps in SrTiO3 which have a 

width of the order of 200 nm, significantly smaller than the cyclotron radius. 

Surprisingly, a negative MR (Fig. 2f) is observed for the in-plane geometry, in 

contrast to all the other cases. The negative MR could be an indication of onset of 

magnetic centers as the scattering becomes more coherent. The origin of magnetic 

scattering has been seen before in the form of Kondo scattering and also in the 

extreme case of interfaces grown under higher oxygen pressures exhibiting electronic 

phase separation [1]. The origin of the magnetic centers is most likely from cationic 

defects at the LAO/STO interface in the form of Ti vacancies or Ti
3+

. Nakagawa and 

Hwang et al. have used electron energy loss spectroscopy measurement of the 

interface to show the existence of Ti
3+

 [17]. Thus one expects a quasi-2D plane of 

magnetic centers near the interface responsible for the negative MR. 

 

To sum up, there are three kinds of MR relations observed at 2 K: quadratic positive 

MR arising from enhanced electron transit path (out-of-plane MR in low PO2 sample), 

linear MR arising from interface scattering (in-plane MR in low PO2 sample and out-

of-plane MR in high PO2 sample), and negative MR arising from coherent scattering 

(in-plane MR in high PO2 sample).  

 

The anisotropy features could have been seen from previous Fig. 2. In order to check 

the detailed features of those anisotropies, the MR under 9T for both the quasi-2D and 

3D interfaces are measured at different angles and different temperatures and are 

shown in Fig. 3. The MR and the anisotropy for both quasi-2D and 3D interfaces are 

suppressed at temperatures above ~100 K. At lower temperatures for the 3D 

interfaces, the resistance exhibits a rough cosine relationship with respect to measured 



angle and the out-of-plane (0 degree) resistance is about 4 times larger than in-plane 

(90 degree) resistance at 9 T and 2 K. In the quasi-2D interface the functional form of 

the angular dependence shows the formation of a deep cusp at 90 and 270 degrees 

which is characteristic of a 2D electron transport [18].  

 

Figure 4 shows a closer comparison of the angular dependence of the 2D and the 3D 

cases at 2 K and 9 T field. In the quasi-2D interfaces, a negative MR is observed in 

in-plane geometry (90 degree) and positive MR in out-of-plane geometry (0 degree).  

To vividly demonstrate the MR anisotropy of different types of interfaces, two 

different plots were used to present the MR anisotropy at 2 K under 9 T. As can be 

seen in Fig. 4, the negative MR in-plane geometry for quasi-2D interfaces is very 

obvious. The shape differences and amplitude differences between quasi-2D and 3D 

interfaces could be clearly observed in these plots. 

   

The observed different scattering mechanisms have also temperature dependences as 

illustrated in in-plane resistance and in-plane MR shown in Fig. 5 for the 2D interface. 

For the 2D samples prepared at higher pressures of 10
-3

 mbar Kondo effect has been 

clearly seen but not at 10
-4

 mbar as the concentration of the magnetic centers is too 

low.  However, a magnetic field can align these residual centers, which induces a 

more coherent scattering and results in a negative MR. Thus the negative MR is an 

even more sensitive probe for the presence of magnetic centers than Kondo scattering. 

This negative MR vanishes beyond 20 K turning progressively positive at higher 

temperatures due to the disruption of the exchange interaction between the magnetic 

centers by thermal excitations. This accounts for the downward trend of the MR 

signal with decreasing temperature originates at 30 K and becomes negative below 20 



K. However, the abruptness of the MR transition at 30 K tends to suggest the role of 

the SrTiO3 phase transition (orthorhombic to rhombohedral) on the observed change 

in the MR behavior. Further study will be required to elucidate this. 

 

In summary, we present a comparison of MR anisotropy in LAO/STO interfaces 

prepared under different PO2. Large anisotropies were found in both 2D and 3D 

interface samples and three distinct scattering mechanisms were observed in this 

system. The observed anisotropy features and temperature dependence suggest the 

role of interface scattering in addition to enhanced electron paths under a magnetic 

field and in the case of 2D electron gas the role of a magnetic plane that is effective at 

low temperatures in introducing a coherent scattering process leading to negative MR.  

This study supports the formation of a magnetic scattering plane near the 2D electron 

interface. The study also brings out the lower dissipation of scattering at interfaces as 

opposed to defect scattering losses due to enhanced electron transit paths. Thus MR 

anisotropy is a sensitive technique for understanding the role of magnetic ordering 

and various scattering processes in the transport of quasi-2D electron gas. 
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Figure Captions: 

Figure 1: RHEED oscillation for samples prepared in (a) high PO2 and (b) low PO2. 

Clear layer-by-layer growth was observed in both cases. (c) Large transport resistance 

difference for samples processed under different PO2.

 

 
 

 

 
 

  



Figure 2: Comparison on magnetoresistance between high PO2 and low PO2 with 

magnetic field applied at different directions at 2K. Illustrations for (a) out-of-plane 

and (b) in-plane linear measurement geometry and MR for four cases (c) Low PO2 

LAO/STO interfaces out-of-plane MR, (d) Low PO2 LAO/STO interface in-plane MR, 

(e) High PO2 interfaces out-of-plane MR, and (f) High PO2 interfaces in-plane MR. 

 



Figure 3: Resistance under 9 T magnetic field with respect to different angle for two 

types of interfaces. 

 

 

 

 

 

 

 



Figure 4: Various plots for magnetoresistance of different interfaces under 9 T 

magnetic field at 2 K. Normal plot for quasi-2D interfaces (a) and 3D interfaces (b); 

Polar plot for quasi-2D interfaces (c) and 3D interfaces (d). 

 

 

  



Figure 5: Temperature dependence for in-plane resistance (a) and in-plane 

magnetoresistance (b and c) for high PO2 LAO/STO interfaces.  

 
 

 

 


