Metamaterials, an artificial periodic two- or three-dimensional configuration, can change propagation characteristics of electromagnetic waves (i.e., reflection, transmission, absorption). The current challenges in the field of metamaterial coatings are their manufacturing in a large-scale and large-length scale. There is a clear need to enhance process technologies and scalability of these. Thermal spraying is a method used to deposit small- to large-scale coatings where the sprayed layer is typically formed by the successive impact of fully or partially molten particles of a material exposed to various process conditions. This work aims to investigate the feasibility to manufacture large scale metamaterial coatings using the thermal spray technique and examine their response to solar radiation. Two types of coatings namely, Cr2O3 and TiO2, were deposited onto various substrates (e.g., steel, aluminium, glass, indium tin oxide (ITO)–coated glass) with a fine wire mesh (143 µm and 1 mm aperture sizes) as the masking sheet to manipulate the surface pattern using suspension high-velocity oxy-fuel thermal spraying (S-HVOF) and atmospheric plasma-sprayed (APS) methods, respectively. Post deposition, their responses subjected to electromagnetic wave (between 250 and 2500 nm or ultraviolet (UV)-visible (Vis)-infrared (IR) region) were characterised. The additional microstructural characterisation was performed using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), three-dimensional profilometry, and optical spectroscopy. It is demonstrated that through novel application of thermal spray techniques, large-scale manufacturing of metamaterial coating is possible, and such material can affect electromagnetic wave propagation. Comparison between Cr2O3 and TiO2 coatings on aluminium substrates showed reduced three orders of reduced reflectance for Cr2O3 coatings (for 1-mm aperture size) throughout the spectrum. It was concluded that for a similar bandgap, Cr2O3 coatings on aluminium substrate will yield improved optical performance than TiO2 coating, and hence more useful to fabricate opto-electronic devices. Graphical abstract: [Figure not available: see fulltext.] © 2021, The Author(s).