
Vol. 21 no. 20 2005, pages 3818–3823

doi:10.1093/bioinformatics/bti639BIOINFORMATICS ORIGINAL PAPER

Sequence analysis

Identification of coding and non-coding sequences using local
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ABSTRACT

Motivation:Accurate prediction of genes in genomes has always been

a challenging task for bioinformaticians and computational biologists.

The discovery of existence of distinct scaling relations in coding and

non-coding sequences has led to new perspectives in the understand-

ing of the DNA sequences. This has motivated us to exploit the differ-

ences in the local singularity distributions for characterization and

classification of coding and non-coding sequences.

Results:The local singularity density distribution in the codingandnon-

coding sequences of four genomeswas first estimated using the wave-

let transformmodulus maxima methodology. Support vector machines

classifier was then trainedwith the extracted features. The trained clas-

sifier is able to provide an average test accuracy of 97.7%. The local

singularity features in a DNA sequence can be exploited for successful

identification of coding and non-coding sequences.

Contact: Available on request from bd.kulkarni@ncl.res.in

1 INTRODUCTION

With the explosive accumulation of genome sequences, it has

become the task of bioinformaticians to annotate a large amount

of sequences with a very high degree of accuracy. Annotation

includes identification of genes in the genome, assigning putative

functions to them and characterizing their boundaries. The

algorithms for identification of genes make use of one or more

of the several available coding measures. These coding measures

incorporate a unique feature/character of the coding sequence,

based on which accurate identification of the sequence can be

done. Notable among the coding measures, which have been pre-

viously exploited are, the codon usage value (Staden and

McLachlan, 1982), the Hexamer frequency (Claverie et al.,

1990) and the mono- and diamino acid usage values (McCaldon

and Argos, 1988). Hydrophobicity is another critical parameter for

the protein function and has been employed by Tramontano and

Macchiato (1986) to take the coding decisions. The base composi-

tional bias in the coding sequences has also been exploited as a

coding measure of the sequence (Shepherd, 1981). Silverman and

Linsker (1986) use the periodic patterns in the coding sequences

revealed by Fourier transform for distinguishing them from non-

coding sequences. There are several other global patterns such as

dinucleotide frequency, word measure, run measure that have been

used as coding measures. Fickett and Tung (1992) have carried out a

detailed analysis of various coding measures.

Recently, many algorithms have been developed that use the

previously mentioned coding measures for identification of coding

and non-coding sequences (Uberbacher et al., 1996; Pedersen and

Nielsen, 1997; Zhang, 1997; Burge and Karlin, 1997). Zhang and

Wang (2000, 2001) have used Z curve representation of DNA

sequences to identify coding sequences in Vibrio cholerae and

yeast genomes by applying the Fischer discriminant algorithm.

The Z curve representation of DNA sequence is a 3D space

curve, representing the asymmetry in the codon positions with

respect to purine/pyrimidine nature of nucleotides, amino/keto

nature of nucleotides and strong/weak hydrogen bonding property

of nucleotides. Thus the Z curve provides a content measure of the

sequence on the basis of which a classification can be done.

Methods based on Markov chains have also received wide attention

in DNA sequence analysis. Different variations and improvements

over conventional Markov models have been implemented in

gene classification algorithms. (Salzberg et al., 1998; Delcher

et al., 1999; Borodovsky and McInich, 1993; Lukashin and

Borodovsky, 1998). More recently, principles based on non-linear

dynamics have been used for the analysis of biological sequences

only to reveal interesting statistical behaviors in the sequences. In

particular, multifractal analysis has been employed to characterize

spatial heterogeneity of the fractal patterns in DNA. A multifractal

analysis based on the chaos game representation of DNA sequences

(Gutierrez et al., 2001) and protein sequences (Yu et al., 2004) from

complete genomes has been performed. Based on the measure rep-

resentation of DNA sequences (Yu et al., 2001) and the techniques

of multifractal analysis, Anh et al. (2002) have discussed the prob-

lem of recognition of an organism from fragments of its complete

genome. Yu et al. (2003) proposed the measure representation of

linked protein sequence from a complete genome and performed its

multifractal analysis. Zhou et al. (2005) have used the global fea-

tures obtained from multifractal analysis of nucleotide sequences to

distinguish coding and non-coding sequences. The principles based

on non-linear dynamics have also been exploited to detect the

presence of long-range correlations in the DNA sequence. Peng

et al. (1992) use a DNA walk model to discover the presence of

long-range correlation in non-coding sequences. Chatzidimitriou-

Dreismann and Larhammar (1993) and Prabhu and Claverie (1992)

further proved that such correlation also exists in coding sequences.

Arneodo et al. (1998) and Audit et al. (2001) have recently shown

the presence of long-range power law correlations in eukaryotic

coding sequences.�To whom correspondence should be addressed.
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The coding potential of a DNA sequence (the potential of a DNA

sequence to encode for a protein) is attributed to the local structures

present in the codons. Therefore, the local properties of the DNA

sequence will prove to be more informative than the global prop-

erties in distinguishing coding and non-coding sequences.

Researchers have recently extracted local features from time series

in the form of local Hölder exponents to detect outliers in time series

(Struzik and Siebes, 2002), to analyze human gait data (Scafetta

et al., 2003) and to study the influence of progressive central

hypovolemia on cardiac interbeat intervals (West et al., 2004).

We propose to employ information about the local Hölder expo-

nents that capture the local patterns in the time series (numerically

encoded DNA sequence) for distinguishing coding and non-coding

sequences using binary Support Vector Classification algorithm.

2 METHODS

2.1 Local singularity analysis

Most of the real-life time series data contain step or cusp-like singularities in

them (Fig. 1). By singularity, we mean, the rapid changes in the variable

values for a very small change in time/position. At those points where

singularities are present, the expansion of the time series will contain

some components with non-integer powers of time (or position).

Thus, an additional term having non-integer power needs to be included

(in Taylor series expansion of the time series) to describe these singularities.

The time series around the singularity point x0 can then represented as

(Muzy et al., 1994)

f xð Þ ¼ a0 þ a1 x� x0ð Þ þ � � � þ an x� x0ð Þn þ Cjx� x0j
h x0ð Þ

‚ ð1Þ

where, a1, a2, . . ., an denote the expansion coefficients. The exponent h(x0) is

called as the local Hölder exponent and is defined for a point at x0, as the

greatest value of h so that there exists a constant C and an n-th order

polynomial, that satisfies the condition (Muzy et al., 1994)

jf xð Þ�Pn x� x0ð Þj<Cjx� x0j
h x0ð Þ ð2Þ

for all values of x in the neighborhood of x0. It is emphasized that n < h(x0)

< n + 1 so that f(x) is n times differentiable and its nth derivative is singular

in x0. The local Hölder exponent is a measure of strength of the singularity

as well as the regularity of the time series at x0. The lower value of Hölder

exponent at a particular point will reflect a stronger singularity at that point.

The estimation of the value of Hölder exponent requires the DNA sequence

to be first represented in the form of a numerical time series. Different

authors have employed different types of representations in their analysis

of DNA sequences (Peng et al., 1992; Yu et al., 2001, 2004). In this work, we

adopt the numerical representation used by Zhou et al. (2005), wherein the

nucleotide C is represented by the point (1, 1) in 2D space corresponding to

its pyrimidine and strong bonding properties; G is represented by (�1, 1)

corresponding to it purine and strong bonding properties; A is represented by

the point (�1,�1) corresponding to its purine and weak bonding properties;

and T is represented by (1,�1) corresponding to its pyrimidine and weak

bonding properties. The vectors connecting the origin to the four points

(1, 1), (�1, 1), (�1,�1) and (1,�1) will then have rotational angles p/4,

3p/4, 5p/4 and 7p/4, respectively with the x-axis. The map is then defined as

C!1; G!3; A!5; T!7 (Map 1357). For the ambiguous nucleotides in the

sequence, we randomly substituted any one of the nucleotides corresponding

to the ambiguous representation, with equal probability. With this numerical

representation of a DNA sequence, for example, occurrence of C prior to or

after the occurrence of T will be more singular and will reflect a lower value

of Hölder exponent as compared with the occurrence of C prior to or after the

occurrence of G. The change is regular at those locations where the same

nucleotide symbols occur together (e.g. AA, TT, GG and CC). The task of

detection of the singularities in the DNA series can be conveniently carried

out employing wavelet transform (WT). WT has long been known as a vital

tool for time series analysis, localized in both time and frequency

domains (Strang and Nguyen, 1996). The wavelet transform of f(x) is

defined by

Ws‚ x0 fð Þ ¼
1

s

Z

þ1

�1

c
x� x0

s

� �

f xð Þ dx, ð3Þ

where c(x) is a function orthogonal to the polynomial f(x) up to order n,

called as the ‘wavelet function’ or simply ‘wavelet’. The scale s fixes the

width of wavelet thus adjusting its resolution over the time series. The ability

of wavelet transform to reveal even the weaker singularities within the time

series by adjusting the scale parameter makes it an indispensable tool for

singularity analysis. Applying the wavelet transform to Equation (1), the

wavelet coefficient at scale s! 0 for a singularity x0 can be given as (Struzik,

2000)

Ws‚ x0 fð Þ ¼ Csh x0ð Þ

Z

þ1

�1

jsxjh x0ð Þ
c xð Þ dx: ð4Þ

If we use a wavelet that has the number of vanishing moments greater than or

equal to that of the degree of polynomial f(x), it will filter out the polynomial

trends and focus only on the singularities in the time series. A power law

proportionality can then be established between the Hölder exponent of a

singularity and wavelet transform at that point (Muzy et al., 1994; Struzik,

2000),

Ws‚ x0 fð Þ � sh x0ð Þ for s! 0þ: ð5Þ

In our work we have used ‘Mexican hat’ wavelet that satisfies all the required

criteria for the purpose on hand. Also, this wavelet is known to converge

exponentially to zero at large values of x and thus, applies to a window,

which is much larger in size than the scale chosen (Scafetta et al., 2003). The

Mexican hat wavelet is denoted by

c xð Þ ¼ 1� x2
� �

exp
� x2

2

� �

: ð6Þ

Although Equation (5) can now be used to estimate the Hölder exponents, it

is redundant in nature and involves prohibitively large computations. An

alternative method proposed by Mallat and Hwang (1992) and Mallat (1999)

requires to follow the exponents of scaling along a ‘maxima line’ to estimate

the Hölder exponent of the singularity. The maxima line of a singularity is

the line joining modulus maxima of its wavelet coefficients at different

scales. A landscape (plot of log(s) v/s x) of these maxima lines for singu-

larities at all positions gives rises to the wavelet transform modulus maxima

Fig. 1. A time series representation of B. burgdorferiDNA coding sequence.
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methodology (WTMM) tree (Fig. 2). A more detailed discussion on WTMM

tree is provided in Arneodo et al. (1995), Struzik and Siebes (2002) and

Scafetta (2003).

This WTMM skeleton leads to the definition of a partition function Z(s, q)

of q-th moment based on multifractal formalism (Arneodo et al., 1995;

Muzy et al., 1994),

Z s‚qð Þ ¼
X

W sð Þ

jWs‚ x0 fð Þjq / st qð Þ‚ ð7Þ

where W(s) is the sum of all maxima over scale s and t(q) is the scaling

exponent that characterizes the power law behavior of this partition function

and captures the global distribution of singularities. The Legendre transform

of t(q) helps in establishing a relationship between itself and global singu-

larity spectrum Dh,

h qð Þ ¼
dt qð Þ

dq
ð8Þ

Dh ¼ qh qð Þ� t qð Þ‚ ð9Þ

where h(q) is the global distribution of Hölder exponents defined at the

moment q. The negative values of q capture the weak exponents, whereas

the positive values will capture the stronger exponents. The Dh spectrum

provides us with global singularity estimates of the time series. However, in

certain cases, as ours, the local variations in the time series may prove to be

more informative and the local Hölder exponents provide a means to quant-

ify these variations. But the estimation of local Hölder exponents directly

from the WTMM representation poses a problem. As the scale value nears

zero the wavelet transform will focus more on weaker singularities, and the

maxima lines of singularities will become densely packed. Thus a maxima

line of one singularity tends to be corrupted by that of the neighboring

singularity inducing errors in the estimation of Hölder exponents. To over-

come this problem Struzik (1999) suggests an alternative method for estim-

ating the approximate local exponents, in which the singularities are

modeled as if they were created through a multiplicative cascading process.

The idea is to evaluate a mean of global Hölder exponents (�hh) of all the

singularities over the chosen scale range using equation

log½M sð Þ� ¼ �hh log sð Þ þ c1‚ ð10Þ

where function M(s) can be viewed as a mean of modulus maxima at a

particular scale s defined in terms of partition function [Equation (7)]

Struzik and Siebes (2002) as

M sð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Z s‚2ð Þ

Z s‚0ð Þ

s

: ð11Þ

The approximate local Hölder exponents for singularity at x0 and at a scale

s can be estimated by employing the multiplicative cascade model (Struzik,

1999) as

ĥh x0‚sð Þ ¼
log jWs‚ x0 fð Þjð Þ� �hh log sð Þ þ c1ð Þ

log sð Þ� log sNð Þ
‚ ð12Þ

where ĥh xo‚sð Þ denotes the approximate value of local Hölder exponents for

the singularity at x0 and scale s. sN is the maximum available scale for the

time series analyzed which is equal to its length N. i.e. sN ¼ N. A typical

local Hölder exponent profile for a single coding and non-coding sequence of

B. burgdorferi is shown in Fig. 3.

2.2 SVM binary classification

Support vector machine (svm) is rigorously based on Vapnik’s statistical

learning theory (Vapnik, 1995, 1998) and has been employed in several

bioinformatics applications (Brown et al., 2000; Pavlidis et al., 2001;

Chris and Dubchak, 2001; Jaakkola, et al., 2000; Hua and Sun, 2001;

Zhang et al., 2003; Bradford et al., 2005; Ward et al., 2003). The attractive

feature of SVM is its excellent generalization capabilities and ability to

converge to a single globally optimal solution. For a linearly separable

training data the binary SVM builds an optimal hyperplane separating

the two classes in the data (Fig. 4). Such an optimal hyperplane maximizes

the distance between itself and the nearest data points of each class. For

some datasets, especially the biological ones, which are not linearly

separable, SVM first maps the input data into a higher dimensional

feature space and then constructs a linear hyperplane in the feature

space. To avoid the computational problems arising on account of high

dimensionality of the feature space, an equivalent kernel function

is defined so that the computations can be performed in the input space

itself.

Let xi e R, i ¼ 1, 2, . . . , N be input training vectors and yi e{+1,�1} be

their corresponding target class (in our case coding and non-coding

sequences belong to positive and negative classes, respectively). Let N be

the total number of input vectors. The SVM classification problem can then

be formulated in terms of a convex quadratic optimization problem (Burges,

1998) as:

max
a

X

N

i¼1

ai �
1

2

� �

X

N

i‚ j¼1

aiajyiyjK xi‚ xj
� �

" #

ð13Þ

Fig. 2. A WTMM tree for a single coding sequence of B. burgdorferi. Fig. 3. A Hölder exponent profile for a single coding and single non-coding

sequence of B. burgdorferi at s ¼ 1.

O.C.Kulkarni et al.
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subject to,

ð1Þ 0<ai i ¼ 1‚2‚ . . . ‚N

Hard margin problem No training error allowedð Þ
or

0<ai<CSV i ¼ 1‚2‚ . . . ‚N

Soft margin problem some training error allowedð Þ
and

2ð Þ
X

N

i¼1

aiyi ¼ 0‚

where CSV is a regularization parameter and controls the tradeoff between

the SVM complexity and the number of allowable errors in training. K(xi, xj)

denotes the kernel function. We have conducted our simulations with linear

kernel and RBF kernel functions defined by Equations (14) and (15),

respectively.

K xi‚xj
� �

¼ xi * xj ð14Þ

K xi‚xj
� �

¼ exp �s :

xi � xj
� �2

2

 !

ð15Þ

Parameter s in Equation (15) decides the width of the RBF kernel function.

The target class of any test sequence is determined by using the decision

function

Y xð Þ ¼ sign
X

nSV

i¼1

yiaiK xi‚xj
� �

þ b

 !

: ð16Þ

nSV represents the number of training vectors that have a non-zero value of

lagrangian multiplier (ai). Thus, it is evident that knowledge of only a small

subset of input vectors is required to form the SVM decision function;

therefore, they are called support vectors. The term b in Equation (16) is

a bias term that is given by

b ¼ �
1

2

X

nSV

aiyi K xþ*xið Þ þ K x � *xið Þ½ �‚ ð17Þ

where x+ denotes the support vectors of one class and x� that from the other.

3 IMPLEMENTATION

3.1 Data

Four genomes from the publicly available NCBI database (ftp://ftp.

ncbi.nih.gov/genomes) are used in this work; Methanobacterium

thermoautotrophicum deltaH (category: Archaebacteria),

Ureaplasma urealyticum serovar 3 (category: Gram positive

Eubacteria low G+C), B. burgdorferi B31 (category: Spirochaete),

Buchnera sp. APS (category: proteobacteria gamma subdivision). In

a bacterial genome, the number of non-coding bases (intergenic

regions) is less and moreover the intergenic regions might code

for structural RNAs. This poses a problem while applying a learning

algorithm, such as SVM, as insufficient number of training

sequences is available from the non-coding class, which may induce

a bias in the results. Therefore, a synthetic method is used to obtain a

sufficient number of non-coding sequences for classification (Zhang

and Wang, 2001). It is known that the coding potential of a DNA

sequence comes from its stringent regular structure in the arrange-

ment of the nucleotides at the three codon positions. (Zhang and

Zhang, 1991; Zhang and Chou, 1994). Thus, if this regular structure

is disrupted, then the DNA sequence loses its coding potential. For

this purpose, coding sequences are first concatenated to form a long

coding stretch. Then using a simple randomization algorithm the

nucleotides in the coding sequence are shuffled/reordered for suf-

ficient number of iterations. This shuffled sequence can then be

labeled as a non-coding sequence. The long stretch of non-

coding sequences is cut in lengths equal to that of respective coding

sequences to get a non-coding set.

Equation (12) for obtaining the local Hölder exponents is depend-

ent upon the maximum scale available, which is equivalent to the

maximum length of a given sequence. This constraint requires the

length of all sequences to be nearly constant. Thus to obtain a

sequence of uniform length a sliding window approach has been

employed. For each sequence, starting from first nucleotide, a win-

dow consisting of 300 nt is first selected. This 300 nt long sequence

forms our first new sequence. The start and stop positions of the

window are shifted by 30 codons, and nucleotides within this new

window form the next new sequence. The process of sliding the

window is continued till the end of the sequence. This process was

repeated for all the coding sequences as well as non-coding

sequences. These new sequences of length equal to 300 nt were

then used for estimating the local Hölder exponents.

3.2 Estimation of Hölder exponents and classification

A wavelet transform of all the sequences (both coding and non-

coding) obtained by the sliding window approach is performed over

a range of scales between 1–10 with an interval of 1. Mean global

exponent for each sequence is found from the slope of linearly

regressed plot of log M(s) versus log(s). The actual estimates of

local exponents for each singularity in all sequences were found at a

single value of scale, s ¼ 1, by using Equation (12). The probability

density distribution of these Hölder exponents is then estimated.

The features for SVM classification are the probability density

values corresponding to the values of Hölder exponents taken at

equally spaced increments. For example, the range of Hölder expo-

nents lies between �0.157 to 0.535 in Fig. 5. We divide this range

into 40 equally spaced intervals. We now use the probability density

values corresponding to the 41 values of the Hölder exponents as

features for SVM classification. The training set comprised two-

thirds of coding, and two-thirds of the non-coding sequences. The

remaining sequences were used as the unseen test samples. A stand-

ard 5-fold cross-validation (CV) procedure was employed to estim-

ate the kernel parameter (s) and the regularization parameter (CSV).

The selection of final training parameters was based on average CV

error. We use a freely available package, libsvm, (Chang and Lin,

2001, http://www.csie.ntu.edutw/~cjlin/libsum) to train the SVM

model and for predicting the unseen test sequences. The main

steps in the algorithm are listed in Table 1.

Fig. 4. SVM binary classification.
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4 RESULTS AND DISCUSSION

Current methods of gene recognition employ a variety of biological

information for identification of coding regions. In particular, non-

uniform codon usage of coding regions is a very well-known and

widely used statistical feature. (Fickett, 1982; Galvan et al., 2000).

Within the coding regions, not all triplets of nucleotides occur with

the same probability. The probability of occurrence of a nucleotide

is different in each of the three codon positions. Such a preferential

codon usage would result in a structured local pattern in the coding

regions. In our work the local Hölder exponent density spectrum

was employed to capture these local structures effectively. Figure 5

shows the probability density distributions of a single coding

sequence and a single non-coding sequence for B.burgdorferi.

Although in this representative figure for the coding sequence

the mean is lower and the standard deviation of the distribution

is higher than that of the non-coding sequence, it was found that

such a characterization cannot be generalized. If this was so, we

could have discriminated the coding/non-coding regions with the

information about the mean and standard deviation alone. In gen-

eral, it was found that such discrimination requires consideration of

the entire local Hölder density spectrum along with a state-of-art

pattern recognition algorithm, such as SVM.Density spectrum of the

extracted local Hölder exponents represents the most informative

features of the original DNA series whereas SVM provides the best

classification performance when these informative features are sup-

plied to it. Thus we add information in form of 41 probability

density values of the local Hölder exponents (covering the entire

structural feature of the density spectrum) and employ a machine-

learning algorithm, such as SVM to capture and discriminate the

trends in the two classes. We implemented two kernels namely

linear and RBF kernels. The latter was found to perform better

for all the organisms. The classification results are shown in

Table 2. To check the effect of using different mappings to convert

the DNA sequence into time series, we mapped two organisms with

two different mapping namely. C!3; G!5; A!7; T!1 (Map

3571) and C!7; G!1; A!3; T!5 (Map 7135). The results

have indicated that there is not much variation in the efficiency

with different representations. The ability of Hölder exponents to

distinguish the coding sequences from non-coding ones is evident

from the average test accuracy of 97.7%. We also have compared

our method with Z curve (Zhang and Wang, 2001) and 3-periodic

Markov model (Borodovsky and McInich, 1993). Results obtained

in this study show that our method gives comparable classification

accuracy.
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(2) Calculate the partition function at every scale using the summation

over all modulus maxima of wavelet coefficients for values of q equal

to zero and two (Equation 7).

(3) Calculate the value of M [Equation (11)] for each value of scale and

linearly regress the values against the respective scales to obtain the mean

local Hölder exponent within the selected scale.

(4) Select a single scale value and estimate the local Hölder exponents at

each singularity on the maxima line (Equation 12).

(5) Find the probability density spectrum of these exponents and use

these estimates as the features for SVM classification.
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Organism 3-periodic

Markov
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Z Curve
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