Header menu link for other important links
Hole/electron transport layers in tin-doped SBLN nano materials for hybrid solar cell applications
Published in Springer New York LLC
Volume: 30
Issue: 12
Pages: 11054 - 11062
In this work, layered perovskite SBN was investigated in a new-doped form for hole as well as electron transport layer (HTL/ETL) in perovskite solar cells. This work was targeted to determine utility of bismuth layer SBN materials as an active layer in hybrid perovskite solar cells. Thoroughly hard ball-milled compositions Sr1−xSnxBi1.95La0.05Nb2O9 (x = 0.0, 0.01, 0.03, 0.05, 0.1 and 0.2) were prepared by microwave synthesis to obtain fine (~ 10–60 nm) mesoporous particle network of atomic level substitutions. Microwave synthesis was crucial in modifying dielectric, semiconducting and optical characteristics of prepared SBN materials. The optical energy band gap and hall resistivity decreased in continuous manner on tin doping. The role of metallic tin as dopant in sharpening redox peaks and decreasing capacitive reactance of grain boundaries was investigated in detail using cyclic voltammetry and impedance spectroscopy respectively. The tin being more polar covalent than strontium augmented dielectric response too. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.
About the journal
Published in Springer New York LLC
Open Access
Impact factor