
1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2018.2824323, IEEE

Transactions on Dependable and Secure Computing

1

Generation of Secure and Reliable Honeywords,
Preventing False Detection

Akshima∗, Donghoon Chang†, Aarushi Goel‡, Sweta Mishra†, Somitra Kumar Sanadhya§

∗University of Chicago, USA, akshima@uchicago.edu
†IIIT Delhi, India, {donghoon,swetam}@iiitd.ac.in

‡ Johns Hopkins University, USA, aarushig@cs.jhu.edu
‡IIT Ropar, India, somitra@iitrpr.ac.in

Abstract—Breach in password databases has been a frequent phenomena in the software industry. Often these breaches go

undetected for years. Sometimes, even the companies involved are not aware of the breach. Even after they are detected, publicizing

such attacks might not always be in the best interest of the companies. This calls for a strong breach detection mechanism. Juels et al.

(in ACM-CCS 2013) suggest a method called ‘Honeywords’, for detecting password database breaches. Their idea is to generate

multiple fake passwords, called honeywords and store them along with the real password. Any login attempt with honeywords is

identified as a compromise of the password database, since legitimate users are not expected to know the honeywords corresponding

to their passwords. The key components of their idea are (i) generation of honeywords, (ii) typo-safety measures for preventing false

alarms, (iii) alarm policy upon detection, and (iv) testing robustness of the system against various attacks.

In this work, we analyze the limitations of existing honeyword generation techniques. We propose a new attack model called

‘Multiple System Intersection attack considering Input’. We show that the ‘Paired Distance Protocol’ proposed by Chakraborty et al., is

not secure in this attack model. We also propose new and more practical honeyword generation techniques and call them the

‘evolving-password model’, the ‘user-profile model’, and the ‘append-secret model’. These techniques achieve ‘approximate flatness’,

implying that the honeywords generated using these techniques are indistinguishable from passwords with high probability. Our

proposed techniques overcome most of the risks and limitations associated with existing techniques. We prove flatness of our

‘evolving-password model’ technique through experimental analysis. We provide a comparison of our proposed models with the

existing ones under various attack models to justify our claims.

Index Terms—Keywords: Password, Honeywords, Password hash breach, Detection technique, Authentication, Security.

✦

1 INTRODUCTION

Password based authentication is the most widely ac-
cepted and cost effective authentication technique. In gen-
eral practice, passwords are never stored in clear text to en-
sure confidentiality. Instead they are hashed and then stored
along with other user related information. The process of
performing a one-way transformation on the password and
to obtain another string called the ‘hashed’ password, is
known as ‘password hashing’. User selected passwords are
mostly predictable, since humans have a tendency to choose
non-random and easy to remember passwords [1]. ‘Dictio-
nary attack’ [2] is the most widely used attack technique
for retrieving a password from its hash value. In ‘dictionary
attack’, the attacker creates a dictionary of commonly used
passwords and computes their corresponding password
hashes using the password hashing algorithm. Dictionaries
with commonly used passwords can be efficiently created
using inexpensive and massively parallelizable hardware
such as Graphics Processing Units (GPUs). Any attacker
with access to this precomputed dictionary, only needs to
get access to the server database. He can then easily compare
the entries and learn client passwords.

A salt for password hashing refers to an additional
public random input to the password hashing algorithm.
It is stored in the database along with the password hash.
Salts help randomize the otherwise deterministic password
hashing algorithm. As a result the same password can be

mapped to different password hashes. Use of salt prevents
specialized attacks like the rainbow table attack [3], when
considering a large collection of hashes. For simplicity of
presentation, we ignore the usage of salt in our construc-
tions. However, our proposed schemes can be naturally
extended to include the usage of salts and it is strongly
recommended to use them.

There are several ways to prevent an attacker from
performing a dictionary attack by increasing the complexity
of this attack manifolds. Making the password hashing al-
gorithm more resource consuming is one way to prevent the
adversary from pre-computing the dictionary. This was the
main objective behind the Password Hashing Competition
(PHC) [4] that ran from 2013-2015. To further improve the
security, use of cryptographic module for password hash-
ing is explained in [5]. Another approach is to introduce
confusion by adding a list of fake passwords along with
the correct password. This would discourage the adversary
to mount dictionary attack even after compromising the
database. This approach, proposed by Juels et.al. [6], of us-
ing fake passwords can help in detecting password database
breaches. Specifically, any login attempt with one of the
fake passwords detects the breach. The idea was influenced
from some other existing techniques mentioned below. The
honeypot technique [7], introduced in early 90’s, is a system
or component which influences the adversary to attack

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2018.2824323, IEEE

Transactions on Dependable and Secure Computing

2

the wrong targets, namely honeypot accounts. Honeypot
accounts are fake accounts created by the system admin-
istrator to detect password database breaches. Honeytoken
is a honeypot that contains fake entries like social security
or credit card numbers [8] to identify malicious activity.
Kamouflage [9] is a theft-resistant password manager that
creates multiple decoy password lists along with the correct
password list.

Frequent cases of password database breaches like
that of LinkedIn in 2012 [10], Adobe in 2013 [11], eBay in
2014 [12], AshleyMadison in 2015 [13] etc., are indicative of
security issues in the current password based authentication
systems which can fail to ensure user privacy. In the case
of LinkedIn, breach of 6.5 million passwords was reported
in 2012. However, in May 2016, additional 100 million
passwords were found, that were reportedly leaked in the
same breach in 2012 [14]. In response to this, LinkedIn
invalidated all the passwords that were not changed since
2012 [10]. No efficient solution to detect such database
breaches had been reported in the literature prior to [6].
Therefore, the Honeywords technique [6] is a significant
contribution towards detecting breaches of the password
database. In this technique, the server generates multiple
fake passwords called honeywords for each user, and stores
them along with the actual password chosen by the user.
Even if an attacker gets access to the password database,
she would not be able to distinguish the actual password
from honeywords. Therefore with a very high probability,
she is expected to enter a honeyword to carry out the attack.
If a honeyword is entered instead of the password, the
system raises an alarm, thus detecting the compromise of
password database. The efficiency of this system basically
depends on the ability of the honeyword generation scheme
to generate honeywords that are indistinguishable from the
real password. The authors in [6], provide some heuristic
honeyword generation techniques, along with detailed
analysis of the system implementing the honeywords
technique. Continuing along the same line of research,
we provide an experimental method for quantifying
the flatness of honeyword generation schemes. We also
implement a distance-measure between password and
honeyword using ‘Levenshtein distance’ [15] to avoid false
detection when a legitimate user makes a typing error and
enters a honeyword.

Our Contribution: In this work

1) We propose a new attack model called ‘Multiple System
Intersection attack considering Input’. We show that the
‘Paired Distance Protocol’ defined in [16] is not secure
against this attack model.

2) We propose efficient and practical honeyword genera-
tion techniques that can generate honeywords indistin-
guishable from real passwords.

3) We also suggest a typo-safety measure, to avoid false
detection when a legitimate user enters a honeyword
because of a typing error. We use ‘Levenshtein dis-
tance’ [15] to ensure that a minimum safe distance is
maintained between the password and honeywords.

4) In our experiment, we use publicly available password
databases leaked by hackers. Using experiments, we
show that our proposed honeyword generation tech-

niques are perfectly flat.
5) To validate our claim, we compare our proposed tech-

niques with the existing honeyword generation tech-
niques on various parameters. The results of these
comparisons are summarized in Tables 1 and 2.

The rest of the paper is organised as follows. In Section 2
we present an overview of the ‘Honeyword’ technique as
proposed by Juels et. al. In Section 3, we provide details of
the existing attacks for analyzing the security of honeyword
based authentication and also explain our proposed attack
model for the same. Further, analysis of existing honey-
word generation techniques is included in Section 4. Our
proposed honeyword generation techniques and security
analysis are presented in Sections 5 and 6 respectively. Sub-
sequently, the details of the experiment showing the flatness
of our proposed evolving password model is documented in
Section 7. Finally, we provide comparison of our proposed
technique with existing approaches and conclude the work
in Sections 8 and 9 respectively.

2 OVERVIEW OF THE HONEYWORDS TECH-

NIQUE [6]

Consider an authentication system with n users
u1, u2, · · · , un where ui is the username of the ith
user. Let pi denote the password of ith user. Any typical
system maintains a file F listing pairs of usernames and
passwords hashed with a password hashing algorithm
(PHS) H as

(ui, H(pi)).

To enhance confidentiality of users and to ensure detection
of breaches, a system implementing honeywords creates a
list Wi of distinct words called sweetwords for each user ui,
represented as

Wi = (wi,1, wi,2, . . . , wi,k)

where k is a small integer and recommended value of k =
20. Exactly one of the values in the list Wi is the actual
password, i.e., ∃j such that wi,j = pi. Let c(i) denote the
correct index of the password pi for username ui in the list
Wi, for instance,

wi,c(i) = pi.

The correct password is called “sugarword” and the remain-
ing (k−1) words in the list Wi are called called honeywords.
These honeywords are generated by the system. Let Gen(k)
be the procedure to generate the list Wi and index c(i).
The index c(i) is stored in the honeychecker, an auxiliary
secure server incorporated within the system (the detailed
information about honeychecker is given later). At the time of
authentication, the system interacts with the honeychecker to
get the correct index of the ith user’s password in the list
Wi. The database stores the entry for each user ui, as:

(ui, Hi)

where Hi is a k-tuple of hash values of sweetwords. That is,

Hi = (H(wi,1), H(wi,2), . . . , H(wi,k)).

Honeychecker: It is assumed to be an auxiliary secure server
where secret information can be stored. Ideally, we want

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2018.2824323, IEEE

Transactions on Dependable and Secure Computing

3

the honeychecker to maintain minimal information about
the secret state. It stores the index c(i) corresponding to
user ui. As explained in [6] the server communicates with
the honeychecker by sending encrypted and authenticated
messages over dedicated channels. The honeychecker accepts
the following two commands:

• Set (i, j): Sets the index of sugarword for user i at
position j in the array of sweetwords, which means
c(i) = j.

• Check (i, j): Checks if the index of sugarword for
user i is at position j. It returns the result of this
check to the server. It may additionally raise an alarm
if check fails.

The only job of a honeychecker is to securely store some
information about the secret state and not the entire secret
state. Note that this information is useless, unless paired
with the password database. This is unlike any crypto-
module that contains a key and is expected to perform
cryptographic operations. Therefore, even if the honeychecker
is compromised, the security of the system is only reduced
to the level of security without incorporating honeywords
and honeychecker.

Flatness: Let z denote the adversary’s expected probability
of guessing the password from the list Wi. An adversary
can guess with probability 1/k, therefore z ≥ 1/k. A
honeyword generation method is “ǫ-flat” for a parameter
ǫ, if the maximum value of the guessing probability z for
all the adversaries is ǫ and the technique is perfectly flat if
z is equal to 1/k. If the value of ǫ is very close to 1/k for a
technique then it is called ‘approximately flat’.
In [6], the authors have illustrated several flat or
approximately flat Gen(k, pi) procedures that are discussed
in section 4.

3 ATTACKS

In this section we describe various attacks for analyzing the
security of honeyword generation techniques.

3.1 Denial-of-Service (DoS) Attack

This attack is an attempt to make a service unavailable to its
intended users. This is a potential problem associated with
the honeyword generation technique. When honeywords
are used for authentication and a breach is detected, the
system takes action according to the chosen policy. Typically,
the policy blocks the user from logging in the system at least
temporarily. To impose denial of service to multiple users,
an adversary can intentionally provide a honeyword for
authentication without actually compromising the complete
database. This is possible when the generated honeywords
are easy to predict. Therefore, the Gen(k) algorithm is an
important deciding factor while analysing the security of a
system implementing the honeyword technique.

3.2 Multiple System Intersection considering Output

(MSIO) Attack

Humans have a tendency to choose the same password
for multiple websites [17]. This behavior opens a new at-
tack surface to compromise the user password assuming

DBA DBB DBC

H(t1, wAi,1)

H(t1, wAi,2)

H(t1, wAi,3)

H(t1, wAi,4)

H(t1, wAi,5)

H(t1, wAi,6)

H(t2, wBi,1)

H(t2, wBi,2)

H(t2, wBi,3)

H(t2, wBi,4)

H(t2, wBi,5)

H(t2, wBi,6)

H(t3, wCi,1)

H(t3, wCi,2)

H(t3, wCi,3)

H(t3, wCi,4)

H(t3, wCi,5)

H(t3, wCi,6)

⇒

Common password pi
for systems A,B and C

H(pi)= H(wAi,3) = H(wBi,2) = H(wCi,2)

Single value matched at DBA, DBB and DBC

where t1 = t2 = t3

Figure 1. MSIO attack: The system A, B and C contains databases
DBA, DBB and DBC respectively including the sweetwords for the user
i which are available to the attacker. Assuming password pi is same
across all the systems and honeywords are distinct, intersection of the
database entries provides the password.

existence of zero collision on the honeywords correspond-
ing to the same password used for multiple sites. Let the
databases of three different systems A, B and C as shown
in Fig. 1 represented by DBA, DBB and DBC respectively,
be available to the attacker. The sweetwords containing
distinct honeywords corresponding to user i are represented
as (wAi,j), (wBi,j) and (wCi,j) where 1 ≤ j ≤ 6 for system
A, B and C respectively. Let, t1, t2, t3 represents the tweak
values corresponding the databases DBA, DBB and DBC

respectively which may be associated with the input pass-
word. These tweak values are fixed for a server and repre-
sent for example, a shift by an integer value for mapping the
same password to different values. We assume t1 = t2 = t3,
hence the use of tweak shows no effect on the database
values. Therefore randomness of entries of databases only
depends on the choice of sweetwords, not on the value of
the tweak and we assume the values t1 = t2 = t3 are known
to the attacker. The list of sweetwords for each system
intersects at the value H(wAi,3) = H(wBi,2) = H(wCi,2).
Assuming honeywords are distinct, this collision helps the
adversary to identify the password pi for user i. The attack
complexity is equal to the effort to get pi from H(wAi,3)
or H(wBi,2) or H(wCi,2). Hence, this attack defeats the de-
tection ability of the honeyword technique, which is based
on the indistinguishability of the password from the honey-
words. As the intersection is taken on the output stored on
multiple systems corresponding to the same user password,
in this paper we specify this attack as ‘Multiple System
Intersection considering Output (MSIO) Attack’ while it is
defined as ‘Multiple Systems Intersection’ attack in [6].

3.3 Multiple System Intersection considering Input

(MSII) Attack

This attack is also motivated by the tendency of humans
to choose the same password for multiple websites [17].
Since different websites are assumed to have a different non-
random tweak value associated with the user password,
thus the same password associated with the same user
is mapped to a different value depending on the tweak.
Hence intersection of the databases of different websites
corresponding to a fixed user does not lead to a common
value. As shown in Fig. 2, let the databases of three different

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2018.2824323, IEEE

Transactions on Dependable and Secure Computing

4

DBA DBB DBC

⇒6= 6=

DBA

wAi,1

wAi,2

wAi,3

wAi,4

wAi,5

wAi,6

Dictionary attack

Try all these values
as input to get a
match at DBB and
DBC .

No-match at DBA, DBB and DBC

where t1 6= t2 6= t3

H(t1, wAi,1)

H(t1, wAi,2)

H(t1, wAi,3)

H(t1, wAi,4)

H(t1, wAi,5)

H(t1, wAi,6)

H(t1, wAi,1)

H(t1, wAi,2)

H(t1, wAi,3)

H(t1, wAi,4)

H(t1, wAi,5)

H(t1, wAi,6)

H(t2, wBi,1)

H(t2, wBi,2)

H(t2, wBi,3)

H(t2, wBi,4)

H(t2, wBi,5)

H(t2, wBi,6)

H(t3, wCi,1)

H(t3, wCi,2)

H(t3, wCi,3)

H(t3, wCi,4)

H(t3, wCi,5)

H(t3, wCi,6)

Figure 2. MSII attack: The system A, B and C contains databases DBA,
DBB and DBC respectively including the sweetwords for the user i
which is available to the attacker. All values across all the databases are
distinct. Assuming password pi is same across all the systems, attacker
implements dictionary attack on one of the systems (A for this case)
and gets all the sweetwords at A. To get the password pi attacker gives
these sweetwords as input to get a match at DBB and then at DBC .

systems A, B and C are DBA, DBB and DBC respectively be
available to the attacker. Distinct sweetwords corresponding
user i are represented as (wAi,j), (wBi,j) and (wCi,j) where
1 ≤ j ≤ 6 for systems A, B and C respectively. The
randomness of entries in the database depend on the choice
of the sweetwords, since the corresponding tweak values
t1 6= t2 6= t3 are easy to compute if one or more of t1,
t2 or t3 are known. We claim that the overall computation
complexity of the MSII attack is asymptotically similar to
the MSIO attack. Since the intersection of database entries
does not provide any common value, the attacker can only
try to guess the sweetwords for a fixed user from one of the
available systems such as A. Let an attacker require effort
e to get any of the wAi,j from H(wAi,j) where wAi,j is the
j-th sweetword of user i on system A. For simplicity, we can
assume that the effort required to compute t1 is negligible
with respect to e. Then with k×e effort all k sweetwords can
be obtained where one of them is the sugarword/password
and k = 6 for Fig. 2. When these k-values are tested on
systems B and C , only the real password is expected to
match the output, since honeywords are expected to be
distinct on different systems. Hence, the overall effort only
depends on the number of honeywords, which is constant
times the effort required in MSIO attack. We refer to this
attack as Multiple System Intersection considering Input
(MSII) Attack, since it is based on the information obtained
by getting an intersection on the inputs. In order to prevent
this attack, the random secret must be hard to guess. This
can be ensured if multiple systems map the same password
to different outputs by ensuring that each system has a
distinct random secret.

4 EXISTING HONEYWORD GENERATION TECH-

NIQUES AND THEIR LIMITATIONS

The efficiency of database breach detection mechanism is
largely dependent on the honeyword generation mecha-
nism. Honeywords generated using perfectly flat honey-
word generation techniques are indistinguishable from the

real passwords. This prevents the adversary from deter-
mining the sugarword from the list of sweetwords. It is
challenging to design a perfectly flat honeyword generation
technique as passwords are chosen by the users and human
behavior cannot be modeled using a generalised thumb rule.
In this section, we discuss the limitations while suggest-
ing possible improvements for honeyword generation and
provide references when the included analysis is from the
existing literatures.

1) Following are the techniques introduced under the
‘Legacy-UI’ category of honeyword generation. Under
this category the choice of password of a user is not
influenced by the User Interface (UI). The limitations of
this category is that they do not prevent MSIO or MSII
attacks.

a) Chaffing by tweaking: In this techniques, t-positions
of the password are tweaked to generate honey-
words. Characters at each of the t-positions are
replaced with randomly chosen characters of the
same type. In “Chaffing by tweaking digits”, the
last t-positions containing digits in the password are
tweaked. In [18], the authors acknowledge the bias
in human behavior while selecting digits in their
passwords. According to report [19], which is based
on the analysis of hacked Adobe database, the digits
chosen by users follow specific patterns like birthday,
any important date, year, some consecutive numbers
etc. Therefore, replacing them with some random
number makes honeywords, easily distinguishable
from password. Ideally such algorithms should try
to ape the human behavior while replacing the char-
acters, which is not always easy to formalize.
If username and passwords are correlated like user-
name:Terasa and password: mother, then it is easy
for the adversary to distinguish the password from
honeywords. Moreover, it is difficult to prevent such
correlation between the username and the password.

b) The “Close-number-formation (CNF)” method sug-
gested in [20] is presented as an improvement over
chaffing by tweaking technique. It makes use of two
lists: {+,−} and {1, 2, 3}. User chooses password
along with one character from each of the lists.
The digits used in honeywords are plus/minus of
1/2/3 of the password digits. For example, if the
password is 28March2000 then the appropriate range
for the possible honeywords can be: 26March1998 -
30March2002, etc. Even though the authors claim that
this is an improvement, in this case a user can predict
his/her own honeywords with high probability while
ideally users should not know the honeywords. False
alarms would also be frequent since the honeywords
are extremely close to the passwords and there is a
high chance that a legitimate user made typo error.
To formalize the proposed approach, it needs to
consider many different parameters before providing
the range like range of dates, possible range of year
and sequences etc.

c) Chaffing with a password model: This model is
based on publicly available password databases
which might also be available to the attacker. There-

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2018.2824323, IEEE

Transactions on Dependable and Secure Computing

5

fore, the attacker can also generate the same list of
honeywords for a chosen password. The ‘modeling
syntax’ method makes use of the same syntax as
that of the password to generate honeywords. For
example, the password ‘mice3blind’ can be decom-
posed token-wise as ‘A4|D1|A5’ where A stands for
alphabet-string and D for digit-string. Lengths are
also used in suffix. Following the same syntax, a pos-
sible generated honeyword could be ‘rose5rings’. As
mentioned in [18], the list of 10000 most commonly
used passwords [21] includes the following

bond007 james007 007bond

The authors in [18] further explain that with the
modeling syntax method, it is easy to distinguish
honeywords from the above mentioned passwords
if honeywords are generated by randomly replacing
the tokens preserving their length. However it is
difficult to restrict the user from choosing passwords
with such obvious correlations.

d) Chaffing with ‘tough nuts’: In this model, the sys-
tem uses some tough nuts as honeywords to make
it difficult for the adversary to crack the hash of
password. Authors in [6], suggest using this method
by combining it with some other method. However,
according to [18], most of the passwords are simple
combinations of digits, alphabets and special char-
acters and not the tough nuts. Therefore, adversary
can easily skip to search for the tough nuts. As
a result, this strategy will reduce the overall com-
plexity required to compromise the system, thereby
defeating one of the purposes of honeywords which
is to increase the complexity required to break the
system. However, the use of tough nuts as explained
in [6] was introduced to discourage the adversary
to mount dictionary attack which is not possible in
real scenario if it is preferable for the attacker to skip
them.

2) Following are the techniques introduced under the
‘Modified-UI’ category of honeyword generation. In
this category the choice of password of a user is influ-
enced by the UI. The motivation behind this category
is to introduce randomness in user chosen password to
prevent MSIO and MSII attacks.

a) Take-a-tail [6]: This method appends system gen-
erated digits at the end of user chosen passwords.
This approach introduces randomness in user se-
lection. This technique helps to mitigate the corre-
lation problem that could exist between username
and password. This is because all honeywords will
differ from the password only in the appended digits.
It also prevents multiple system intersection attack.
However, as explained in [16] it is difficult for users
to remember random digits and especially in the
case when multiple sites implement this technique
and each site gives the user a unique number that
needs to be memorized. Also, it is highly likely for
the system to raise false alarms, especially in cases
where random digits are selected from a small space.

b) The “Modified-tail” is proposed in [20] as an im-
provement over the take-a-tail technique. Number

of possible strings of length m, with m different
characters is m!. The prefixes of each of these strings
is also unique. Therefore, in this technique, the user
needs to select m−1 characters from the provided set
of m special characters (to fix the prefix of his own
choice) and system appends the remaining one at the
end to form the tail of the password. The honeywords
are generated by taking all possible combinations of
the tail (which are m!-1). For example (from [20]), let
the user chosen password be ’tea’ and permutation of
special characters chosen from the set S = {@, ?, |}
be ’@?|’. Then the list of honeywords are:

tea?|@, tea?@|, tea|?@, tea|@?, tea@?|, tea@|?

It is difficult to prevent false detection when a le-
gitimate user makes a typing error in this scenario
as honeywords are very close (distance-wise) to the
password. Apart from the issue of typing errors, the
burden of memorizing extra m− 1 characters from a
system generated list is placed on the user. Therefore,
this technique is not at all user-friendly.

c) The “Caps-key based approach” proposed in [20]
also clams to be an improvement over the ‘Take-a-
tail’ method. In this technique, the user is asked to
choose any two characters from the password and
convert them to upper case. To generate honeywords,
the system then selects any two characters from the
password and converts it to upper case. For a
password of length l, total (l2) − 1 such honeywords
are possible. For example (from [20]), the password
chosen by user is ‘animal’ and the two characters
selected by the user are ‘ni’. Therefore the new
password becomes ‘aNImal’. The honeyword list
contains (for k = 6),

AnImal AnimaL aNimaL aNImal ANimal anImAl

This technique makes the system prone to false de-
tection in case of typing errors. It also increases the
possibility of a DoS attack by making the guessing of
honeywords easier.

d) The Paired Distance Protocol or PDP method pro-
posed in [16] creates a secure circular list containing
alphabets and digits with default 36 entries in a
random order. User selects a random string RS of
length l from the set of alphabets and digits along
with the password. The distance between any two
characters of the RS string is called the ‘paired dis-
tance’. This paired distance is measured for the RS
string considering the position distance (clock-wise)
between the same characters of the secure circular
list. If the first character of RS is not known then it is
difficult to guess RS if only the paired distances are
stored in the database. For a circular list of size n,
it provides total (n − 1) possible values. This idea is
used in this technique and honeywords are generated
randomly by choosing different paired distances for
each password. The honeychecker keeps the index of
the correct password alongwith the record of first
character of the RS string.
Attack: As mentioned in [16]

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2018.2824323, IEEE

Transactions on Dependable and Secure Computing

6

• Same circular list could be shared among m dif-
ferent systems and

• User may use same RS for different accounts

MSIO attack is possible in both the above scenarios.
Suppose the user chooses the same RS for different
systems and the circular list is available alongwith
the database entries to the attacker. In this case, the
intersection of entries from multiple systems can re-
veal the actual password and the attacker only needs
a maximum of n− 1 additional trials (where n is the
total number of entries in the circular list) to predict
the password when the first character is not known.
Hence this technique fails to provide security against
MSIO attack.
Now suppose different circular lists are provided
to different systems and the attacker has complete
access to these lists and the databases corresponding
to the m-different systems. In this case, assuming that
the user chooses the same RS, the attacker has to
find all k sugarwords for one of the systems. Trying
these sugarwords on other systems, the attacker can
find a match for the password, thereby successfully
mounting MSII attack. Hence, the proposed method
is not secure against MSIO and MSII attack. Apart
from the above attacks it forces the user to randomize
the choice of RS which is an overhead for the user to
memorize.

5 THE PROPOSED TECHNIQUES

In this section we propose approximately flat honeyword
generation techniques considering typo-safety and other
policy choices.

5.1 Password Policy

It is difficult to impose strict rules to enhance the entropy of
user chosen passwords. However, users should avoid using
dictionary words as passwords, selecting same password
on multiple websites, using commonly used passwords, or
choosing passwords correlated to the username. For exam-
ple, if username is ‘titanic’ and password is ‘rose@1997’,
then there exists a correlation which can help the attacker
to uniquely identify the password. A study on password
policy as explained in [22] shows that the most restrictive
password policies do not provide greater security. Therefore
our system imposes the following less restricted and practi-
cal to implement conditions on password selection.

1) Username or it’s sub-string should not appear in the
password.

2) The password should contain at least 8 characters in-
cluding alphabets, special symbols and digits.

5.2 Typo-Safety

According to an analysis given in [23], the error patterns
in mini-QWERTY keyboard show the rate of human errors
as: ‘Substitution’ errors - 40.2%, ‘Insertion’ errors - 33.2%,
‘Deletions errors - 21.4% and ‘Transposition’ errors - 5.2%.
There is a possibility that a legitimate user may enter a
honeyword because of typing errors if honeyword is very

similar to the password. Such issues can be resolved with a
very high probability by maintaining a minimum distance
between the password and each generated honeyword. We
suggest using ‘Levenshtein distance’ [15] to compute the
distance between password and honeywords. ‘Lavenshtein
distance’ is calculated by counting the number of deletions,
insertions, or substitutions required to transform one string
into another. It can be used to calculate distances between
variable length strings. In this way, all types of human
typing errors can be taken into account.

5.3 Proposed Honeyword Generation Techniques

We propose the following techniques for honeyword gener-
ation.

1) Legacy-UI password changes: The password selected
by the user is not influenced by the UI

a) Evolving password model: We first define the key
terms for the better understanding of the scheme.
These terms are defined with respect to the available
disclosed password databases.

• Token: We consider token as a sequence of char-
acters that can be treated as a single logical en-
tity. In our context, for a given password, to-
kens are the alphabet-strings(A), digit-strings(D)
or special-character-strings(S).

• Pattern: The different combinations of tokens
form patterns for a password, e.g., ADS1, AS2D,
S1AS1D etc.
Note: To create honeywords indistinguishable
from user password we do not preserve length
of alphabets and digits, however we preserve the
length of special-characters. Therefore the length
of the special-character is mentioned as a sub-
script of S in the representation of pattern.

• Frequency: It is the number of occurrences of the
tokens or the password pattern in the available
password database.

This evolving password model uses the probabilistic
model of real passwords to generate honeywords.
Specifically, it pre-computes the frequencies of each
password enlisted in an existing database and also
computes the frequency of each individual tokens
(alphabets-strings, digits-strings, special-characters-
strings) of the password following the technique sug-
gested in [24]. The frequencies of the password pat-
tern and its tokens are stored in a file. The database
of these frequencies is updated with each new user
registration, therefore the frequency list evolves with
each new registration. Honeywords are generated by
first matching the frequency of the password pattern
as a whole and then matching the frequency of the to-
kens of the password. To match the frequency consid-
ering the tokens, we follow the technique proposed
in [24], where the probability of the honeyword is
the product of the probabilities of the tokens used to
derive it. The whole procedure can be covered with
two different steps of computation as listed below.

i) Algorithm to compute frequencies of password
pattern and tokens

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2018.2824323, IEEE

Transactions on Dependable and Secure Computing

7

ii) Algorithm to generate honeywords with the help
of pre-computed frequencies and update the fre-
quency lists, which means evolving the frequency
lists with each new registered user password.

Next we provide an example of generating hon-
eywords from a given password: ‘abcde123 %’. To
generate the honeywords compute the frequency of
the pattern of abcde123 % (ADS1) and the frequency
of the tokens: ‘abcde’, ‘123’ and ‘%’. Let frequency of
the pattern of ‘abcde123 %’ matches with the pattern
of type AS1D. Now choose tokens with frequencies
similar to the frequencies of ‘abcde’, ‘123’ and ‘%’
respectively. The token ‘123’ matches with ‘9’, ‘%’
with ‘ ’ and ‘abcde’ with ‘secret’. Therefore one of
the honeywords is ‘secret 9’.
In this technique, the honeychecker keeps the index of
the correct password. At the time of authentication
the index value is verified by the server through a
secure communication with the honeychecker as ex-
plained in [6].

b) User-profile model: It generates honeywords by
combining some details from the user profile and
checks the threshold of minimum distance with the
password. One technique to generate honeywords
is to create different sets containing tokens of each
type, for instance, alphabet-strings, digit-strings and
special-character-strings from provided user details.
Then make possible combinations of the elements
from each sets of tokens. The combinations thus
generated are used as honeywords. This technique
is best suited when the password contains some
substring correlated to the user profile. According to
a 2013 report [25] by Google which includes top 10
worst password ideas, users tend to select passwords
related to themselves. Hence, this technique gener-
ates honeywords indistinguishable from most of the
user passwords. To provide typo-safety, a minimum
distance between the honeywords and the password
should be maintained and we suggest the default
value to be 3. One possible approach to create hon-
eywords is following the steps below (considering
the password policy mentioned in Section 5.1). For
listing the special characters, we can have the list of
commonly used special characters.

i) Create separate list of tokens named, token digits,
token alphabet, token specialChar from the in-
formation provided in user profile.

ii) To create k honeywords, take k different combina-
tions of elements from each token lists, satisfying
the password policy of the service.

iii) Compare the tokens of the password with the
tokens of the honeyword. Reject the honeyword
if more than one token matches with password.

As an example, let the following information about a
user profile be known:
Name: Alice Wood; DoB: 19/07/1995; Address: 54
west 28 street;
Name of the first pet: Jerry
Password: Tom!54street
Then the system can generate the following for this

user:
Token digit={19, 07, 1995, 54, 28}
Token alphabet={Alice, Wood, west, street, Jerry}
Token specialChar={/, !}
Honeywords: Wood/1995; Alice 19; Jerry#19wood,
Alice@28street
Flatness: As per the report [25] of Google, the top
10 worst password ideas are related to the per-
sonal details of the user. Another work on targeted
user password guessing [26] leverages the tendency
that majority of population uses personal details for
choosing password. Therefore, it is easy to interpret
that honeywords generated from user profile will be
indistinguishable from user passwords for majority
of the population. Thus this technique is expected to
provide approximate flatness. However, when pass-
words are not related to the user profile, it is easy
to differentiate a password from honeywords. As
many users incorporate personal information in their
passwords we conjecture that the user profile model
will provide approximate flatness for many users
though we leave this as an open question for future
research.

In this technique, the honeychecker keeps the index of
the correct password. At the time of authentication
the index value is verified by the server through a se-
cure communication with the honeychecker as explained
in [6].

2) Modified-UI password changes: The password selected
by the user is influenced by the UI, while minimizing
the usability of the system.

a) Append-secret model: In this technique, at the time
of registration, the user provides his/her password.
The system asks for an extra entry, say l where l
ranges from two to four characters in length. System
generates a random string r of default length of 3
considering digits, alphabets and special characters.
It computes f(pwd ‖ l ‖ r) and outputs x where f is
a collision-resistant one-way function. Honeychecker
stores both the index of correct password and the
value r. Considering the honeychecker as a secure
database which manages minimum storage, we de-
fine the random secret to be a small value and rec-
ommend the default length as 3. We also recommend
that a different random r is used for each user. This is
to prevent the disclosure of (remaining) secrets even
when the communication between the server and the
honeychecker is compromised and the communicated
secret is disclosed. The database stores ‘H(pwd ‖ x)’
instead of H(pwd ‖ l), where H is a password
hashing algorithm. Even after successful implemen-
tation of dictionary attack it is still challenging for the
attacker to identify the real password. Honeywords
generated by this technique differ in the choice of l
which influences the value x and the final hash. To
provide typo-safety we recommend the length of l
from 2 − 4 to maintain ‘levenshtein distance ≥ 2.
As r is randomly selected for each site, even if user
selects the same l for multiple sites the intersection
of information from multiple sites does not reveal

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2018.2824323, IEEE

Transactions on Dependable and Secure Computing

8

the actual password. Therefore, it provides security
against both MSIO and MSII attack.
Example:

Enter Password: abcde
Use any string of length (2-4): 1998
System generated secret: $8d
System computes: f(abcde ‖ 1998 ‖ $8d) = 4e7j@
Database stores: H(abcde‖ 4e7j@)

Therefore, the dictionary attack may reveal the
password: abcde4e7j@ but not the actual input:
abcde1998. To get the password, the value of r is
required.
Honeychecker: Due to the minimal storage
requirement for the honeychecker, we do not
recommend using random secret r of length
128 bits or above which enhances security. As
honeychecker is only for secure storage and not for
secure computation, we do not allow cryptographic
computation inside the honeychecker where use of
HMAC or other crypto-primitive was possible. If
distinct key ≥ 128 bit is allowed then it requires
more storage. Using a single key for all user is
possible but in that case compromising a single
communication compromises the whole database.
To avoid the communication of the key, a possible
approach is to perform all computation inside the
honeychecker. However, honeychecker is not supposed
to be a crypto-module. Therefore, we recommend a
small and distinct value of r for each user.
We assume the communication between the
honeychecker and the server is over dedicated
channels and/or encrypted and authenticated as
explained in [6]. At the time of authentication
the secret r is first communicated and then the
honeychecker verifies the command, ‘Check: i, j’ as
explained in Section 2.

Usability Issues: In our proposed technique the user
needs to select and memorize a string l of length 2-4
apart from the initially chosen password. The choice
of length from 2-4 for l is for enhancing the secu-
rity of existing password based authentication with
minimal burden on the user. Authors in [27], [28]
show that humans are capable of learning random
strings over time through spaced repetition. Thus,
contrary to the general perception, memorizing the
string l should not be a difficult task. However, this
could create a usability issue when this technique
is implemented in multiple systems and the user
is expected to remember a different random string
of length 2-4, for each of these systems. A way to
get around this issue is to implement the proposed
scheme in single sign-on systems [29] 1, the user
would only be required to remember a single random
string of length 2-4 characters, which would not affect
the usability of the system immensely.

1. a mechanism where a single action of authentication permits the
authorized user to access multiple applications without having to log-in
again during a particular session

5.4 Alarm Policy

Different alarm policies are implemented for passwords
based on different levels of hardness to guess the
password. This would prevent strong actions in
case of DoS attacks targeting the vulnerability of
high frequency passwords. As mentioned in [6],
policies need not be uniform across a user population.
Following are some of the policies suggested in existing
literature.

Analysis on Different Alarm Policies

• As suggested in [18], we can limit the number
of login attempts that can be made using hon-
eywords in a certain period of time. Based on
the limit, an action like refreshing all existing
passwords can be taken.
A single login attempt with honeywords suggest
either the compromise of the password database
from server or weakness in honeyword gen-
eration technique implemented by the server.
However, when a threshold limit of attempts is
crossed, there is a high chance that it is due to
a database breach. In such a situation, refreshing
the passwords is the most suitable solution even
though it puts burden on the users. Moreover,
to ensure security and privacy, enforcing change
of passwords after regular intervals of time is a
common practice.

• Per-user Policy: As suggested in [6] the system
can generate fake accounts called honeypot ac-
counts known only to the honeychecker. Any login
attempt to the honeypot account with honeyword
suggests a breach of password database file. An
alarm must be raised in this case. Note that
this case requires stronger measures as compared
to the measures taken when login attempts to
legitimate accounts are made using honeywords.
This is because an attacker could have guessed
the honeyword for a valid account, or a legitimate
user could have made a typing error. The policy
for handling such cases must be additionally
included with the policies for other cases.

A system with dummy accounts makes it
vulnerable to DoS attacks as explained in [6].
However, we can have a system where the prob-
ability of guessing the honeyword is low. If we
have a system which allows k honeywords and
possible options of honeywords is s for any pass-
word then we can restrict this DoS attack. This is
possible if the probability to hit the honeyword is
very low, which means the value of (k − 1)/s is
very low.

• Selective alarm Policy: This policy as mentioned
in [6] requires the system to raise an alarm
if honeyword for a sensitive account such as
administrator account is used for login. Such
a case can also be exploited to launch a DoS
attack. Therefore, this case must also be handled
differently from the general policy.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2018.2824323, IEEE

Transactions on Dependable and Secure Computing

9

Proposed Alarm Policy

Analyzing the existing suggestions for deciding the
effective alarm policy, we propose the following.

a) If a honeyword, corresponding to a password with
very high frequency (e.g., ≥ 0.2) is entered, only
inform that user to change his/her password. When
honeyword corresponding to a relatively uncommon
password is entered, ask all users to change pass-
word.

b) If there are repeated attempts within a short span
of time, count the number of attempts and send
notifications to users, to change passwords, following
the approach given in point (a).

On Measuring the Password Probability: The
work [24] suggests a method to compute the probability
based on the frequency of each token in the password.
The frequency can be analysed from compromised real
databases which capture the distribution of real user
chosen passwords. We can compute the probability of
the tokens such as alphabet-strings(A), digit-strings(D)
and special-character-strings(S) for a given password
from the frequency list computed on real data. The
probability of a password can be estimated as the
product of the probabilities of all its tokens.

5.5 Managing Old Passwords

As suggested in [6] there is no need to store the hash
of the old passwords. Even if the old passwords are
required to be stored, they may be stored in a separate
database file. This database can be accessed, to ensure
that the user does not reuse an old password.

6 SECURITY ANALYSIS

In this section we provide the security analysis of
the proposed models against the attacks explained in
Section 3, and some other common attacks.

6.1 Brute-Force Attack

For this attack scenario, we assume that the honeychecker
is not compromised and the adversary gets access to the
password database from the server. Then the success
probability for the attacker to get the real password
depends on the flatness of the honeyword generation
technique. In the case where ‘user-profile’ model is used
for honeyword generation, the technique will provide
approximately perfect flatness since the probability of
a password being related to the user profile is very
high. Therefore, in this case, brute-force attack does
not help to uniquely identify the password. In the
case of ‘evolving-password’ model, the honeywords are
generated such that their frequency is similar to that of
the password selected by the user. Hence adversary gets
no advantage in guessing the real password without
additional information that can be gathered from other
attacks such as social engineering attacks. In the case
of ‘append-secret’ model, the attacker can get the value
x from brute force attack as explained in Section 5.3.
To get the actual input, the adversary needs to guess

both the user and system selected random secrets. This
sums up to all possible combinations considering user
choices for l of length 2-4 and the random choice of
length 3 made by the system. This requires extra effort
of

((I2) + (I3) + (I4))× (I3)

computations for each password, where I is the input
space for random secret and the user input.

6.2 Targeted Password Guessing

Personal information of a user may help an adver-
sary in distinguishing the actual password from hon-
eywords. However, if user-profile model is used for
honeyword generation, it increases the difficulty for
adversary, provided that passwords of the same user
from multiple sites are unavailable to the adversary.
In case of evolving-password model, if the password
is correlated to the user profile then it is highly likely
that adversary will be able to distinguish the password
from honeywords. Password guessing is an effective
attack against weak popular passwords, passwords re-
used across multiple website and passwords related to
user profile as mentioned in [26]. Therefore, a hybrid
approach can be taken by merging both models to gen-
erate honeywords. In that case, tokens can be generated
from both user profile and password frequency and
honeywords can be generated with different combi-
nation of the tokens. However, this hybrid approach
cannot prevent MSIO or MSII attacks. The append-
secret model can provide security against MSIO and
MSII attacks and hence prevents the disclosure of the
password for a targeted user.

6.3 Denial-of-Service Attack

Honeyword generation from user profile model re-
quires details of the personal information of each in-
dividual. It is not unusual for an adversary to collect
personal information of any user through social engi-
neering attacks [30]. This makes it easy for an adversary
to guess honeywords and carry out a DoS attack on the
system. Therefore predicting honeywords is not very
challenging and hence DoS attack is easy to imple-
ment in such cases. Moreover, targeting some specific
individuals would be easier, even though honeyword
generation techniques provide flatness close to uni-
form. This is because honeywords generated from user
profile are indistinguishable from password. Therefore
considering the possibility of social engineering this
technique is not DoS resistant. However, probability of
hitting the honeyword can be decreased as explained
in Section 5.4 under ‘Per-user Policy’ by increasing the
information space from the user profile. We can say that
for user-profile model, given a password, an adversary
can provide a honeyword with negligible probability.
This is possible when space of honeyword is large for a
targeted user else it is difficult to guess the honeywords
in general. We categorize this technique as ‘moderate’
DoS resistant. Therefore, we suggest that the system
must take strong actions only if the count of accounts

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2018.2824323, IEEE

Transactions on Dependable and Secure Computing

10

being attacked by DOS attacks is more than a threshold
value.

The evolving-password model updates the
database of frequencies with each new registration.
Therefore the updated database differs from any
existing openly available password database files,
depending on the number of new registrations. The
update of database prevents the adversary from
guessing the honeywords with a high probability.
Further, the similarities in the frequencies of
honeywords with the password provides a nearly
perfect flatness. We experimentally show that guessing
the password from the honeywords is difficult and the
model satisfies perfect flatness.

The append-secret model makes the task of
guessing honeywords more challenging, as it
implements a one-way function taking input from
the user and a random secret from the system to
generate a value that is appended to the password.

DoS attack with Fake Account: There could be two
preventive approaches to handle the case where an
attacker is registering a dummy account and trying to
guess the honeyword. One is a preventive approach
where the solution is to make the honeyword gen-
eration perfectly flat. Hence, guessing honeyword is
difficult and DoS attack can be prevented. Other pos-
sible solution is to distinguish fake accounts from real
ones. This can be implemented through classification
using machine learning, for instance, by tracing some
common features for fake accounts. For example, fake
accounts are inactive after creation, few features that are
provided by the service could commonly be untouched
for fake accounts etc. Once an account is classified
as fake, there is a high probability that a login using
honeyword for this account could lead to a DoS attack.

6.4 Multiple System Intersection considering In-

put/Output Attack

It is common human tendency to use the same pass-
word for multiple sites [17]. This facilitates the ad-
versary when attacking multiple distinct systems. The
adversary can take an intersection of sugarwords from
various systems to guess the password, which means
it can mount MSIO attack. If same password maps
to distinct values without applying distinct random
secrets to different websites, MSII attack is possible. Our
proposed append-secret model modifies the password
chosen by the user based on a random secret generated
by the system. Therefore, even if the adversary gets
access to the password files from distinct systems, the
same password maps to different values and hence
intersection does not reveal the password. Even if the
adversary can get all the sugarword corresponsing to a
specific system, it is not possible for her to match the
entries to another system without knowing the random
secret of the two systems. Hence, both MSII and MSIO
attacks are not possible against our proposed ‘Append-
Secret model’.

7 EXPERIMENTAL DATA

We set-up an experiment to check flatness of the tech-
nique of honeyword generation and the effectiveness
of implementing Levenshtein distance to prevent false
detection. We simulate our ‘evolving password model’
using publicly available password files. We generate
honeywords and compare the lists of honeywords gen-
erated for two passwords of the same frequency. We
also check the ease with which the honeywords can be
guessed. To generate honeywords, the frequency of all
tokens is preserved, while only the length of special
characters is preserved.
Following is a detailed description of the implemented
algorithms. For our experiment, we use multiple
databases containing real user passwords which were
compromised by hackers and were made publicly
available. Passwords are considered as private data
and hence we keep the databases used in this study
confidential. Respecting ethical and legal issues in
distribution of user private information, we can
provide the list to the legitimate researcher who agrees
to follow the moral and legal standards of handling
private information. The databases can be obtained
by contacting the authors, after agreeing to standard
ethical practices in handling the same. Our combined
database contain more than 4 million unique user
passwords. This database is used to pre-compute the
frequencies of password patterns as well as frequencies
of individual tokens. These computed frequencies are
stored in separate files. Our experimental process is
described below. The two step procedures to generate
the honeywords as explained in Section 5.3 are
specified in Algorithm 1 and Algorithm 2.

Let a password in the input database is ‘password 123’.
Applying Algorithm 1 on the password, we first decide
its pattern (syntax). For instance, ‘AS1D’ where A=
string of alphabet, Sx= special character of length x
and D = string of digits. We then store the frequency
in a file named patterns map. The algorithm then splits
the password into tokens: {‘password’, ‘ ’, ‘123’}. The
files alphabets map, digits map and specialChars map
stores the frequency of the alphabet-string ‘password’,
the frequency of digit-string ‘123’; and the frequency of
the special character ‘ ’.
Using the generated files by implementing the Algo-
rithm 1, we generate the honeywords following Algo-
rithm 2. To test Algorithm 2, we combine the list of
leaked password files of two different large organiza-
tions. These files were leaked by hackers in 2006 and
2010, respectively. Just like the training database which
we already mentioned, we maintain the confidentiality
of this test database as well. This database can also be
provided to academic researchers after due diligence
that they will use standard ethical practice in handling
the same. Anyone needing the files can contact the
authors.
As we generate honeywords by randomly choosing
entries from list1, list2, list3 and list4 (see Algorithm 2)
which are created from an evolving dataset, we get

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2018.2824323, IEEE

Transactions on Dependable and Secure Computing

11

Algorithm 1 To pre-compute the frequencies of password pattern and tokens

1: Input: A database containing n number of user passwords
2: for each n in database do
3: patterns map = {Store the frequency of the password pattern}
4: Split the password into separate tokens and store in different files as
5: alphabets map = {Store the frequency of the string of alphabets}
6: digits map = {Store the frequency of the string of digits}
7: specialChars map = {Store the frequency of the special character}
8: end for

Algorithm 2 To generate honeywords

1: Find the frequency of the password pattern from patterns map and update the respective frequency.
2: List1 = {store all password patterns that have same frequency}
3: Split the password into individual tokens to compute frequency and also update the respective token frequencies.
4: List2 = {store all strings of alphabets that have same frequency from alphabets map}
5: List3 = {store all strings of digits that have same frequency from digits map}
6: List4 = {store all strings of special symbols that have same frequency from specialChars map}
7: List honeywords={}
8: for i = 1 to k (where k=number of honeywords) do
9: pattern x=randomly choose a pattern from List1

10: for each token in pattern x do
11: honeyword = replace the token with elements chosen randomly from
12: List2, List3 and List4 depending on the type of token
13: end for
14: if levenshtein distance (password, honeyword) ≥ 3
15: add the honeyword to List honeywords
16: else do not update the value of k
17: end for
18: return List honeywords

different set of honeywords even for same frequency
passwords, with a very high probability. To test the
probability, we generate honeywords for different pairs
of passwords of same frequency. For our chosen set of
password pairs, we observe the following number of
entries (the minimum entries obtained over password-
pairs of having different frequencies from very high to
low):

|List1| = 10; |List2| = 20; |List1| = 10; |List1| = 10

Therefore, number of possible honeywords for pass-
words of the above case are 20000 and the probability
that the two sets of honeywords for pair of similar
frequency passwords collide is .001, which is very low.
This assures that it is difficult to predict honeywords
for two passwords of same frequency. With evolving
frequency counts, it is also difficult to create similar list
of honeywords for an adversary even if the adversay
has the access of same leaked password database.
The Flatness: Honeywords are generated analysing the
frequency of the real user passwords. It is very diffi-
cult to model human behavior to generate passwords.
Therefore, techniques based on the distribution of real
user password are the best way to map human ten-
dency towards password generation. Algorithm 2 ran-
domly generates honeywords maintaining a threshold
distance (≥ 3) with the password. Hence, the technique
is perfectly flat.

8 COMPARISON WITH EXISTING WORK

There exist a few works [16], [18], [20] on the analysis
of honeyword based detection techniques. A compar-
ison of existing honeyword generation techniques and
our proposed methods, considering various advantages
and drawbacks, is shown in Table 1 and Table 2. Ta-
ble 1 compares the existing protocols defined under the
‘Modified-UI’ category. It is clear from the comparison
and the explanation in Section 5.3 that our proposed
technique, ‘Append-Secret model’ is user friendly and
provides protection against ‘multiple system intersec-
tion considering Input/Output’ attack. The advantage
of ‘Modified-UI’ technique is that it introduces ran-
domness in user chosen password and prevents the
MSII/MSIO attack. The disadvantage of Take-a-tail
method under this category is that the randomness
is generated by the system and user needs to memo-
rize it. Another technique PDP is an approach where
randomness is selected by the user as explained in
Section 4. However, introducing the new MSII attack
model we have shown that the technique is completely
broken. Specifically, it fails to provide security against
both MSII and MSIO attacks. Further, this method
forces users to randomize their passwords and this is
a memory overhead for users. Hence, our proposed
technique ’Append-secret model’ tries to balance the
disadvantages of the above mentioned techniques un-
der ‘Modified-UI’ approach and the comparison is tab-
ulated in Table 1. Table 2 compares all the existing

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2018.2824323, IEEE

Transactions on Dependable and Secure Computing

12

honeyword generation techniques considering flatness
and significant attack models. The Denial-of-Service
(DoS) attack resistance is defined as ‘weak’ or ‘strong’
where ‘weak’ signifies that given a password, an ad-
versary can provide a honeyword with non-negligible
probability and ‘strong’ signifies that honeywords are
indistinguishable from passwords. ‘Multiple system in-
tersection considering Output (MSIO) and ‘Multiple
system intersection considering Input (MSII)’ attack
resistance means that even if accounts of the same
user on different systems are compromised, it will not
reveal the password. The typo-safety is considered to
be taken care of only if it is experimentally performed
or explicitly mentioned while describing the technique.
Flatness is defined as the probability to distinguish
(k− 1)-honeywords from the password. A technique is
user-friendly if the choice of password is not influenced
by the UI.

9 CONCLUSIONS

In this work, we propose new honeyword generation tech-
niques which overcome several limitations of the existing
honeyword generation techniques. Our proposed methods
produce honeywords that are indistinguishable from the
password and hence achieve ‘approximate flatness’. To pre-
vent false detection, in cases where legitimate user unin-
tentionally enters a honeyword, we implement Levenshtein
distance to maintain minimum required distance (3 for
our experiment) between password and honeywords. We
propose a new attack model and show that the ‘Paired
Distance Protocol’ defined in [16] is completely broken in
our attack model. The detailed analysis of existing honey-
word techniques and their comparison with our proposed
techniques is also provided.

REFERENCES

[1] Jerome H. Saltzer. Protection and the control of information
sharing in MULTICS. In Proceedings of the Fourth Symposium on
Operating System Principles, SOSP 1973, Thomas J. Watson, Research
Center, Yorktown Heights, New York, USA, October 15-17, 1973.

[2] Robert Morris and Ken Thompson. Password Security: A Case
History, 1979. http://cs-www.cs.yale.edu/homes/arvind/cs422/
doc/unix-sec.pdf.

[3] Philippe Oechslin. Making a faster cryptanalytic time-memory
trade-off. In Dan Boneh, editor, Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003, Proceedings, volume 2729 of
Lecture Notes in Computer Science, pages 617–630. Springer, 2003.

[4] Password Hashing Competition (PHC), 2014. https://
password-hashing.net/index.html.

[5] Donghoon Chang, Arpan Jati, Sweta Mishra, and Somitra Kumar
Sanadhya. Rig: A simple, secure and flexible design for password
hashing. In Dongdai Lin, Moti Yung, and Jianying Zhou, editors,
Information Security and Cryptology - 10th International Conference,
Inscrypt 2014, Beijing, China, December 13-15, 2014, Revised Selected
Papers, volume 8957 of Lecture Notes in Computer Science, pages
361–381. Springer, 2014.

[6] Ari Juels and Ronald L. Rivest. Honeywords: making password-
cracking detectable. In 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS’13, Berlin, Germany, November 4-
8, 2013, 2013.

[7] Fred Cohen. The Use of Deception Techniques: Honey-
pots and Decoys. http://all.net/journal/deception/Deception
Techniques .pdf.

[8] Lance Spitzner. Honeytokens: The Other Honeypot,
2003. http://www.symantec.com/connect/articles/
honeytokens-other-honeypot.

[9] Hristo Bojinov, Elie Bursztein, Xavier Boyen, and Dan Boneh.
Kamouflage: Loss-resistant password management. In Computer
Security - ESORICS 2010, 15th European Symposium on Research in
Computer Security, Athens, Greece, September 20-22, 2010. Proceed-
ings, pages 286–302, 2010.

[10] Wikipedia contributors. 2012 LinkedIn hack. Wikipedia, The
Free Encyclopedia, Date retrieved: 29 May 2016. Available
at: https://en.wikipedia.org/w/index.php?title=2012 LinkedIn
hack&oldid=722095159.

[11] Bruce Schneier. Cryptographic Blunders Revealed by Adobe’s
Password Leak. Schneier on Security, 2013. Available
at: https://www.schneier.com/blog/archives/2013/11/
cryptographic b.html.

[12] Swati Khandelwal. Hacking any eBay Account in just 1
Minute, 2014. Available at: http://thehackernews.com/2014/09/
hacking-ebay-accounts.html.

[13] Wikipedia contributors. Ashley Madison data breach.
Wikipedia, The Free Encyclopedia, Date retrieved: 29 May
2016. Available at: https://en.wikipedia.org/w/index.php?title=
Ashley Madison data breach&oldid=721001290.

[14] Troy Hunt. Observations and thoughts on the LinkedIn
data breach, 2015. Available at: https://www.troyhunt.com/
observations-and-thoughts-on-the-linkedin-data-breach/.

[15] Michael Gilleland. Levenshtein Distance, in Three Flavors. Avail-
able at: http://people.cs.pitt.edu/∼kirk/cs1501/assignments/
editdistance/Levenshtein%20Distance.htm.

[16] Nilesh Chakraborty and Samrat Mondal. A new storage optimized
honeyword generation approach for enhancing security and us-
ability. CoRR, abs/1509.06094, 2015.

[17] Dinei A. F. Florêncio and Cormac Herley. A large-scale study
of web password habits. In Proceedings of the 16th International
Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada,
May 8-12, 2007, pages 657–666, 2007.

[18] Imran Erguler. Achieving flatness: Selecting the honeywords from
existing user passwords. IEEE Trans. Dependable Sec. Comput.,
13(2):284–295, 2016.

[19] Mark Burnett. The Pathetic Reality of Adobe Pass-
word Hints, 2013. Available at: https://xato.net/
the-pathetic-reality-of-adobe-password-hints-bb40fd92220f#
.u8deumwif.

[20] Nilesh Chakraborty and Samrat Mondal. Few notes towards
making honeyword system more secure and usable. In Proceedings
of the 8th International Conference on Security of Information and
Networks, SIN 2015, Sochi, Russian Federation, September 8-10, 2015,
2015.

[21] Most common passwords list. Available at: http://www.
passwordrandom.com/most-popular-passwords/page/89.

[22] Dinei A. F. Florêncio and Cormac Herley. Where do security
policies come from? In Proceedings of the Sixth Symposium on Usable
Privacy and Security, SOUPS 2010, Redmond, Washington, USA, July
14-16, 2010, 2010.

[23] Edward Clarkson, James Clawson, Kent Lyons, and Thad Starner.
An empirical study of typing rates on mini-qwerty keyboards.
In Extended Abstracts Proceedings of the 2005 Conference on Human
Factors in Computing Systems, CHI 2005, Portland, Oregon, USA,
April 2-7, 2005, pages 1288–1291, 2005.

[24] Matt Weir, Sudhir Aggarwal, Breno de Medeiros, and Bill Glodek.
Password cracking using probabilistic context-free grammars. In
30th IEEE Symposium on Security and Privacy (S&P 2009), 17-20 May
2009, Oakland, California, USA, 2009.

[25] Techlicious Fox Van Allen techlicious. Google Reveals the 10
Worst Password Ideas, 2013. http://techland.time.com/2013/08/
08/google-reveals-the-10-worst-password-ideas/.

[26] Ding Wang, Zijian Zhang, Ping Wang, Jeff Yan, and Xinyi Huang.
Targeted online password guessing: An underestimated threat. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, pages
1242–1254, 2016.

[27] Joseph Bonneau and Stuart E. Schechter. Towards reliable storage
of 56-bit secrets in human memory. In Proceedings of the 23rd
USENIX Security Symposium, San Diego, CA, USA, August 20-22,
2014., pages 607–623, 2014.

[28] Jeremiah Blocki, Saranga Komanduri, Lorrie Faith Cranor, and
Anupam Datta. Spaced repetition and mnemonics enable recall of

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2018.2824323, IEEE

Transactions on Dependable and Secure Computing

13

Table 1
Comparison of Modified-UI honeyword generation techniques.

Take-a-tail [6] PDP [16] Append-sectret [this work]
System selects the User selects User and system

random value for user the random value selects the random value
For n different sites For n different sites For n different sites
n-different values may use same value n-different values

for each user for each user for each user
Prevents MSIO attack MSIO attack Possible Prevents MSIO attack
Prevents MSII attack MSII attack Possible Prevents MSII attack

Table 2
Comparison of honeyword-generation methods. ‘weak’ DoS Resistant means that given a password, an adversary can provide a honeyword

with non-negligible probability; ‘moderate’ DoS Resistant means that given a password, an adversary can provide a honeyword with non-negligible
probability on special scenarios else indistinguishable from passwords; ‘strong’ DoS Resistant means honeywords are indistinguishable from

passwords. MSIO attack and MSII attack resistance means that even if accounts of the same user on different systems are compromised, it will
not reveal the password. The typo-safety is considered to be taken care of only if it is experimentally performed or explicitly mentioned while

describing the technique. Flatness is defined as the probability to distinguish (k − 1)-honeywords from the password.

Honeyword Flatness DoS Typo Legacy MSIO MSII user-
Method Resistant Safety UI Resistance Resistance friendly

Tweaking [6] < 1/k weak no yes no no yes
Password-model [6] no strong no yes no no yes

Tough nuts [6] N/A strong no yes no no yes
Take-a-tail [6] 1/k weak no no yes yes no

Close-number [20] 1/k weak no yes no no yes
formation

Caps-key based [20] 1/k weak no no yes yes no
approach

Modified-tail [20] 1/k weak no no yes yes yes
approach
PDP [16] 1/k strong no no no no no

Evolving password 1/k strong yes yes no no yes
model [this work]

User-profile ≅ 1/k moderate yes yes no no yes
model [this work]

Append-secret 1/k strong yes no yes yes yes
model [this work]

multiple strong passwords. In 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015, San Diego, California, USA,
February 8-11, 2015, 2015.

[29] Bo Li, Sheng Ge, Tianyu Wo, and Dian-fu Ma. Research and
implementation of single sign-on mechanism for ASP pattern.
In Grid and Cooperative Computing - GCC 2004: Third International
Conference, Wuhan, China, October 21-24, 2004. Proceedings, pages
161–166, 2004.

[30] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social
networks. In 30th IEEE Symposium on Security and Privacy (S&P
2009), 17-20 May 2009, Oakland, California, USA, pages 173–187,
2009.

