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A new realization of extended quantum-mechanical supersymmetry (QM SUSY) with central extension
is investigated. We first show that two different sets of d 4+ 2 (d + 1) supercharges for d = even (odd),
each of which satisfies an N =d + 2 (d + 1) extended QM SUSY algebra without central extension,
are hidden in the four-dimensional mass spectrum of the (4 + d)-dimensional Dirac action. We then
find that the whole set of the supercharges forms an A" = 2d + 4 (2d + 2) extended QM SUSY algebra
with central charges for d = even (odd). The representation of the supersymmetry algebra is shown to be
1/2-Bogomol’nyi-Prasad-Sommerfield states that correspond to a short representation for the supersym-
metry algebra with a central extension. We explicitly examine the four-dimensional mass spectrum of the
models with the hyperrectangle and the torus extra dimensions, and discuss their supersymmetric

structures.
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I. INTRODUCTION

Quantum-mechanical supersymmetry (QM SUSY) is
well known as the supersymmetry realized in quantum
mechanics, which was introduced by Witten [1] to inves-
tigate the supersymmetry breaking. These days, the QM
SUSY is applied to a wide range of research areas, e.g.,
exactly solvable systems in quantum mechanics [2-6], the
Berry phase [7-9], black holes and AdS/CFT [10-14],
the Sachdev-Ye-Kitaev model [15-19], extra dimensional
models [20-25], and so on. Recent trends in QM SUSY are
reviewed in Ref. [26].

One of the extensions of the QM SUSY is the
N -extended supersymmetry [27-34] and another one is
the central extension of the supersymmetry algebra
[35-38]. The N -extended supersymmetry has N super-
charges, each of which corresponds to a square root of
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the Hamiltonian, and they lead to the degeneracy of the
spectrum. In addition, the central extension of supersym-
metry is an extension that introduces central charges into
the supersymmetry algebra.! Central charges are operators
which commute with all the operators in the algebra,
and they can make the size of supermultiplets small,
compared with the regular representation [43,44]. Such
multiplets are called short multiplets or Bogomol nyi-
Prasad-Sommerfield (BPS) states,” and especially, 1/2-
BPS states are constructed from half of the supercharges.
Nevertheless, in quantum mechanics, not so many models
which realize arbitrary large N -extended QM SUSY
with central charges are known. Thus, it is worthwhile
to investigate a new realization of the A -extended QM
SUSY with central charges.

In Refs. [24,25], we have revealed that the N' =2 QM
SUSY structure exists in the four-dimensional (4D) mass
spectrum of the six-dimensional Dirac action. Since a
higher dimensional Dirac spinor can be decomposed into
4D Dirac spinors with many “flavors” in the Kaluza-Klein
(KK) decomposition, we expect that some symmetries
larger than the N' =2 QM SUSY will be hidden in the
4D mass spectrum of higher dimensional Dirac actions.

'Spontaneous generations of the central charges in field-
theoretic SUSY algebras and associated materials have been
dlscussed (see, e.g., [39-42]).

“See also the original papers of BPS states [45,46].
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Actually, it has been shown, in the previous paper [47],
that the AV =2 QM SUSY can be extended to the
N =2[d/2] +2 QM SUSY (but without central exten-
sion) for the (4 + d)-dimensional Dirac action, where the
symbol |d/2] denotes the largest integer less than or equal
to d/2.

In this paper, we discuss a new realization of
N-extended QM SUSY with central extension. Interes-
tingly, we find another set of 2|d/2] + 2 supercharges in
the (4 + d)-dimensional Dirac action, which forms the
same N =2|d/2] +2 QM SUSY algebra as that given
in Ref. [47]. Then, we show that the whole set of the
4|d/2] +4 supercharges forms an N =4|d/2|+4
extended QM SUSY algebra with central charges, and that
the representation of the supersymmetry algebra forms a
short multiplet corresponding to 1/2-BPS states. We
further verify that the supersymmetry clearly explains
the structure of the 4D mass spectrum for the (4 + d)-
dimensional Dirac action in the hyperrectangle or the torus
extra dimensions.

This paper is organized as follows: In Sec. II, we
summarize the KK decomposition of a (4 + d)-dimensional
Dirac field and show that the A" = 2 QM SUSY is hidden
in the 4D mass spectrum. In Sec. III, we give two sets of
2|d/2| +2 supercharges, each of which satisfies the
2|d/2| +2 QM SUSY algebra without central charges,
and then show that the whole set of 4|d/2| + 4 super-
charges forms the N'=4|d/2] +4 QM SUSY algebra
with central charges. In Sec. IV, we consider the repre-
sentation of the algebra. Subsequently in Sec. V, we
examine concrete examples which realize the A -extended
supersymmetry and confirm that the KK mode func-
tions correspond to the representation given in Sec. IV.
Section VI is devoted to summary and discussion.

IL. A =2 QM SUSY IN HIGHER DIMENSIONAL
DIRAC ACTION

In this section, we give the setup of the (4 + d)-
dimensional Dirac action, and review the structure of the
N =2 QM SUSY hidden in the 4D mass spectrum of the
system [47].

Let us consider the (4 + d)-dimensional Dirac action’
with the 4D Minkowski space-time M* and a d-dimensional
flat internal space Q:

S = / d*x / diy P (x,y)(iT"0, + il*0,,
M* Q
—M12Ld/2J+2)lP(X,y>, (1)

where the coordinates of M* and Q are represented
by x* (u=0,1,2,3)and y, (k=1,2,...,d), respectively.

3For earlier works on higher dimensional spinors, see, e.g.,
[48-50].

The 1,1412):> denotes the 214/21+2 x 214/21+2 ynit matrix. The
I'* and I indicate the 214/2/+2 x 214/2]+2 gamma matrices
in (4 + d)-dimensions and satisfy the Clifford algebra

{FA, FB} = —277A312W2J+2

(A,B=0,1,2,3,y1,..,Y4),

(2)

where 748 is the (4 + d)-dimensional metric defined by
nag = n*8 = diag(—1,+1,...,+1). The parameter M in
the action (1) is a bulk mass and ¥(x,y) is a (4 + d)-
dimensional Dirac spinor with 2.9/2/+2 components. The
Dirac conjugate is defined as ¥(x, y) = ¥ (x, y)I°.

In this paper, we use the representation of the gamma
matrices given by the direct product of the internal spin
space and the 4D one, i.e.,4
D =y @

F”lem/zj ®}/ﬂ, (k:1,2,...

where y#(u = 0, ..., 3) denote the 4 x 4 4D gamma matri-
ces and y> = iy%y'y?y® denotes the 4D chiral matrix.
The p* (k=1,2,....d) are the 2l9/2) x 219/2] internal
space gamma matrices and satisfy {y”*, y”'} = —=261,.42,
(P ==k, 1= 1,....d).

In terms of the 4D left-handed (right-handed) chiral
spinors yy") (x) ') (x)), the KK decomposition of the
(4 + d)-dimensional Dirac field ¥(x, y) will be given by

W) =D S U 0) @i (x) 88 (v) ®yih(x) ).
(4)

where the index »n indicates the nth level of the KK modes
and a denotes the index that distinguishes the degeneracy
of the nth KK modes (if it exists). The mode functions

£ (1) 4 (v)) have 219/2) components and are assumed to
form a complete set with respect to the internal space
associated with the 4D left-handed (right-handed) chiral

spinors ") (x) (yje(x).
Substituting the expansion (4) into the action (1), we
require that the action can be written into the form

s= [ an{ S S u 0, - mud )

+ 3 F @) i (x)

3 ) iyﬂéﬂw;(?g(x)}, )

“We here adopt a slightly different representation of the gamma
matrices from that given in the previous paper [47].
SFor the case of d = 1, we define y*' as i.
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(n) (n) (n)

where y ' (x) =y ,(x) +wg,(x) indicate 4D Dirac spinors with mass m, and y/(LO/)R!a(x) are massless 4D chiral spinors.

(n)

In order to obtain the above action, the mode functions f f,") (v) and g4 ' (y) turn out to satisfy the following orthonormality

relations:

[2 a0 (v) = / d'ygd" ()g" (v) = 6450,

/ a8 (v) (A" () = / dlyg" () (A (v)) = m, 6,58, (6)
Q Q

(n)

where A = —iy*d,, + M1,z and AT = iy’ 0y + M1, . Since the mode functionsf{(l")(y) and g, ' (v) are assumed to

form the complete sets, the relations (6) lead to

Q(f&”;(y)) :’"n(ggy?(y)) H(f&";@)) 2 (fi”;(y))’ (_1)F<f5,";<y>> _

~ (f fx”;(y) ) ’
0

Q<g&">0<y>> _’”"<fgli)(y)>’ H<g&">0<y>> _m5<g5f?<y>>’ (‘”F<g£,"?<y>) _+<g&"><y>)’ @)

where the supercharge Q, the Hamiltonian H, and the “fermion” number operator (—1)

¢= < 0 A)’ H=0Q>= <(_8§ + M) Ly
AT 0 0

The Egs. (7) are nothing but the relations of N =2
supersymmetric quantum mechanics’ [1,2], and the mode

functions (£5”(y).0)T and (0,g\"” (y))T correspond to the
“bosonic” and “fermionic” states that form an N =2
supermultiplet in the supersymmetric quantum mechanics.
Thus, we have found that the N” = 2 QM SUSY is hidden
in the KK mode functions and the 4D mass spectrum.
We should notice that the supercharge Q has to be
Hermitian to realize the N = 2 QM SUSY. The Hermitian
property of the supercharge Q is assured if the KK mode
functions satisfy the condition for the surface integral

A L Wi, g ) =0 )

for all m, n, a, . The ny, (y) is a normal unit vector on the
boundary 0€Q. Since the above equation can be derived
from the action principle S = 0, the Hermiticity of the
supercharge Q is guaranteed as long as the Dirac field
obeys the action principle. Thus, the N =2 QM SUSY is
always realized in the 4D mass spectrum of the higher

®It is noted that the definition of A (and A") is different from
that in [47] as

, A
—ro(irykayk - M12L11/27+2) = <1;)T 0) ® 12'

"If one defines Q; = Q and Q, = i(—1)F Q, then they form the
N =2 SUSY algebra {Qj,Qk} =2Hby for j, k=1, 2.

.
(—a%—l—Mz)lzu/zJ '

F are defined as

-1 0
(=1)F = < 20 ) (8)
0 IZWZJ

|
dimensional Dirac action and the doubly degenerate states

(F(y).0)T and (0,g5" (y))T are mutually related by the
supercharge Q, except for zero energy states.

III. N/-EXTENDED SUPERSYMMETRY WITH
CENTRAL CHARGES

Although we have succeeded in explaining the degen-
eracy between the mode functions f ) (y) and gg,") (y) from
an N/ = 2 supersymmetry point of view, we will see further
degeneracy labeled by a in the 4D mass spectrum. We then
expect that some structures will be hidden furthermore in
the 4D mass spectrum. Actually, in the previous paper [47],
we have revealed that an A" = 2|d/2] + 2 extended QM
SUSY is hidden in the 4D mass spectrum.

In this section, we first point out that there exist two
sets of the supercharges, each of which forms the NV =
21d/2] +2 extended QM SUSY algebra without central
extension. We then show that the whole set of the super-
charges satisfies the A" = 4[d/2] + 4 QM SUSY algebra
with central charges. In the next subsection, we clarify the
representation of the algebra.

A. N'=2|d/2| +2 supersymmetry for algebraic
and geometric extensions

In this subsection, we explicitly construct two sets of
supercharges, where one is called algebraic and the other is
geometric, respectively. We then show that each set of
them satisfies the N' = 2|d/2] + 2 supersymmetry algebra
without central charges.

065002-3
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(1) Algebraic supercharges
The N = 2|d/2] + 2 supercharges based on the algebraic property of the gamma matrices are defined as follows:

B 0 —i}/d+1}/ykA B B 0 _i},tlJrlA
Qk - iATyd+17/yk 0 ) Qd+1 - Q’ Qd+2 - iATyd+1 0 s
(k=1,2,....d). (10)

for d = even, and

O }/yd}/ykA 0 ]/ydA
Or = _Afprapn 0 . Q4= 0, Qi1 = _atpe 0 )

(k=1.2,...d=1), (11)

for d = odd. It should be noticed that y¢*! = i4/2y¥1 ... y¥ can be introduced only for d = even and corresponds to
the internal chiral matrix which satisfies {y?*!, y*} = 0, (y*!)? = 1,142 and (y?*!)" = y4*1. On the other hand, in
the odd d dimensions, one of y”* (k =1,2,...,d) should be represented by the product of all the other gamma
matrices. For the following sections, we use the representation of y¥« = —i(@+D/2yyi ... yYe1 for d = odd with
(r'4)* = =1yup and ()7 = —pe.

The above supercharges are found to satisfy the N = 2|d/2| + 2 supersymmetry algebra without central
extension, i.e.,

{0:.0,} =2Hs,, [H.Q]=0 (i.j=1.2,....2|d/2| +2). (12)

(i) Geometric supercharges
Another set of the N'=2|d/2| + 2 supercharges can be constructed, by use of the internal gamma matrices
together with the reflection operators of the internal space €2, as follows:

o, — ( 0 —iyd“yykRkA) O, ( 0 PA> Dr = ( 0 —iyd+1PA>
Nty g, 0 ’ = ate o ) 2 Aty p 0 ’
(k=1,2,....d). (13)

for d = even, and

i 0 PR R A i 0 PA i 0 PR PA
Qk = oy ’ Qd = + s Qd+l = ¥ s
_ATySayhR R, 0 ATP 0 _ATpaR,P 0

(k=1,2,....d=1), (14)

for d = odd. The R, (k=1,2,...,d) represents the reflection operator for the y, direction,® and P = szl Ry
denotes the point reflection (or parity) operator of the internal space. The above supercharges also realize the
N =2|d/2] + 2 supersymmetry algebra without central extension

{0,0;} =2Hs;, [H.0]=0 (i,j=12,..2[d/2] +2). (15)

It should be noted that the supercharges Q; are the same as those obtained in the previous paper [47], except for Q, 1
for d = even and Q, for d = odd.

The reflection operator R, (k=1,2,....d) is defined by (Rif)(V1s--esVir--esVa) = f(V1seecs=Yir ... yg) for any function
f(yl, ...,yd). The Rk and 81 Satisfy Rkal = (1 - 2(3]([)8[Rk.
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B. N =4|d/2]| +4 supersymmetry
with central charges

In the previous subsection, we have seen that both of the
supercharges Q; and Q; (i = 1,2,...,2|d/2] + 2) satisfy
the same N = 2|d/2| + 2 QM SUSY algebra without the
central extension. Here, we show that the supercharges Q;
together with Q; (i = 1,2, ...,2|d/2] + 2) can extend the
algebra to the N =4[d/2] +4 QM SUSY algebra with
central charges (Z;) such that

{0:.0;} ={0:.0;} = 2Hs;;,

{Qlw Q/} = 221'51'.,',
[Zi’ Qj] = [Ziv Q,] = [Zinj] = [Zi»H] = [H, QJ
= [H, Qz] =0,
(i,j=1,2,...,21d/2] +2), (16)

where Z; (i = 1,2,...,2|d/2] + 2) are given by

Zy =010y = (AATRk AO > (k=1,2,....d),
0  ARA
Zd+1 = Qd+1Qd+1 = (AATP 0 >,
0 ATPA
Zgir = Q4120412 = (AATP 0 ) (17)
0 ATPA

o — 0 — iy Ty IIEA ot —
ATy ynaE 0 Lo AT
(k=1,2,...,d),
for d = even, and
ot — 0 yyd},yknikA ot — 0
k —ATprayn I, 0 ’ d AT

(k=1.2,....d—1),

for d = odd, where ITf = (1 £ R;)/2,1I7,, = (1 £ P)/2,
I3 = (1+ R4Ry)/2, and Hj(dﬂ) = (1 & R,P)/2 play the
role of the projection operators. Then, these supercharges
are found to satisfy the algebra

{0707} = (H£2Z)s;, (22)
(05,07} =0,(i,j = 1,2,....2[d/2] +2). (23)

The supercharges especially satisfy Q;0; = QiQi(i =1,
2,...,21d/2| +2).

d+1

for d = even, and

Zy = 0.0 = (AATRdR" 0 )
0 ATR,R,A
(k=1.2,...d—1),
Zy= 040, = (AATP N )
0 A"PA

AATR,P 0

Zyy = 0441 = , : 18
ar1 = Qay1Qav1 ( 0 ATRdPA) (18)

for d = odd.” Since Z; (i = 1,2, ..., 2]d/2| + 2) commute
with all the operators, we can regard Z; as central charges
in this algebra. As we can see the form of the central
charges, they may be interpreted as the reflection operators
(accompanied with the Hamiltonian) compatible with the
QM SUSY.

In the next section, we discuss the representation of the
supersymmetry algebra. For this purpose, it is convenient to
adopt the basis of supercharges as

1 ~
0F =3(Qi+0) (i=12...2[d/2]+2). (19)
The explicit forms of the supercharges Q7 are given as

HithA) 0+ = ( 0 _ideHdiHA)
s Qi = )

d+1 0 ATyt Hirl 0
(20)
H¢j1:+1A> 0t — < 0 yydnrj;(dH)A)
’ d+1 — oy ’
0 —A y”l’Ij(dH) 0
(21)

|
In the next section, we use this basis of the supercharges.
It should be pointed out that all of the supercharges Q;
and Q; (or QF) (i=1,2,...,2|d/2] +2) would not be
necessarily well defined in the system. In order for them to
be well defined, the supercharges Q; and Q; have to be
compatible with boundary conditions (if the internal space
Q has boundaries), that is, for any state ®(y), Q,®(y) and
Q;®(y) should obey the same boundary condition as that
on ®(y), otherwise the action of Q; and Q; on ®(y) is ill
defined. Furthermore, in order for Q ; to be well defined, the
reflection operators R, (k = 1,2, ..., d) should properly act
on the internal space Q. In this paper, we restrict our
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considerations to the cases that all the supercharges Q; and
Q, (or OF) (i = 1,2,...,2]d/2] + 2) are well defined with
the N =4[d/2] + 4 QM SUSY algebra.

IV. REPRESENTATION OF N -EXTENDED
SUPERSYMMETRY WITH
CENTRAL CHARGES

In this section, we clarify the representation of the
supersymmetry algebra derived in the previous section
for the nonzero energy states.

Since the Hamiltonian H and the central charges Z;
(i=1,2,...,2|d/2| +2) commute with each other,
we can introduce the simultaneous eigenstates of H
and Z;. Furthermore, since the central charges satisfy the
relations

(Z)P=H> (i=1.2,..2[d/2)+2). (24)
with
H'Z, =H"'Z,,=2,Z,---Z,, for d=even,
(25)
HY2Z,,=2Z,-+-Z4,, ford=odd, (26)

the eigenvalues of H and Z; for the nonzero energy states
with m2 # 0 can be parametrized as follows:

HO'(y) = m®"(y), (27)
Z0(y) = zm2 @ (y), (i =1.2,...2[d/2] +2),
(28)
with'
n==+1 (i=1,2,...2[d/2| +2), (29)

Zap1 = Zay2 = 222 2q for d =even,  (30)

Zay1 = 2122 - 2q-1  for d = odd, (31)
where 7 = (z1,2,...,24) and the index a labels the
degeneracy for fixed m, with Z."

It may be worthwhile explaining the physical meanings
of the discrete eigenvalues z; = £1. It follows from

"It should be noted that the eigenvalues z; = =1 can be
defined without ambiguity for the nonzero energy states with
m% # 0, and also that all of the eigenvalues z; (i =1,2,...,
2|d/2| + 2) are not independent but only z; (k = 1,2, ..., d) are
1ndependent

"The label a given in Eq. (4) corresponds to {a, Z} defined in
this section.

expressions (17) and (18) that the central charges Z;
essentially correspond to the reflection operators (accom-
panied with the Hamiltonian), so that z; may be interpreted
as the labels for “parity”” even or odd of the eigenfunctions.
It should be, however, emphasized that the reflection
operators R, (k=1,2,...,d) and P themselves do not
commute with the supercharges Q7 and hence they are not
compatible with the supersymmetry. On the other hand, Z;
commutes with all the supercharges, so that Z;/H (for the
nonzero energy states) can be regarded as a “reflection”
operator compatible with the supersymmetry.

In order to construct the representation, i.e., the super-
multiplet of the supersymmetry algebra (22), (23), we first
note that Q; (i =1,2,...,2|d/2] +2) acts trivially on

¢£,"§(Y) with 7 = (21,20, -+, 24), 1.€

07 @ (y) =0 (i=12....2(d/2] +2). (32)

This is because relation (22) implies (Qi_z”)zcl)gg(y) =0,
which leads to (32) due to the Hermitian property of the
supercharges. Thus, the supercharges that act on the states

Cbgnz)(y) nontrivially are given by the set of {Qf (i =
1,2,...,2|d/2] +2)} and the number of the supercharges
turns out to reduce effectively to half.'?

The supermultiplet associated with the state CD( )( ) can
be constructed in the following way. In terms of the
nontrivial supercharges Q;, it will be useful to introduce

the operators

S _ngzpp llQZ7p (p=1,2,....d/2] +1).
(33)
They are explicitly given by
Z2p—-1 +22p
S12p7122p _ (AATY(F)HZZ IIH " 0 >
’ 0 Ay I A
(p=1,2,..,d/2),
ot _ ( AAT d+1HZd+1HZd;ri 0 )
(d+2)/2 0 _ATdeHfldIiHZﬁA
(34)

for d = even and

“Note that the set of the nontrivial supercharges {07(i=1,
2,...,2|d/2]| +2)} depends on the eigenvalues z=(z;,25,.--,24)

(n)
of the state @, 2(y).
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22p-1 22p
1 _ AR azp it 0 =1,2,....(d—1)/2
e = . i e o ) (P= 12 (@=1/2),
Yoy Hap-1ttacp)
PA AT YaTTod Zd+1
gaatans (lAA A gy ) (35)
d+1)/2 y ’
(n/ 0 —iATy I, T A
|
for d = odd, Where we introduce the pth internal chirality ®" () = ;< zl)(1—x1)/2( sz)(l—sz)/Z o
iy, 22p-122p n S182°8|d/2)+1:2 (m )S 1 3
Y(p) = ir*> 1y Since Sy (p=1,2,....|d/2]+ 1) n
. (i — (1=514/2141)/2 (1)
commute with each F)ther as well ai {-Ilzzand Z; i=1, (Q22|_372 J+1+ 1) aj2)+1)/ q):+..<+,z()’)’
2,...,2]1d/2| +2), eigenstates of S,”"*" can become
simultaneous eigenstates of H and Z;. Furthermore, since (39)

22p-122p . : 22p-122p\2 __ g2
Sy satisfy the relations (S} )2 =H?,
205122
parametrize the eigenvalues of S,”"""* as

we can

SZZP—] ZZ]) @( )

S1o8 S d/2)+1

’?(y) = spm%q)sjl)sp S|dj2)+1 Z(y)
(p=1,...,

[d/2] + 1),
with s, = +1 for the nonzero energy states.'* Here, we
have replaced the index a by 555 - - - §|4/2)+1, Which denote

1d/2] +1).

(36)

the eigenvalues of S, (p = 1,2, ...,
From the relations

_S;h'*l 22p Qf,
+S12p—l 22p QZ,‘

p i
[QZI Z } 7

fori=2p—1,2p,

for i #2p—1,2p,

21d/2| +2),
(38)

075 = { (37)

[0, H] = (i,j=12,...,

we find that the supercharges Q2°If ' (or Q3 y) (p=1,
.ld/2] + )P flip the sign of the elgenvalues of

S;z” 13 but do not change other eigenvalues. This fact
implies that the set of {dDSl__‘Sp,_,SWHZ(y) with s, =

+1(p=1,2,....[d/2] + 1)} is 2l92+!fold degenerate
and forms a supermultiplet of the N =4|d/2|+4
extended QM SUSY algebra with the central charges.
Actually, we can explicitly construct the supermultiplet

from dﬁi Lz(v) as

“The product of y (»(p=1,2,...,]d]/2) equals the internal
chlrahty y¥t! for d = even and —l}/yd for d = odd.

“For d = even, s,(p=1,2,...,d/2) correspond to the
eigenvalues of the pth internal chirality Y(p)» and furthermore,
S(4+2)/2 corresponds to the eigenvalue of 4 + d-dimensional
chirality since S, ‘“‘““‘2 are naively given by the product of

(d+2)/
(=1)" and y**!. Thus, the eigenvalues s,(p =1,2,....(d +

2)/2) are independent. The similar result is also obtained for
d= odd

Since we are considering the eigenstates of S,
~i05; 05 "

S1S S aa) 1o
tially equivalent to that of Q2

Zap-1%2p

the action of sz on @ -(y) is essen-

Zyp- 1

where s = 1(1 =) + -+ + 5 (1 = s304/2)41)-

As we have seen so far, the number of the nontrivial
supercharges reduces to half, and the 214/2/*+1fold degen-
erate states for fixed m,, and 7 are related by the reduced
2|d/2] + 2 supercharges. This situation is known as a
short representation in the context of extended supersym-
metry with central charges, and the eigenstates (39) are
called the 1/2-BPS states [43,44].

V. EXAMPLES

In this section, we examine the models with the hyper-
rectangle and the torus extra dimensions, which realize the
N =4|d/2| + 4 extended QM SUSY, and confirm the
results given in the previous section.

A. Hyperrectangle

Let us consider the example of the action (1) whose extra
dimensional space Q is given by the d-dimensional hyper-
rectangle,

o  [LL L), [ ke L
22 22

where L; (k = 1,2, ..., d) is the length of the kth side of the
hyperrectangle with the Dirichlet boundary condition
imposed on the left-handed KK mode functions,

Ly Ly
27 2

(40)

fgll/l')”sld/zj (y) =0 aty, =-
(41)

This boundary condition satisfies the requirement (9), and
we can confirm that all the supercharges Q7 are Hermitian
and well defined.

The nth KK mode functions fgl?--swzj (y),gﬁ’l’?‘_sm (y)
with KK mass m?2 > 0 are found to be written into the form

fg?-)-swzj (y) = h(n) (y)e.\'] 8\d/2)?

1

gg"ll-)--sw/zJ ) = m_AThW (y)esl “Sd/2)

(42)
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where the second relation comes from the first equation
in (7). The scalar function /(") (y) and the mass eigenvalue
m,, are given by

The €550
space, and are chosen as eigenvectors of y(,) =
iyY-1y¥ [51,52]:

indicate the basis vectors of the spinor

7(p)esl...51)...s£d/2J = 8§p€y, S pS ) (45)

for all p=1,2,...,|d/2], where Sy = +1 represents an

eigenvalue of the pth internal chirality of y(,). To fix the

=\ L normalization factors of €550 WE define the €550,
(44)  from e, .., as [cf. Egs. (20), (21), and (39)]
|
(iy ) U= (it ) U2 (o) U=san)2e | (d = even), (46
5152781472 o (_yydyyl)(l_sl)/2(_y)’d}/y3)<1_s2)/2 P (_}/}dyyd—Z)(l S (d— 1/2>/ e++ _+ (d — Odd). )
Then, we can construct the eigenfunctions of the model as follows:
1o 2 )
o ( b l(d)/ ) for S|d/2)+1 = S152 - S|a/2]»
q)sl'“S{d/2js{d/2j+l,2(y) = . (47)
<g5'f)---wu (y)> for s|g/2) 11 = —5182° " S|a/2)s
where 7 = (z;, 22, ..., 24) 18 given by
- —)ymtl (=)t d = even),
Z_{(() (=)"*) | ( ) (48)
(=), (=)ot (<)1) (d = 0dd).
|
Then, we can show that the eigenfunctions (47) satisfy ~ 2|d/2] 4+ 2). Thus, Z; can be regarded as reflection

the same relations as (39) and form the supermultiplet of
the N = 4|d/2] + 4 extended QM SUSY, as the 1/2-BPS
states. Since the eigenvalues of Z; are unique at each KK
level as shown in (48), the degeneracy of the 4D spectrum
at each KK level is 2l9/2/*1 and the eigenfunctions (47) are
mutually related by the supercharges Q7 (i=1,2,...,
2|d/2] +2) at each KK level. It is interesting to point
out that the KK mode functions gﬁj’?..sl 4o () are mot
eigenfunctions of the reflection operators Ry (k =1,
2,...,d) and P, although fﬁ’ﬂ S

of them. On the other hand, CI)(")

S1°081d/2) S|dj2)+1:% Z

,»(y) are eigenfunctions

-(y) are eigen-

functions of the central  charges  Z;(i =1.2,...,
|
(n) e

S gz Ot Lioya) = f
g(ﬂ) (ylw -,yk+Lk,...yd) —g(")

S181a/2-%

S181d/2) 2

S1°814/2)

operators compatible with the supersymmetry, as noticed

in the previous section.

B. Torus

Next, we consider the model that the extra dimensional
space Q is given by the d-dimensional torus,

Ly | _La La
Q—[ 2,2)x x[ 2,2> (49)

with the periodic boundary condition for KK mode
functions,

(y17 cos Vi "'7yd>7

(yl,. Vi ya), (k=1,...,d). (50)

The above periodic boundary condition satisfies the requirement (9), and all the supercharges are shown to be Hermitian

and well defined.
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Then, the nth KK mode functions fg':) (y).g"

S|aja) -2

f(")

$1°:814/2) Z

A
(y) - hZ’ (y)es]-uxw/zj’

where z, = £1 and 7 = (2}, ..., 2Z})).

S181d/2) 2

- (y) with KK mass m,, are found to be of the form

Then, we can construct the eigenfunctions of the model as

where 7 is given by

: {(z )

| (d = even),
(24215 -+ 2aZa-1 2a)

(d = odd). (55)

Then, we can show that the eigenfunctions (54) satisfy
the same relation as (39) and form the supermultiplet of
the NV = 4|d/2] + 4 extended QM SUSY, as the 1/2-BPS
states. However, unlike the hyperrectangle case, both of
the eigenstates with z; = +1 and —1 for n; #0 (k =1,
2,...,d) are degenerate in the 4D mass spectrum. This
implies that the additional degeneracy 29~No appears in
the 4D spectrum, where N, is the number of zeros in
{ny.n,. ....ny}."° The origin of the degeneracy comes from
the extra degrees of freedom with respect to the parity even

or odd for each reflection: y, — —y, in hg’) (y). Therefore,

the 4D mass spectrum is (2214/2/+1 x 24=No)fold degen-
erate for the KK modes labeled by {n;,n,,...,ny}.

VI. SUMMARY AND DISCUSSION

In this paper, we have revealed that the A -extended QM
SUSY with the central charges is hidden in the 4D mass
spectrum of the higher dimensional Dirac action. The
supercharges are obtained as the extension of the N = 2
QM SUSY based on the algebraic properties of the internal
gamma matrices and the reflection symmetries of the extra

"Note that when n, = 0, A (y) for 2, = —1 is trivial, i.c.,
“k

hg)) (y) = 0. Thus, there is no degeneracy in h(i“)(y) for n; = 0.
“k k

4

(n)
fsl---de/zJ.? y)
0

0
(n) for 54041 = —5182- " 8|4/2)
(gsl,..w/zj,g/()’)> 472 2

(n) — L )

gs,...m/zyz/(Y) o m,,A hf’ (y)e~“1"*"LfI/2J’ S
\/szcos (2Zkk”yk) (z = +1), (52)

Zsin (%7y) (=1,

d
2 2
Z( nk”) ’ (nk:oylaza"';k:1""’d)’ (53)
( _

for S|d/2)+1 = S152 " S|a/2]»

(54)

[

dimensions. The central charges are interpreted as the
supersymmetric extension of the reflection operators.

We have also examined the representation of the
extended supersymmetry algebra and found that the super-
multiplet corresponds to the short multiplet of the 1/2-BPS
states. Furthermore, we have explicitly confirmed that
the KK mode functions in the models of the hyperrectangle
and the torus extra dimensions can be properly classified by
the representations of the N' = 4|d/2| + 4 extended QM
SUSY algebra with the central charges.

In this paper, we have restricted to the cases that all the
4|d/2] + 4 supercharges are well defined. Other boundary
conditions, other extra dimensions and nontrivial back-
ground fields would break (or partially break) the extended
supersymmetry. For example, if there are no reflection
symmetries in extra dimensions, the geometric supercharges
(13) and (14) [and also the supercharges (19)] become ill
defined, although the algebraic supercharges can be well
defined in this case with suitable boundary conditions.
Therefore, it would be of great importance to clarify how
the extended supersymmetry found in this paper is broken by
the choice of boundary conditions, extra dimensional spaces,
and background fields.

It is interesting to note that there are possibilities that
further structures might be hidden in the 4D mass spectrum
in general settings. The central charges in our models result
from the symmetries of the extra dimensions. Thus, we can
expect that new types of central charges will appear in models
with other symmetries. Furthermore, since it is known that
central charges are closely related to topological properties
[43,53,54], itis alsointeresting to investigate models of curved
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extra dimensions or background fields with nontrivial topol-
ogies, e.g., sphere, soliton, magnetic flux, etc.

In addition, since we have obtained the new extended
supersymmetry with the central charges, it would be
worthwhile to search for new types of exactly solvable
models by use of this supersymmetry. The issues men-
tioned above remain to be done in future works.
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