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A new realization of extended quantum-mechanical supersymmetry (QM SUSY) with central extension

is investigated. We first show that two different sets of dþ 2 (dþ 1) supercharges for d ¼ even (odd),

each of which satisfies an N ¼ dþ 2 (dþ 1) extended QM SUSY algebra without central extension,

are hidden in the four-dimensional mass spectrum of the (4þ d)-dimensional Dirac action. We then

find that the whole set of the supercharges forms an N ¼ 2dþ 4 (2dþ 2) extended QM SUSY algebra

with central charges for d ¼ even (odd). The representation of the supersymmetry algebra is shown to be

1=2-Bogomol’nyi-Prasad-Sommerfield states that correspond to a short representation for the supersym-

metry algebra with a central extension. We explicitly examine the four-dimensional mass spectrum of the

models with the hyperrectangle and the torus extra dimensions, and discuss their supersymmetric

structures.
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I. INTRODUCTION

Quantum-mechanical supersymmetry (QM SUSY) is

well known as the supersymmetry realized in quantum

mechanics, which was introduced by Witten [1] to inves-

tigate the supersymmetry breaking. These days, the QM

SUSY is applied to a wide range of research areas, e.g.,

exactly solvable systems in quantum mechanics [2–6], the

Berry phase [7–9], black holes and AdS=CFT [10–14],

the Sachdev-Ye-Kitaev model [15–19], extra dimensional

models [20–25], and so on. Recent trends in QM SUSYare

reviewed in Ref. [26].

One of the extensions of the QM SUSY is the

N -extended supersymmetry [27–34] and another one is

the central extension of the supersymmetry algebra

[35–38]. The N -extended supersymmetry has N super-

charges, each of which corresponds to a square root of

the Hamiltonian, and they lead to the degeneracy of the

spectrum. In addition, the central extension of supersym-

metry is an extension that introduces central charges into

the supersymmetry algebra.
1
Central charges are operators

which commute with all the operators in the algebra,

and they can make the size of supermultiplets small,

compared with the regular representation [43,44]. Such

multiplets are called short multiplets or Bogomol’nyi-

Prasad-Sommerfield (BPS) states,
2
and especially, 1=2-

BPS states are constructed from half of the supercharges.

Nevertheless, in quantum mechanics, not so many models

which realize arbitrary large N -extended QM SUSY

with central charges are known. Thus, it is worthwhile

to investigate a new realization of the N -extended QM

SUSY with central charges.

In Refs. [24,25], we have revealed that the N ¼ 2 QM

SUSY structure exists in the four-dimensional (4D) mass

spectrum of the six-dimensional Dirac action. Since a

higher dimensional Dirac spinor can be decomposed into

4D Dirac spinors with many “flavors” in the Kaluza-Klein

(KK) decomposition, we expect that some symmetries

larger than the N ¼ 2 QM SUSY will be hidden in the

4D mass spectrum of higher dimensional Dirac actions.

*
y-fujimoto@oita-ct.ac.jp

†
kouhei@phys.sci.kobe-u.ac.jp

‡
knishiw@irb.hr

§
dragon@kobe-u.ac.jp

∥
kentaro@stu.kobe-u.ac.jp
¶
i-ueba@stu.kobe-u.ac.jp

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP

3
.

1
Spontaneous generations of the central charges in field-

theoretic SUSY algebras and associated materials have been
discussed (see, e.g., [39–42]).

2
See also the original papers of BPS states [45,46].
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Actually, it has been shown, in the previous paper [47],

that the N ¼ 2 QM SUSY can be extended to the

N ¼ 2bd=2c þ 2 QM SUSY (but without central exten-

sion) for the (4þ d)-dimensional Dirac action, where the

symbol bd=2c denotes the largest integer less than or equal

to d=2.
In this paper, we discuss a new realization of

N -extended QM SUSY with central extension. Interes-

tingly, we find another set of 2bd=2c þ 2 supercharges in

the (4þ d)-dimensional Dirac action, which forms the

same N ¼ 2bd=2c þ 2 QM SUSY algebra as that given

in Ref. [47]. Then, we show that the whole set of the

4bd=2c þ 4 supercharges forms an N ¼ 4bd=2c þ 4

extended QM SUSY algebra with central charges, and that

the representation of the supersymmetry algebra forms a

short multiplet corresponding to 1=2-BPS states. We

further verify that the supersymmetry clearly explains

the structure of the 4D mass spectrum for the (4þ d)-
dimensional Dirac action in the hyperrectangle or the torus

extra dimensions.

This paper is organized as follows: In Sec. II, we

summarize the KK decomposition of a (4þ d)-dimensional

Dirac field and show that the N ¼ 2 QM SUSY is hidden

in the 4D mass spectrum. In Sec. III, we give two sets of

2bd=2c þ 2 supercharges, each of which satisfies the

2bd=2c þ 2 QM SUSY algebra without central charges,

and then show that the whole set of 4bd=2c þ 4 super-

charges forms the N ¼ 4bd=2c þ 4 QM SUSY algebra

with central charges. In Sec. IV, we consider the repre-

sentation of the algebra. Subsequently in Sec. V, we

examine concrete examples which realize the N -extended

supersymmetry and confirm that the KK mode func-

tions correspond to the representation given in Sec. IV.

Section VI is devoted to summary and discussion.

II. N = 2 QM SUSY IN HIGHER DIMENSIONAL

DIRAC ACTION

In this section, we give the setup of the (4þ d)-
dimensional Dirac action, and review the structure of the

N ¼ 2 QM SUSY hidden in the 4D mass spectrum of the

system [47].

Let us consider the (4þ d)-dimensional Dirac action
3

with the 4D Minkowski space-timeM4 and a d-dimensional

flat internal space Ω:

S ¼

Z

M4

d4x

Z

Ω

ddyΨ̄ðx; yÞðiΓμ∂μ þ iΓyk∂yk

−M12bd=2cþ2ÞΨðx; yÞ; ð1Þ

where the coordinates of M4 and Ω are represented

by xμ (μ ¼ 0, 1, 2, 3) and yk (k ¼ 1; 2;…; d), respectively.

The 12bd=2cþ2 denotes the 2bd=2cþ2 × 2bd=2cþ2 unit matrix. The

Γ
μ and Γ

yk indicate the 2bd=2cþ2 × 2bd=2cþ2 gamma matrices

in (4þ d)-dimensions and satisfy the Clifford algebra

fΓA;ΓBg ¼ −2ηAB12bd=2cþ2 ðA;B ¼ 0; 1; 2; 3; y1;…; ydÞ;

ð2Þ

where ηAB is the (4þ d)-dimensional metric defined by

ηAB ¼ ηAB ¼ diagð−1;þ1;…;þ1Þ. The parameter M in

the action (1) is a bulk mass and Ψðx; yÞ is a (4þ d)-

dimensional Dirac spinor with 2bd=2cþ2 components. The

Dirac conjugate is defined as Ψ̄ðx; yÞ ¼ Ψ
†ðx; yÞΓ0.

In this paper, we use the representation of the gamma

matrices given by the direct product of the internal spin

space and the 4D one, i.e.,
4

Γ
μ ¼ 12bd=2c ⊗ γμ; Γ

yk ¼ γyk ⊗ γ5 ðk ¼ 1; 2;…; dÞ;

ð3Þ

where γμðμ ¼ 0;…; 3Þ denote the 4 × 4 4D gamma matri-

ces and γ5 ≡ iγ0γ1γ2γ3 denotes the 4D chiral matrix.

The γyk (k ¼ 1; 2;…; d) are the 2bd=2c × 2bd=2c internal

space gamma matrices and satisfy fγyk ; γylg ¼ −2δkl12bd=2c ;

ðγykÞ† ¼ −γykðk; l ¼ 1;…; dÞ.5

In terms of the 4D left-handed (right-handed) chiral

spinors ψ
ðnÞ
L;αðxÞ (ψ

ðnÞ
R;αðxÞ), the KK decomposition of the

(4þ d)-dimensional Dirac field Ψðx; yÞ will be given by

Ψðx;yÞ ¼
X

n

X

α

ff
ðnÞ
α ðyÞ⊗ ψ

ðnÞ
L;αðxÞþ g

ðnÞ
α ðyÞ⊗ ψ

ðnÞ
R;αðxÞg;

ð4Þ

where the index n indicates the nth level of the KK modes

and α denotes the index that distinguishes the degeneracy

of the nth KK modes (if it exists). The mode functions

f
ðnÞ
α ðyÞ (g

ðnÞ
α ðyÞ) have 2bd=2c components and are assumed to

form a complete set with respect to the internal space

associated with the 4D left-handed (right-handed) chiral

spinors ψ
ðnÞ
L;αðxÞ (ψ

ðnÞ
R;αðxÞ).

Substituting the expansion (4) into the action (1), we

require that the action can be written into the form

S ¼

Z

M4

d4x

�

X

α

X

n

ψ̄
ðnÞ
α ðxÞðiγμ∂μ −mnÞψ

ðnÞ
α ðxÞ

þ
X

α

ψ̄
ð0Þ
L;αðxÞiγ

μ∂μψ
ð0Þ
L;αðxÞ

þ
X

α

ψ̄
ð0Þ
R;αðxÞiγ

μ∂μψ
ð0Þ
R;αðxÞ

�

; ð5Þ

3
For earlier works on higher dimensional spinors, see, e.g.,

[48–50].

4
We here adopt a slightly different representation of the gamma

matrices from that given in the previous paper [47].
5
For the case of d ¼ 1, we define γy1 as i.
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where ψ
ðnÞ
α ðxÞ ¼ ψ

ðnÞ
L;αðxÞ þ ψ

ðnÞ
R;αðxÞ indicate 4D Dirac spinors with mass mn and ψ

ð0Þ
L=R;αðxÞ are massless 4D chiral spinors.

In order to obtain the above action, the mode functions f
ðnÞ
α ðyÞ and g

ðnÞ
α ðyÞ turn out to satisfy the following orthonormality

relations:

Z

Ω

ddyf
ðnÞ†
α ðyÞf

ðmÞ
β ðyÞ ¼

Z

Ω

ddyg
ðnÞ†
α ðyÞg

ðmÞ
β ðyÞ ¼ δαβδ

nm;

Z

Ω

ddyf
ðnÞ†
α ðyÞðAg

ðmÞ
β ðyÞÞ ¼

Z

Ω

ddyg
ðnÞ†
α ðyÞðA†f

ðmÞ
β ðyÞÞ ¼ mnδαβδ

nm; ð6Þ

where A ¼ −iγyk∂yk
þM12bd=2c and A† ¼ iγyk∂yk

þM12bd=2c .
6
Since the mode functions f

ðnÞ
α ðyÞ and g

ðnÞ
α ðyÞ are assumed to

form the complete sets, the relations (6) lead to

Q

�

f
ðnÞ
α ðyÞ

0

�

¼ mn

�

0

g
ðnÞ
α ðyÞ

�

; H

�

f
ðnÞ
α ðyÞ

0

�

¼ m2
n

�

f
ðnÞ
α ðyÞ

0

�

; ð−1ÞF
�

f
ðnÞ
α ðyÞ

0

�

¼ −

�

f
ðnÞ
α ðyÞ

0

�

;

Q

�

0

g
ðnÞ
α ðyÞ

�

¼ mn

�

f
ðnÞ
α ðyÞ

0

�

; H

�

0

g
ðnÞ
α ðyÞ

�

¼ m2
n

�

0

g
ðnÞ
α ðyÞ

�

; ð−1ÞF
�

0

g
ðnÞ
α ðyÞ

�

¼ þ

�

0

g
ðnÞ
α ðyÞ

�

; ð7Þ

where the supercharge Q, the Hamiltonian H, and the “fermion” number operator ð−1ÞF are defined as

Q ¼

�

0 A

A† 0

�

; H ¼ Q2 ¼

�

ð−∂2
y þM2Þ12bd=2c 0

0 ð−∂2
y þM2Þ12bd=2c

�

; ð−1ÞF ¼

�

−12bd=2c 0

0 12bd=2c

�

: ð8Þ

The Eqs. (7) are nothing but the relations of N ¼ 2

supersymmetric quantum mechanics
7
[1,2], and the mode

functions ðf
ðnÞ
α ðyÞ; 0ÞT and ð0; g

ðnÞ
α ðyÞÞT correspond to the

“bosonic” and “fermionic” states that form an N ¼ 2

supermultiplet in the supersymmetric quantum mechanics.

Thus, we have found that the N ¼ 2 QM SUSY is hidden

in the KK mode functions and the 4D mass spectrum.

We should notice that the supercharge Q has to be

Hermitian to realize the N ¼ 2 QM SUSY. The Hermitian

property of the supercharge Q is assured if the KK mode

functions satisfy the condition for the surface integral

Z

∂Ω

dd−1yf
ðnÞ†
α ðyÞinykðyÞγ

ykg
ðmÞ
β ðyÞ ¼ 0 ð9Þ

for all m, n, α, β. The nykðyÞ is a normal unit vector on the

boundary ∂Ω. Since the above equation can be derived

from the action principle δS ¼ 0, the Hermiticity of the

supercharge Q is guaranteed as long as the Dirac field

obeys the action principle. Thus, the N ¼ 2 QM SUSY is

always realized in the 4D mass spectrum of the higher

dimensional Dirac action and the doubly degenerate states

ðf
ðnÞ
α ðyÞ; 0ÞT and ð0; g

ðnÞ
α ðyÞÞT are mutually related by the

supercharge Q, except for zero energy states.

III. N -EXTENDED SUPERSYMMETRY WITH

CENTRAL CHARGES

Although we have succeeded in explaining the degen-
eracy between the mode functions f

ðnÞ
α ðyÞ and g

ðnÞ
α ðyÞ from

anN ¼ 2 supersymmetry point of view, we will see further
degeneracy labeled by α in the 4D mass spectrum. We then
expect that some structures will be hidden furthermore in
the 4D mass spectrum. Actually, in the previous paper [47],

we have revealed that an N ¼ 2bd=2c þ 2 extended QM

SUSY is hidden in the 4D mass spectrum.
In this section, we first point out that there exist two

sets of the supercharges, each of which forms the N ¼
2bd=2c þ 2 extended QM SUSY algebra without central
extension. We then show that the whole set of the super-

charges satisfies the N ¼ 4bd=2c þ 4 QM SUSY algebra

with central charges. In the next subsection, we clarify the
representation of the algebra.

A. N = 2bd=2c+ 2 supersymmetry for algebraic

and geometric extensions

In this subsection, we explicitly construct two sets of
supercharges, where one is called algebraic and the other is
geometric, respectively. We then show that each set of
them satisfies theN ¼ 2bd=2c þ 2 supersymmetry algebra
without central charges.

6
It is noted that the definition of A (and A†) is different from

that in [47] as

−Γ0ðiΓyk∂yk
−M12bd=2cþ2Þ≡

�

0 A

A† 0

�

⊗ 12:

7
If one definesQ1 ¼ Q andQ2 ¼ ið−1ÞFQ, then they form the

N ¼ 2 SUSY algebra fQj; Qkg ¼ 2Hδjk for j, k ¼ 1, 2.
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(i) Algebraic supercharges

TheN ¼ 2bd=2c þ 2 supercharges based on the algebraic property of the gamma matrices are defined as follows:

Qk ¼

�

0 −iγdþ1γykA

iA†γdþ1γyk 0

�

; Qdþ1 ¼ Q; Qdþ2 ¼

�

0 −iγdþ1A

iA†γdþ1 0

�

;

ðk ¼ 1; 2;…; dÞ; ð10Þ

for d ¼ even, and

Qk ¼

�

0 γydγykA

−A†γydγyk 0

�

; Qd ¼ Q; Qdþ1 ¼

�

0 γydA

−A†γyd 0

�

;

ðk ¼ 1; 2;…; d − 1Þ; ð11Þ

for d ¼ odd. It should be noticed that γdþ1 ≡ id=2γy1 � � � γyd can be introduced only for d ¼ even and corresponds to

the internal chiral matrix which satisfies fγdþ1; γykg ¼ 0; ðγdþ1Þ2 ¼ 12bd=2c and ðγ
dþ1Þ† ¼ γdþ1. On the other hand, in

the odd d dimensions, one of γyk (k ¼ 1; 2;…; d) should be represented by the product of all the other gamma

matrices. For the following sections, we use the representation of γyd ¼ −iðdþ1Þ=2γy1 � � � γyd−1 for d ¼ odd with

ðγydÞ2 ¼ −12bd=2c and ðγydÞ† ¼ −γyd .

The above supercharges are found to satisfy the N ¼ 2bd=2c þ 2 supersymmetry algebra without central

extension, i.e.,

fQi; Qjg ¼ 2Hδij; ½H;Qi� ¼ 0 ði; j ¼ 1; 2;…; 2bd=2c þ 2Þ: ð12Þ

(ii) Geometric supercharges

Another set of the N ¼ 2bd=2c þ 2 supercharges can be constructed, by use of the internal gamma matrices

together with the reflection operators of the internal space Ω, as follows:

Q̃k ¼

�

0 −iγdþ1γykRkA

iA†γdþ1γykRk 0

�

; Q̃dþ1 ¼

�

0 PA

A†P 0

�

; Q̃dþ2 ¼

�

0 −iγdþ1PA

iA†γdþ1P 0

�

;

ðk ¼ 1; 2;…; dÞ; ð13Þ

for d ¼ even, and

Q̃k ¼

�

0 γydγykRdRkA

−A†γydγykRdRk 0

�

; Q̃d ¼

�

0 PA

A†P 0

�

; Q̃dþ1 ¼

�

0 γydRdPA

−A†γydRdP 0

�

;

ðk ¼ 1; 2;…; d − 1Þ; ð14Þ

for d ¼ odd. The Rk (k ¼ 1; 2;…; d) represents the reflection operator for the yk direction,
8
and P ¼

Q

d
k¼1 Rk

denotes the point reflection (or parity) operator of the internal space. The above supercharges also realize the

N ¼ 2bd=2c þ 2 supersymmetry algebra without central extension

fQ̃i; Q̃jg ¼ 2Hδij; ½H; Q̃i� ¼ 0 ði; j ¼ 1; 2;…; 2bd=2c þ 2Þ: ð15Þ

It should be noted that the supercharges Q̃i are the same as those obtained in the previous paper [47], except for Q̃dþ1

for d ¼ even and Q̃d for d ¼ odd.

8
The reflection operator Rk (k ¼ 1; 2;…; d) is defined by ðRkfÞðy1;…; yk;…; ydÞ≡ fðy1;…;−yk;…; ydÞ for any function

fðy1;…; ydÞ. The Rk and ∂l satisfy Rk∂l ¼ ð1 − 2δklÞ∂lRk.
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B. N = 4bd=2c+ 4 supersymmetry

with central charges

In the previous subsection, we have seen that both of the

supercharges Qi and Q̃i (i ¼ 1; 2;…; 2bd=2c þ 2) satisfy

the same N ¼ 2bd=2c þ 2 QM SUSY algebra without the

central extension. Here, we show that the supercharges Qi

together with Q̃i (i ¼ 1; 2;…; 2bd=2c þ 2) can extend the

algebra to the N ¼ 4bd=2c þ 4 QM SUSY algebra with

central charges ðZiÞ such that

fQi; Qjg ¼ fQ̃i; Q̃jg ¼ 2Hδij;

fQi; Q̃jg ¼ 2Ziδij;

½Zi; Qj� ¼ ½Zi; Q̃j� ¼ ½Zi; Zj� ¼ ½Zi; H� ¼ ½H;Qi�

¼ ½H; Q̃i� ¼ 0;

ði; j ¼ 1; 2;…; 2bd=2c þ 2Þ; ð16Þ

where Zi (i ¼ 1; 2;…; 2bd=2c þ 2) are given by

Zk ¼ QkQ̃k ¼

�

AA†Rk 0

0 A†RkA

�

ðk ¼ 1; 2;…; dÞ;

Zdþ1 ¼ Qdþ1Q̃dþ1 ¼

�

AA†P 0

0 A†PA

�

;

Zdþ2 ¼ Qdþ2Q̃dþ2 ¼

�

AA†P 0

0 A†PA

�

; ð17Þ

for d ¼ even, and

Zk ¼ QkQ̃k ¼

�

AA†RdRk 0

0 A†RdRkA

�

ðk ¼ 1; 2;…; d − 1Þ;

Zd ¼ QdQ̃d ¼

�

AA†P 0

0 A†PA

�

;

Zdþ1 ¼ Qdþ1Q̃dþ1 ¼

�

AA†RdP 0

0 A†RdPA

�

; ð18Þ

for d ¼ odd.
9
Since Zi (i ¼ 1; 2;…; 2bd=2c þ 2) commute

with all the operators, we can regard Zi as central charges

in this algebra. As we can see the form of the central

charges, they may be interpreted as the reflection operators

(accompanied with the Hamiltonian) compatible with the

QM SUSY.

In the next section, we discuss the representation of the

supersymmetry algebra. For this purpose, it is convenient to

adopt the basis of supercharges as

Q�
i ¼

1

2
ðQi � Q̃iÞ ði ¼ 1; 2;…; 2bd=2c þ 2Þ: ð19Þ

The explicit forms of the supercharges Q�
i are given as

Q�
k ¼

�

0 −iγdþ1γykΠ�
k A

iA†γdþ1γykΠ�
k 0

�

; Q�
dþ1 ¼

�

0 Π
�
dþ1A

A†
Π

�
dþ1 0

�

; Q�
dþ2 ¼

�

0 −iγdþ1
Π

�
dþ1A

iA†γdþ1
Π

�
dþ1 0

�

;

ðk ¼ 1;2;…; dÞ; ð20Þ

for d ¼ even, and

Q�
k ¼

�

0 γydγykΠ�
dkA

−A†γydγykΠ�
dk 0

�

; Q�
d ¼

�

0 Π
�
dþ1A

A†
Π

�
dþ1 0

�

; Q�
dþ1 ¼

� 0 γydΠ�
dðdþ1ÞA

−A†γydΠ�
dðdþ1Þ 0

�

;

ðk ¼ 1; 2;…; d − 1Þ; ð21Þ

for d ¼ odd, where Π�
k ¼ ð1� RkÞ=2;Π

�
dþ1 ¼ ð1� PÞ=2;

Π
�
dk ¼ ð1� RdRkÞ=2, andΠ

�
dðdþ1Þ ¼ ð1� RdPÞ=2 play the

role of the projection operators. Then, these supercharges

are found to satisfy the algebra

fQ�
i ; Q

�
j g ¼ ðH � ZiÞδij; ð22Þ

fQ�
i ; Q

∓
j g ¼ 0; ði; j ¼ 1; 2;…; 2bd=2c þ 2Þ: ð23Þ

In the next section, we use this basis of the supercharges.
It should be pointed out that all of the supercharges Qi

and Q̃i (or Q�
i ) (i ¼ 1; 2;…; 2bd=2c þ 2) would not be

necessarily well defined in the system. In order for them to

be well defined, the supercharges Qi and Q̃i have to be
compatible with boundary conditions (if the internal space

Ω has boundaries), that is, for any state ΦðyÞ, QiΦðyÞ and
Q̃iΦðyÞ should obey the same boundary condition as that

on ΦðyÞ, otherwise the action of Qi and Q̃i on ΦðyÞ is ill
defined. Furthermore, in order for Q̃i to be well defined, the
reflection operators Rk (k ¼ 1; 2;…; d) should properly act
on the internal space Ω. In this paper, we restrict our

9
The supercharges especially satisfy QiQ̃i ¼ Q̃iQiði ¼ 1;

2;…; 2bd=2c þ 2Þ.
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considerations to the cases that all the supercharges Qi and

Q̃i (or Q
�
i ) (i ¼ 1; 2;…; 2bd=2c þ 2) are well defined with

the N ¼ 4bd=2c þ 4 QM SUSY algebra.

IV. REPRESENTATION OF N -EXTENDED

SUPERSYMMETRY WITH

CENTRAL CHARGES

In this section, we clarify the representation of the

supersymmetry algebra derived in the previous section

for the nonzero energy states.

Since the Hamiltonian H and the central charges Zi

(i ¼ 1; 2;…; 2bd=2c þ 2) commute with each other,

we can introduce the simultaneous eigenstates of H
and Zi. Furthermore, since the central charges satisfy the

relations

ðZiÞ
2 ¼ H2 ði ¼ 1; 2;…; 2bd=2c þ 2Þ; ð24Þ

with

Hd−1Zdþ1 ¼ Hd−1Zdþ2 ¼ Z1Z2 � � �Zd; for d ¼ even;

ð25Þ

Hd−2Zdþ1 ¼ Z1Z2 � � �Zd−1; for d ¼ odd; ð26Þ

the eigenvalues of H and Zi for the nonzero energy states

with m2
n ≠ 0 can be parametrized as follows:

HΦ
ðnÞ
α;z⃗
ðyÞ ¼ m2

nΦ
ðnÞ
α;z⃗
ðyÞ; ð27Þ

ZiΦ
ðnÞ
α;z⃗
ðyÞ ¼ zim

2
nΦ

ðnÞ
α;z⃗
ðyÞ; ði ¼ 1; 2;…; 2bd=2c þ 2Þ;

ð28Þ

with
10

zi ¼ �1 ði ¼ 1; 2;…; 2bd=2c þ 2Þ; ð29Þ

zdþ1 ¼ zdþ2 ¼ z1z2 � � � zd for d ¼ even; ð30Þ

zdþ1 ¼ z1z2 � � � zd−1 for d ¼ odd; ð31Þ

where z⃗ ¼ ðz1; z2;…; zdÞ and the index α labels the

degeneracy for fixed mn with z⃗.
11

It may be worthwhile explaining the physical meanings

of the discrete eigenvalues zi ¼ �1. It follows from

expressions (17) and (18) that the central charges Zi

essentially correspond to the reflection operators (accom-

panied with the Hamiltonian), so that zi may be interpreted

as the labels for “parity” even or odd of the eigenfunctions.

It should be, however, emphasized that the reflection

operators Rk (k ¼ 1; 2;…; d) and P themselves do not

commute with the supercharges Q�
i and hence they are not

compatible with the supersymmetry. On the other hand, Zi

commutes with all the supercharges, so that Zi=H (for the

nonzero energy states) can be regarded as a “reflection”

operator compatible with the supersymmetry.

In order to construct the representation, i.e., the super-

multiplet of the supersymmetry algebra (22), (23), we first

note that Q
−zi
i (i ¼ 1; 2;…; 2bd=2c þ 2) acts trivially on

Φ
ðnÞ
α;z⃗
ðyÞ with z⃗ ¼ ðz1; z2;…; zdÞ, i.e.,

Q
−zi
i Φ

ðnÞ
α;z⃗
ðyÞ ¼ 0 ði ¼ 1; 2;…; 2bd=2c þ 2Þ: ð32Þ

This is because relation (22) implies ðQ−zi
i Þ2Φ

ðnÞ
α;z⃗
ðyÞ ¼ 0,

which leads to (32) due to the Hermitian property of the

supercharges. Thus, the supercharges that act on the states

Φ
ðnÞ
α;z⃗
ðyÞ nontrivially are given by the set of fQzi

i ði ¼

1; 2;…; 2bd=2c þ 2Þg and the number of the supercharges

turns out to reduce effectively to half.
12

The supermultiplet associated with the state Φ
ðnÞ
α;z⃗
ðyÞ can

be constructed in the following way. In terms of the

nontrivial supercharges Q
zi
i , it will be useful to introduce

the operators

S
z2p−1z2p
p ¼ −iQ

z2p−1
2p−1Q

z2p
2p ðp ¼ 1; 2;…; bd=2c þ 1Þ:

ð33Þ

They are explicitly given by

S
z2p−1z2p
p ¼

�

AA†γðpÞΠ
z2p−1
2p−1Π

z2p
2p 0

0 A†γðpÞΠ
z2p−1
2p−1Π

z2p
2pA

�

;

ðp ¼ 1; 2;…; d=2Þ;

S
zdþ1zdþ2

ðdþ2Þ=2 ¼

�

AA†γdþ1
Π

zdþ1

dþ1Π
zdþ2

dþ1 0

0 −A†γdþ1
Π

zdþ1

dþ1Π
zdþ2

dþ1A

�

;

ð34Þ

for d ¼ even and

10
It should be noted that the eigenvalues zi ¼ �1 can be

defined without ambiguity for the nonzero energy states with
m2

n ≠ 0, and also that all of the eigenvalues zi (i ¼ 1; 2;…;
2bd=2c þ 2) are not independent but only zk (k ¼ 1; 2;…; d) are
independent.

11
The label α given in Eq. (4) corresponds to fα; z⃗g defined in

this section.

12
Note that the set of the nontrivial supercharges fQzi

i ði ¼ 1;
2;…; 2bd=2c þ 2Þg depends on the eigenvalues z⃗¼ðz1;z2;…;zdÞ

of the state Φ
ðnÞ
α;z⃗
ðyÞ.
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S
z2p−1z2p
p ¼

�AA†γðpÞΠ
z2p−1
dð2p−1ÞΠ

z2p
dð2pÞ 0

0 A†γðpÞΠ
z2p−1
dð2p−1ÞΠ

z2p
dð2pÞA

�

; ðp ¼ 1; 2;…; ðd − 1Þ=2Þ;

S
zdzdþ1

ðdþ1Þ=2 ¼

� iAA†γydΠ
zd
dþ1

Π
zdþ1

dðdþ1Þ 0

0 −iA†γydΠ
zd
dþ1Π

zdþ1

dðdþ1ÞA

�

; ð35Þ

for d ¼ odd, where we introduce the pth internal chirality

γðpÞ¼ iγy2p−1γy2p .
13
Since S

z2p−1z2p
p (p ¼ 1; 2;…; bd=2c þ 1)

commute with each other as well as H and Zi (i ¼ 1;

2;…; 2bd=2c þ 2), eigenstates of S
z2p−1z2p
p can become

simultaneous eigenstates of H and Zi. Furthermore, since

S
z2p−1z2p
p satisfy the relations ðS

z2p−1z2p
p Þ2 ¼ H2, we can

parametrize the eigenvalues of S
z2p−1z2p
p as

S
z2p−1z2p
p Φ

ðnÞ
s1���sp���sbd=2cþ1;z⃗

ðyÞ ¼ spm
2
nΦ

ðnÞ
s1���sp���sbd=2cþ1;z⃗

ðyÞ

ðp ¼ 1;…; bd=2c þ 1Þ; ð36Þ

with sp ¼ �1 for the nonzero energy states.
14

Here, we

have replaced the index α by s1s2 � � � sbd=2cþ1, which denote

the eigenvalues of S
z2p−1z2p
p (p ¼ 1; 2;…; bd=2c þ 1).

From the relations

Q
zi
i S

z2p−1z2p
p ¼

�

−S
z2p−1z2p
p Q

zi
i for i ¼ 2p − 1; 2p;

þS
z2p−1z2p
p Q

zi
i for i ≠ 2p − 1; 2p;

ð37Þ

½Qzi
i ; H� ¼ ½Qzi

i ; Zj� ¼ 0; ði; j ¼ 1; 2;…; 2bd=2c þ 2Þ;

ð38Þ

we find that the supercharges Q
z2p−1
2p−1 (or Q

z2p
2p ) (p ¼ 1;

2;…; bd=2c þ 1)
15

flip the sign of the eigenvalues of

S
z2p−1z2p
p but do not change other eigenvalues. This fact

implies that the set of fΦ
ðnÞ
s1���sp���sbd=2cþ1;z⃗

ðyÞ with sp ¼

�1ðp ¼ 1; 2;…; bd=2c þ 1Þg is 2bd=2cþ1-fold degenerate

and forms a supermultiplet of the N ¼ 4bd=2c þ 4

extended QM SUSY algebra with the central charges.

Actually, we can explicitly construct the supermultiplet

from Φ
ðnÞ
þþ���þ;z⃗

ðyÞ as

Φ
ðnÞ
s1s2���sbd=2cþ1;z⃗

ðyÞ ¼
1

ðmnÞ
s
ðQz1

1 Þ
ð1−s1Þ=2ðQz3

3 Þ
ð1−s2Þ=2 � � �

× ðQ
z2bd=2cþ1

2bd=2cþ1
Þð1−sbd=2cþ1Þ=2Φ

ðnÞ
þþ���þ;z⃗

ðyÞ;

ð39Þ

where s ¼ 1
2
ð1 − s1Þ þ � � � þ 1

2
ð1 − s2bd=2cþ1Þ.

As we have seen so far, the number of the nontrivial

supercharges reduces to half, and the 2bd=2cþ1-fold degen-

erate states for fixed mn and z⃗ are related by the reduced

2bd=2c þ 2 supercharges. This situation is known as a

short representation in the context of extended supersym-

metry with central charges, and the eigenstates (39) are

called the 1=2-BPS states [43,44].

V. EXAMPLES

In this section, we examine the models with the hyper-

rectangle and the torus extra dimensions, which realize the

N ¼ 4bd=2c þ 4 extended QM SUSY, and confirm the

results given in the previous section.

A. Hyperrectangle

Let us consider the example of the action (1) whose extra

dimensional space Ω is given by the d-dimensional hyper-

rectangle,

Ω ¼

�

−
L1

2
;
L1

2

�

× � � � ×

�

−
Ld

2
;
Ld

2

�

; ð40Þ

where Lk (k ¼ 1; 2;…; d) is the length of the kth side of the
hyperrectangle with the Dirichlet boundary condition

imposed on the left-handed KK mode functions,

f
ðnÞ
s1���sbd=2cðyÞ ¼ 0 at yk ¼ −

Lk

2
;

Lk

2
ðk ¼ 1;…; dÞ:

ð41Þ

This boundary condition satisfies the requirement (9), and

we can confirm that all the supercharges Q�
i are Hermitian

and well defined.

The nth KK mode functions f
ðnÞ
s1���sbd=2cðyÞ; g

ðnÞ
s1���sbd=2cðyÞ

with KK massm2
n > 0 are found to be written into the form

f
ðnÞ
s1���sbd=2cðyÞ ¼ hðnÞðyÞes1���sbd=2c ;

g
ðnÞ
s1���sbd=2cðyÞ ¼

1

mn

A†hðnÞðyÞes1���sbd=2c ; ð42Þ

13
The product of γðpÞðp ¼ 1; 2;…; bdc=2Þ equals the internal

chirality γdþ1 for d ¼ even and −iγyd for d ¼ odd.
14
For d ¼ even, spðp ¼ 1; 2;…; d=2Þ correspond to the

eigenvalues of the pth internal chirality γðpÞ, and furthermore,

sðdþ2Þ=2 corresponds to the eigenvalue of 4þ d-dimensional

chirality since S
zdþ1zdþ2

ðdþ2Þ=2 are naively given by the product of

ð−1ÞF and γdþ1. Thus, the eigenvalues spðp ¼ 1; 2;…; ðdþ
2Þ=2Þ are independent. The similar result is also obtained for
d ¼ odd.

15
Since we are considering the eigenstates of S

z2p−1z2p
p ¼

−iQ
z2p−1
2p−1Q

z2p
2p , the action of Q

z2p
2p on Φ

ðnÞ
s1���sp���sbd=2cþ1;z⃗

ðyÞ is essen-

tially equivalent to that of Q
Z2p−1

2p−1 .
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where the second relation comes from the first equation

in (7). The scalar function hðnÞðyÞ and the mass eigenvalue

mn are given by

hðnÞðyÞ ¼
Y

d

k¼1

ffiffiffiffiffi

2

Lk

s

sin

�

nkπ

Lk

�

yk þ
Lk

2

��

; ð43Þ

m2
n ¼ M2 þ

X

d

k¼1

�

nkπ

Lk

�

2

; ðnk ¼ 1; 2;…; k ¼ 1;…; dÞ:

ð44Þ

The es1���sbd=2c indicate the basis vectors of the spinor

space, and are chosen as eigenvectors of γðpÞ ¼

iγy2p−1γy2p [51,52]:

γðpÞes1���sp���sbd=2c ¼ spes1���sp���sbd=2c ; ð45Þ

for all p ¼ 1; 2;…; bd=2c, where sp ¼ �1 represents an

eigenvalue of the pth internal chirality of γðpÞ. To fix the

normalization factors of es1���sbd=2c , we define the es1���sbd=2c
from eþ���þ as [cf. Eqs. (20), (21), and (39)]

es1s2���sbd=2c ¼

�

ðiγdþ1γy1Þð1−s1Þ=2ðiγdþ1γy3Þð1−s2Þ=2 � � � ðiγdþ1γyd−1Þð1−sd=2Þ=2eþþ���þ ðd ¼ evenÞ;

ð−γydγy1Þð1−s1Þ=2ð−γydγy3Þð1−s2Þ=2 � � � ð−γydγyd−2Þð1−sðd−1Þ=2Þ=2eþþ���þ ðd ¼ oddÞ:
ð46Þ

Then, we can construct the eigenfunctions of the model as follows:

Φ
ðnÞ
s1���sbd=2csbd=2cþ1;z⃗

ðyÞ ¼

8

>

>

>

<

>

>

>

:

�

f
ðnÞ
s1 ���sbd=2c

ðyÞ

0

�

for sbd=2cþ1 ¼ s1s2 � � � sbd=2c;

�

0

g
ðnÞ
s1 ���sbd=2c

ðyÞ

�

for sbd=2cþ1 ¼ −s1s2 � � � sbd=2c;

ð47Þ

where z⃗ ¼ ðz1; z2;…; zdÞ is given by

z⃗ ¼

�

ðð−Þn1þ1;…; ð−Þndþ1Þ ðd ¼ evenÞ;

ðð−Þn1þnd ;…; ð−Þnd−1þnd ; ð−Þndþ1Þ ðd ¼ oddÞ:
ð48Þ

Then, we can show that the eigenfunctions (47) satisfy

the same relations as (39) and form the supermultiplet of

the N ¼ 4bd=2c þ 4 extended QM SUSY, as the 1=2-BPS
states. Since the eigenvalues of Zi are unique at each KK

level as shown in (48), the degeneracy of the 4D spectrum

at each KK level is 2bd=2cþ1 and the eigenfunctions (47) are

mutually related by the supercharges Q
zi
i (i ¼ 1; 2;…;

2bd=2c þ 2) at each KK level. It is interesting to point

out that the KK mode functions g
ðnÞ
s1���sbd=2cðyÞ are not

eigenfunctions of the reflection operators Rkðk ¼ 1;

2;…; dÞ and P, although f
ðnÞ
s1���sbd=2cðyÞ are eigenfunctions

of them. On the other hand, Φ
ðnÞ
s1���sbd=2csbd=2cþ1;z⃗

ðyÞ are eigen-

functions of the central charges Ziði ¼ 1; 2;…;

2bd=2c þ 2Þ. Thus, Zi can be regarded as reflection

operators compatible with the supersymmetry, as noticed

in the previous section.

B. Torus

Next, we consider the model that the extra dimensional

space Ω is given by the d-dimensional torus,

Ω ¼

�

−
L1

2
;
L1

2

�

× � � � ×

�

−
Ld

2
;
Ld

2

�

ð49Þ

with the periodic boundary condition for KK mode

functions,

f
ðnÞ
s1���sbd=2c;z⃗

0ðy1;…; yk þ Lk;…ydÞ ¼ f
ðnÞ
s1���sbd=2c;z⃗

0ðy1;…; yk;…; ydÞ;

g
ðnÞ
s1���sbd=2c;z⃗

0ðy1;…; yk þ Lk;…ydÞ ¼ g
ðnÞ
s1���sbd=2c;z⃗

0ðy1;…; yk;…; ydÞ; ðk ¼ 1;…; dÞ: ð50Þ

The above periodic boundary condition satisfies the requirement (9), and all the supercharges are shown to be Hermitian

and well defined.
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Then, the nth KK mode functions f
ðnÞ
s1���sbd=2c;z⃗

0ðyÞ; g
ðnÞ
s1���sbd=2c;z⃗

0ðyÞ with KK mass mn are found to be of the form

f
ðnÞ
s1���sbd=2c;z⃗

0ðyÞ ¼ h
ðnÞ
z⃗0
ðyÞes1���sbd=2c ; g

ðnÞ
s1���sbd=2c;z⃗

0ðyÞ ¼
1

mn

A†h
ðnÞ
z⃗0
ðyÞes1���sbd=2c ; ð51Þ

h
ðnÞ
z⃗0
ðyÞ ¼

Y

d

k¼1

h
ðnkÞ
z0
k

ðyÞ; h
ðnkÞ
z0
k

ðyÞ ¼

8

>

>

<

>

>

:

ffiffiffiffi

2
Lk

q

cos
	

2nkπ
Lk

yk




ðz0k ¼ þ1Þ;

ffiffiffiffi

2
Lk

q

sin
	

2nkπ
Lk

yk




ðz0k ¼ −1Þ;
ð52Þ

m2
n ¼ M2 þ

X

d

k¼1

�

2nkπ

Lk

�

2

; ðnk ¼ 0; 1; 2;…; k ¼ 1;…; dÞ; ð53Þ

where z0k ¼ �1 and z⃗0 ¼ ðz01;…; z0dÞ.
Then, we can construct the eigenfunctions of the model as

Φ
ðnÞ
s1���sbd=2csbd=2cþ1;z⃗

ðyÞ ¼

8

>

>

>

>

>

<

>

>

>

>

>

:

 

f
ðnÞ
s1���sbd=2c;z⃗

0ðyÞ

0

!

for sbd=2cþ1 ¼ s1s2 � � � sbd=2c;

 

0

g
ðnÞ
s1���sbd=2c;z⃗

0ðyÞ

!

for sbd=2cþ1 ¼ −s1s2 � � � sbd=2c;

ð54Þ

where z⃗ is given by

z⃗ ¼

�

ðz01;…; z0dÞ ðd ¼ evenÞ;

ðz0dz
0
1;…; z0dz

0
d−1; z

0
dÞ ðd ¼ oddÞ:

ð55Þ

Then, we can show that the eigenfunctions (54) satisfy

the same relation as (39) and form the supermultiplet of

the N ¼ 4bd=2c þ 4 extended QM SUSY, as the 1=2-BPS
states. However, unlike the hyperrectangle case, both of

the eigenstates with zk ¼ þ1 and −1 for nk ≠ 0 (k ¼ 1;
2;…; d) are degenerate in the 4D mass spectrum. This

implies that the additional degeneracy 2d−N0 appears in

the 4D spectrum, where N0 is the number of zeros in

fn1; n2;…; ndg.
16
The origin of the degeneracy comes from

the extra degrees of freedom with respect to the parity even

or odd for each reflection: yk → −yk in h
ðnÞ
z⃗0
ðyÞ. Therefore,

the 4D mass spectrum is ð22bd=2cþ1 × 2d−N0Þ-fold degen-

erate for the KK modes labeled by fn1; n2;…; ndg.

VI. SUMMARY AND DISCUSSION

In this paper, we have revealed that the N -extended QM

SUSY with the central charges is hidden in the 4D mass

spectrum of the higher dimensional Dirac action. The

supercharges are obtained as the extension of the N ¼ 2

QM SUSY based on the algebraic properties of the internal

gamma matrices and the reflection symmetries of the extra

dimensions. The central charges are interpreted as the

supersymmetric extension of the reflection operators.

We have also examined the representation of the

extended supersymmetry algebra and found that the super-

multiplet corresponds to the short multiplet of the 1=2-BPS
states. Furthermore, we have explicitly confirmed that

the KK mode functions in the models of the hyperrectangle

and the torus extra dimensions can be properly classified by

the representations of the N ¼ 4bd=2c þ 4 extended QM

SUSY algebra with the central charges.

In this paper, we have restricted to the cases that all the

4bd=2c þ 4 supercharges are well defined. Other boundary

conditions, other extra dimensions and nontrivial back-

ground fields would break (or partially break) the extended

supersymmetry. For example, if there are no reflection

symmetries in extra dimensions, the geometric supercharges

(13) and (14) [and also the supercharges (19)] become ill

defined, although the algebraic supercharges can be well

defined in this case with suitable boundary conditions.

Therefore, it would be of great importance to clarify how

the extended supersymmetry found in this paper is broken by

the choice of boundary conditions, extra dimensional spaces,

and background fields.

It is interesting to note that there are possibilities that

further structures might be hidden in the 4D mass spectrum

in general settings. The central charges in our models result

from the symmetries of the extra dimensions. Thus, we can

expect that new types of central charges will appear inmodels

with other symmetries. Furthermore, since it is known that

central charges are closely related to topological properties

[43,53,54], it is also interesting to investigatemodelsof curved

16
Note that when nk ¼ 0, h

ðnkÞ
z0
k

ðyÞ for z0k ¼ −1 is trivial, i.e.,

h
ð0Þ
z0
k

ðyÞ ¼ 0. Thus, there is no degeneracy in h
ðnkÞ
z0
k

ðyÞ for nk ¼ 0.
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extra dimensions or background fields with nontrivial topol-

ogies, e.g., sphere, soliton, magnetic flux, etc.

In addition, since we have obtained the new extended

supersymmetry with the central charges, it would be

worthwhile to search for new types of exactly solvable

models by use of this supersymmetry. The issues men-

tioned above remain to be done in future works.
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