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ABSTRACT

Let 0 → a −→ e −→ g → 0 be an abelian extension of the Lie superalgebra g. In
this article we consider the problems of extending endomorphisms of a and lifting
endomorphisms of g to certain endomorphisms of e. We connect these problems to the
cohomology of g with coefficients in a through construction of two exact sequences,
which is our main result, involving various endomorphism groups and the second
cohomology. The first exact sequence is obtained using the Hochschild-Serre spectral
sequence corresponding to the above extension while to prove the second we rather
take a direct approach. As an application of our results we obtain a description of
certain automorphism groups of semidirect product Lie superalgebras.
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1. Introduction

Let

0 → a
i
−→ e

p
−→ g → 0 (1)

be an abelian extension of a Lie superalgebra g by a, so a is abelian. Corresponding
to this extension, some problems of extension and lifting of automorphisms have been
considered by the authors in [1]. In particular, under what conditions can an automor-
phism of a be extended to certain automorphism of e or when can an automorphism of
g be lifted to certain automorphism of e? The work in this direction resulted in finding
the following two exact sequences[1, Theorem 4.6] from which one would obtain some
necessary and sufficient conditions for the above problems:

1 → Auta,g(e)
ι
−→ Autga(e)

τ1−→ C1
λ1−→ H2(g, a)0 (2)
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1 → Auta,g(e)
ι
−→ Auta(e)

τ2−→ C2
λ2−→ H2(g, a)0 (3)

There, a more general problem was also considered. Namely, under what conditions can
a pair of automorphisms (φ,ψ) ∈ Aut(a) × Aut(g) be inducible? To this end another
exact sequence[1, Theorem 5.2], which resembles the Wells exact sequence for groups
established in [2], was obtained from which some necessary and sufficient conditions
could be given for the inducibility of the pair (φ,ψ). For details on these problems and
the notation used above we refer to [1]. This study was motivated by similar problems
in group theory considered in [3] and some references therein. For a historical view
of the Wells exact sequence for groups and various related problems we refer to the
article [4]. Some authors have also considered the Wells sequence in context of several
other algebraic structures, like for Lie rings in [5] and [6], for Lie algebras in [7], for
3-Lie algebras in [8] and for Lie coalgebras in [9]. In the last of these articles the
extension problem for coderivations is also considered and a Wells-like exact sequence
for coderivations is obtained along with that for Lie coalgebra automorphisms. The
extension problems of derivations for the Lie algebras is considered in [10].

A natural question that comes to mind at this point is whether we can extend the
above results to the level of endomorphisms instead of just restricting to the case of
automorphisms, in the present article we consider this line of investigation. In group
theory, analogous problems were considered in [11] and it was claimed that there
findings generalize the similar exact sequences for automorphism groups established
in [3, Theorem 1]. But the article [11] lacks any description of certain maps involved,
namely the map η in [11, Corollary 2] and η̄ in [11, Corollary 4], which is necessary
to validate their claim. Also, the proofs in that article uses a well-known bijection
between the sets of endomorphisms and derivations of a group[11, Lemma 8]. However
we do not know of any such bijection for Lie superalgebras in general, we rather prove
the required bijections separately. In this article we prove for Lie superalgebras the
following two exact sequences similar to (2) and (3) and provide the explicit description
of the maps involved. Our description of the maps would shed some light on the above
said maps of [11]. For the notation used here we refer to Section 2:

1 → Enda,g(e)
i
−→ Endga(e)

r̃es
−−→ Endg(a)

d
−→ H2(g, a)0 (4)

1 → Enda,g(e)
i
−→ Enda(e)

σ
−→ Enda(g)

χ
−→ H2(g, a)0 (5)

Here one could just take the corresponding endomorphism groups, consider appropriate
maps between them and check for exactness one by one at each stage as was done earlier
in [1] for Lie superalgebras and in [3] for groups. But here what is really worth noticing
is that we obtain (4) as a consequence of the 5-term exact sequence corresponding to
the well-known Hochschild-Serre spectral sequence for the Lie superalgebra extension
(1), thus making (4) very special.

Another interesting question one would ask here is whether the above exact se-
quence (4) is a true generalization of (2) in the sense that (2) can be deduced from
(4) in a suitable way. This is not so obvious, as the maps in (4) are the group ho-
momorphisms of the abelian additive structure, they can not be just restricted to the
set of automorphisms to produce group homomorphisms between the corresponding
automorphism groups where the group operation is composition of maps. To overcome
this we use the notion of quasiregular elements of rings and deduce (2) from (4) where
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the ring structures of Enda,g(e) and Endg(a) are the usual ones but that of Endga(e),
which is very different from the usual one, comes from the ring structure of Z1(e, a)0
via a bijection Z1(e, a)0 ≃ End

g
a(e). Thus the exact sequence (2) will turn out to be

a consequence of the Hochschild-Serre spectral sequence, this interesting fact was not
known earlier. To prove (5) we rather take a direct approach and using the monoidal
structures of the involved groups we obtain (3) as a corollary. At the end we give a
description of certain automorphism groups of semidirect product of Lie superalgebras.

The article is organized as follows. In Section 2 we present various definitions and set
up some notation which are needed throughout the article. Some basic notions whose
definitions are not given here are defined in [1]. Here we also prove an important lemma
which will be the main ingredient for the proof of Theorem 3.1. Theorem 3.1 is our
first main theorem, this is stated and proved in Section 3 establishing the first exact
sequence (4). Then we provide some corollaries of the theorem of which Corollary 3.6
is particularly important. This corollary is proved using the notion of quasiregular
elements which is also introduced here. The another exact sequence (5) is proved in
Theorem 4.1, along with various corollaries of it, in Section 4. The last section which is
Section 5 mainly deals with an application of our results to the semidirect product Lie
superalgebras. Here we prove a couple of group isomorphisms which describe certain
automorphism groups of semidirect products. The section ends with two examples.
To avoid unnecessary complications we shall assume the underlying field F to be of
characteristic 0.

2. Preliminaries

We refer to [1, Section 2] for definitions of Lie superalgebras, modules over Lie super-
algebras and related notions. A linear map φ : g(= g0 ⊕ g1) → h(= h0 ⊕ h1) is said
to be homogeneous of degree 0 if φ(gi) ⊆ hi for i ∈ {0, 1}. We also call such a map
an even map in short. Then φ is called a Lie superalgebra homomorphism if φ is even
and φ([x, y]) = [φ(x), φ(y)] for all x, y ∈ g. As usual, for a Lie superalgebra e we define
End(e) to be the set of all Lie superalgebra homomorphisms from e to itself. Also for
an ideal a ⊆ e define

Enda(e) := {φ ∈ End(e) : φ(a) ⊆ a} .

Now consider the extension (1) and let φ ∈ Enda(e). Then φ induces two maps φ|a ∈
End(a), the restriction of φ to a and φ̃ ∈ End(g) defined by φ̃(x) := pφs(x) where
s is any section of the map p i.e. s : g → e is linear satisfying ps = 1. We shall fix
such a section s throughout the article and without loss of generality we shall take
our section to be an even map. Now it can be checked that φ̃ is well-defined, that is
it does not depend on the choice of the section. Clearly the maps φ|a and φ̃ can be
characterized by the following commutative diagram:

0 a e g 0

0 a e g 0

i

φ|a

p

φ φ̃

i p
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Define

Enda,g(e) :=
{
φ ∈ Enda(e) : φ|a = id and φ̃ = id

}

then 5-lemma implies Enda,g(e) = Auta,g(e). Also define

Endga(e) :=
{
φ ∈ Enda(e) : φ̃ = id

}

and

Enda(e) := {φ ∈ Enda(e) : φ|a = id}

Now for an abelian extension (1) there is an induced well-defined action of g on
a given by g · a := [s(g), a] where s is a section of p, g ∈ g and a ∈ a. Therefore
we can talk about the cohomology groups Hn(g, a). See [1, Section 2.1] for details on
constructions, descriptions and gradings of low dimensional cohomologies. We also set

Enda(g) := {ψ ∈ End(g) : ψ(g) · a = g · a∀g ∈ g, a ∈ a}

which is the set of all endomorphisms of g which does not alter the action of g on a.
Let us again consider the extension (1) and let M be an e-module. Then it is well-

known that there is a corresponding Hochschild-Serre spectral sequence whose (p, q)-
term on the 2nd-page is given by Ep,q2 = Hp(g,Hq(a,M)) converging to Hp+q(e,M),
see [12, Section 16.6.]. In our case the module is a with the adjoint action of e on
it. Clearly with this action a is a-invariant, i.e, aa = a. Here for a g-module M , Mg

denotes the set of invariants of the action defined byMg := {m ∈M |g ·m = 0∀g ∈ g}.
Then the 5-term exact sequence corresponding to the above spectral sequence becomes

0 → H1(g, a)
inf
−−→ H1(e, a)

res
−−→ H1(a, a)

g d
−→ H2(g, a)

inf
−−→ H2(e, a) (6)

where inf and res are the inflation and restriction maps respectively and d is induced
by the spectral sequence. Since all the maps involved here respect the grading on
cohomology groups we immediately get

0 → H1(g, a)0
inf
−−→ H1(e, a)0

res
−−→ H1(a, a)

g

0
d
−→ H2(g, a)0

inf
−−→ H2(e, a)0 (7)

Now let g be a Lie superalgebra andM =M0⊕M1 be a module over g. An even linear
map f : g →M is said to be a derivation if

f([x, y]) = x · f(y)− (−1)|x||y|y · f(x) for all homogeneous x, y ∈ g (8)

where | · | denotes the homogeneous degree. These are also the even 1-cocycles whose
collection is denoted by Z1(g,M)0. If in particular f is given by f(x) = x ·m for some
m ∈ M0 we call f an inner derivation, clearly such an f is even. Let us denote of
the set all the derivations by Der(g,M) and the inner derivations by Inn(g,M), so

Der(g,M) = Z1(g,M)0 . Then it is well-known that H1(g,M)0 = Der(g,M)
Inn(g,M) .

Now we prove the following lemma which will be used in Section 3:
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Lemma 2.1.

0 → Z1(g, a)0
inf
−−→ Z1(e, a)0

res
−−→ Endg(a)

d
−→ H2(g, a)0

inf
−−→ H2(e, a)0 (9)

is an exact sequence of abelian groups where Endg(a) denotes the set of g-module
endomorphisms of a.

Proof. As a is abelian the adjoint action of a on a is trivial. So the only inner
derivation is the trivial map and any even linear map f : a → a satisfies (8).
Therefore H1(a, a)g0 = Z1(a, a)

g

0 = End(a)g. Now, as End(a)g = Endg(a) we have
H1(a, a)g0 = Endg(a). Also let φ ∈ Z1(e, a)0. Then clearly res(φ) = φ|a = 0 if and
only if φ can be quotiented out to a map in Z1(g, a)0. It only remains to show the
exactness at the third term. For that take two derivations φ,ψ ∈ Z1(e, a)0 which
are cohomologous in H1(e, a)0. Therefore φ − ψ = h where h ∈ Inn(e, a) is an inner
derivation. But then res(φ) = res(ψ) as res(h) = h|a = 0, a being abelian. This proves
res(H1(e, a)0) = res

(
Z1(e, a)0

)
. Consequently (9) is exact.

3. Construction of the first exact sequence

In this section we are going to prove our first main result establishing an exact sequence
which we have already seen in (4).

Theorem 3.1. The following is an exact sequence of (additive) abelian groups:

1 → Enda,g(e)
i
−→ Endga(e)

r̃es
−−→ Endg(a)

d
−→ H2(g, a)0. (10)

Moreover the first three terms have certain multiplicative structures with respect to
which they are rings and all the maps involved are ring homomorphisms except d
which is just a group map.

The usefulness of imposing the extra multiplicative structure will very soon be clear
to us. But before we proceed to that deeper fact, first we note that though the ring
structure of Endg(a) is the obvious one induced from the usual ring structures of
End(a), that of Endga(e)(and hence of Enda,g(e)) is going to be very different from the
usual one. We will introduce this structure now. We start with the following lemma:

Lemma 3.2. The following is a set bijection:

Z1(e, a)0 ≃ Endga(e). (11)

Proof. Considering the map Ψ : Z1(e, a)0 → End
g
a(e) defined by Ψ(h)(x) := h(x) +x

one can easily establish the required bijection.

Now with the obvious additive abelian group structure, Z1(e, a)0 becomes a ring
where the product of two elements is given by the composition of maps, here we
identify a with i(a). The ring axioms are very easy to check but what needs to be
proved is that the composition is again a derivation. This is proved in the following
lemma:

Lemma 3.3. For f, g ∈ Z1(e, a)0, f ◦ g ∈ Z1(e, a)0.
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Proof. Clearly f ◦ g is an even map. Now for homogeneous x, y ∈ e,

f ◦ g([x, y])

= f([x, g(y)] − (−1)|x||y|[y, g(x)])

= [x, f ◦ g(y)]− (−1)|x||y|[g(y), f(x)] − (−1)|x||y|([y, f ◦ g(x)] − (−1)|x||y|[g(x), f(y)])

= [x, f ◦ g(y)]− (−1)|x||y|[y, f ◦ g(x)] as a is abelian

This proves the lemma.

Next we push this ring structure of Z1(e, a)0 via the above bijection to get a ring
structure on Endga(e), the explicit descriptions of the operations are given below:

Let f, g ∈ End
g
a(e). Then applying the bijection (11) the addition, denoted by ⊞,

of these two elements must be given by

f ⊞ g(x) := Ψ(Ψ−1(f) +Ψ−1(g))(x) = Ψ−1(f)(x) +Ψ−1(g)(x) + x = f(x)− x+ g(x).
(12)

Notice that the identity map is the zero element in this ring.
Also the product, denoted by ⊠, must be given by

f ⊠ g(x) : = Ψ(Ψ−1(f) ◦Ψ−1(g))(x)

= (f − id) ◦ (g − id)(x) + x

= f ◦ g(x)− f(x)− g(x) + 2x. (13)

Now as we replace Z1(e, a)0 in (9) by Endga(e)(with the above ring structure), the map
res gets changed accordingly. This changed map we denote by r̃es, clearly

r̃es(f)(x) = f(x)− x x ∈ a. (14)

So it is not just the restriction of f to a. The next lemma shows that r̃es is a ring
homomorphism.

Lemma 3.4. The map r̃es : Endga(e) → Endg(a) is a homomorphism of rings.

Proof. Using the bijection (11), the lemma follows from the fact that
res : Z1(e, a)0 → Endg(a) is a ring homomorphism as res(f ◦g) = f ◦g|a = f |a ◦ g|a =
res(f) ◦ res(g).

The next lemma shows that (10) is exact at the 2nd term.

Lemma 3.5. ker(r̃es) = Enda,g(e).

Proof. This follows from exactness of (9), [1, Lemma 5.1] and the commutativity of

the diagram

Z1(g, a)0 Z1(e, a)0

Enda,g(e) End
g
a(e)

inf

Ψ Ψ

i

Here we used the observation Enda,g(e) = Auta,g(e) implied by 5-lemma.
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3.1. Proof of Theorem 3.1

Proof. From the construction of the map r̃es clearly img(res) = img(r̃es). Therefore
the exactness of (10) at the 3rd term follows from the corresponding exactness of (9).
Exactness at the 2nd term follows from Lemma 3.5. Finally from Lemma 3.4 we have
the first two maps are homomorphism of rings, here the ring structure of Endga(e) is
given by (12) and (13). This proves the theorem.

We have the following corollary of Theorem 3.1:

Corollary 3.6. The following is an exact sequence of groups:

1 → Auta,g(e)
i
−→ Autga(e)

r̃es
−−→ Autg(a)

d
−→ H2(g, a)0 (15)

We claim that this is exactly the first exact sequence given in [1, Theorem 4.6],
see (2). In [1] it was proved by considering certain maps between the objects and
checking exactness at each term, this is the similar way how it was done for the group
case in [3]. The most important point to notice here is that we obtain the same exact
sequence (2) as a consequence of the Hochschild-Serre spectral sequence though the
proof of this fact is not so obvious. Evidently we could not just restrict the maps in
(10) to the group of units in the rings and get (15) as the ring structure of Endga(e) is
quite different. For example, we miss the identity map from End

g
a(e) while considering

the units, the identity map being the “zero” element of the current ring structure. To
overcome this we make use of the notion of quasiregular elements in rings.

Let R be a ring. Define an operation ∗ : R×R→ R by x∗y = x+y+xy for x, y ∈ R.
An element x ∈ R is said to be quasiregular if there exists an element y ∈ R such that
x ∗ y = y ∗ x = 0. Denote the set of all such elements by QR(R), then (QR(R), ∗) is a
group. If R is a ring with unity then we have an isomorphism (QR(R), ∗) ≃ U(R) of
groups given by the map r 7→ 1 + r where U(R) denotes the group of units of R. See
[13] for details on quasiregular elements.

The following lemma describes the quasiregular elements of Endga(e):

Lemma 3.7.
(
QR(Endga(e)), ∗

)
≃ Aut

g
a(e) as groups.

Proof. To prove this we show that the ∗ operation in End
g
a(e) turns out to be the

composition of maps.
Let f, g ∈ End

g
a(e). Then

f ∗ g(x) = f ⊞ g ⊞ (f ⊠ g)(x)

= (f(x)− x+ g(x)) ⊞ (f ◦ g(x) − f(x)− g(x) + 2x) [ using (12) and (13)]

= f ◦ g(x) [ using (12)]

3.2. Proof of Corollary 3.6

Here we give a proof of the above corollary.

Proof. First we restrict the map r̃es of (10) to the set of quasiregular elements. By
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doing so and using Lemma 3.7 we get a group homomorphism

r̃es : Autga(e) → (QR(Endg(a)), ∗). (16)

Now as Endg(a) is a ring with unity, the quasiregular elements in that ring are just
the invertible elements and we have the isomorphism

(QR(Endg(a)), ∗) ≃ Autg(a) (17)

given by φ 7→ id+ φ. Thus the map

r̃es : Autga(e) → Autg(a) (18)

becomes just the restriction map given by r̃es(φ) = φ|a. Also by Lemma 3.5 the
kernel of the map r̃es given in (18) is Auta,g(e). So (15) is exact at the 2nd term. For
the exactness at the 3rd term let ψ ∈ ker d in (15). Then by the exactness of (10)
ψ = r̃es(φ) for some φ ∈ End

g
a(e). But since also ψ ∈ Autg(a), from the description of

r̃es in (14) we have φ|a is an automorphism. Therefore by 5-lemma it follows that in
particular φ ∈ Aut

g
a(e). Clearly then ψ = r̃es(φ) for some φ ∈ Aut

g
a(e). Consequently

(15) is exact at the 3rd term. This completes the proof of the corollary.

Before we proceed further, it follows from [1] that the object C1 in (2) is exactly
Autg(a). Now to validate our claim that the exact sequence (15) is exactly same as
(2), we need to show that the involved maps are same. It is clear that the first map
is just inclusion. The map τ1 in (2) is actually the usual restriction map follows from
the construction given in the paragraph just before [1, Lemma 4.5], which is the same
map as r̃es given in (18). So what we are only left to show is that the map d in (15)
is same as λ1.

For this purpose we need to have an exact description of the map d, the description
of λ1 can be found in the discussion just before [1, Lemma 4.3]. We remember that
d is induced by the Hochschild-Serre spectral sequence and in the case of a general
module M over e giving an explicit description of d seems to be a difficult problem.
But in our case the module is a and in particular the action on a as a module over
itself is trivial, a being abelian. In this case a cocycle description of the map d can be
obtained from the following theorem:

Theorem 3.8. [12, Theorem 16.6.7]

Let 0 → n
i
−→ k

p
−→ q → 0 be an extension of Lie superalgebra and M a k-module.

Assume that n is abelian and nM = 0. Then the differential d2 : Ep,12 → E
p+2,0
2 is

given by

θp+2,0(d2(u)) = −c ∪ θp,1(u)

where ∪ is the cup product and c ∈ H2(q, n) is the cohomology class of the 2-cocycle
associated to the given extension.

Here θp,q : E
p,q
2 → Hp(q,Hq(n,M)) is an isomorphism. For details see [12, Chapter

16].

In our case the extension is (1) and the map d in (6) is the map d : E0,1
2 → E

2,0
2

of the Hochschild-Serre spectral sequence. So we will apply the above theorem for
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(p, q) ≡ (0, 1) and obtain a cocycle description of d. In the following lemma we give a
description of the cup product in a particular case. The objects Cn(−, −) denotes the
the group of n-cochains, see [1] or see [12] for more details.

Lemma 3.9. The cup product on cochains

∪ : C2(g, a)× C0(g, C1(a, a)) → C2(g, a) (19)

can be given by

(h ∪ f)(x, y) = (−1)|f |(|x|+|y|)(−1)|f ||h(x,y)|f(h(x, y)) (20)

for x, y ∈ g, h ∈ C2(g, a) and f ∈ C1(a, a).

Proof. Let F be the underlying field. We can identify C0(g, C1(a, a)) =
HomF (F,C

1(a, a)), the space of F -linear maps from F to C1(a, a), with C1(a, a)
via the following identification: for h ∈ HomF (F,C

1(a, a)) we identify h with
h(1) ∈ C1(a, a). Clearly, if h is homogeneous we have |h| = |h(1)|, as it is always
assumed that the Z2-grading of F is concentrated only at 0th component. Then taking
k = 1 in [12, Example 16.5.9] we obtain the pairing ⋆ : a⊗ C1(a, a) → a given by

a⊗ h 7→ (−1)|a||h|h(a). (21)

Now we take n = 2, q = 2 and p = 0. Also let f ∈ C2(g, a) and h ∈ C1(a, a). Then
again from [12, Example 16.5.9] we have

(f ∪ h)(x, y) = (−1)|h|(|x|+|y|)f(x, y) ⋆ h

= (−1)|h|(|x|+|y|)(−1)|h||f(x,y)|h(f(x, y)) [using (21)]
(22)

for x, y ∈ g. Here we have used the facts that Ξ of [12, Example 16.5.9] is given by
the identity permutation {e} in this particular case and the inversion set of identity
permutation Inv(e) = ∅, the empty set.

We use the above formula for cup product to give a description of the map d.

Lemma 3.10. The map d : H1(a, a)g0 → H2(g, a)0 is given by d([h]) = −[h ◦ β] where
β is a 2-cocycle corresponding to (1) and [·] denotes the cohomology class.

Here β : g×g → a is given by β(x, y) := [η(x), η(y)]−η[x, y] ;x, y ∈ g for any section
η of the map p in (1). Such a β ∈ Z2(g, a)0, see [1, Lemma 4.1].

Proof. We use the identifications H0(g,H1(a, a)) = H1(a, a)g and H2(g,H0(a, a)) =
H2(g, aa) = H2(g, a) to obtain the following commutative diagram:

E
0,1
2 E

2,0
2

H1(a, a)g H2(g, a)

d2

θ0,1 θ2,0

d

.
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Let us take u ∈ E
0,1
2 and let θ0,1(u) = [h], the cohomology class of h for some h ∈

C1(a, a). Then by Theorem 3.8 we have

d([h])(x, y) = −[β ∪ h](x, y)

= −(−1)|h|(|x|+|y|)(−1)|h||β(x,y)|[h ◦ β](x, y) (using (22))

= −[h ◦ β](x, y) (as β ∈ Z2(g, a)0, |β(x, y)| = |x|+ |y|).

Now since the maps involved respect the grading of each cohomology group we have
the lemma.

We have seen earlier in the proof of Lemma 2.1 that H1(a, a)g0 = Z1(a, a)g0 =
Endg(a). So the above lemma gives a cocycle description of the map d : Endg(a) →
H2(g, a)0 in (9). Therefore when we restrict to quasiregular elements we have the same
description of the map d : (QR(Endg(a)), ∗) → H2(g, a)0. But as we have identified
(QR(Endg(a)), ∗) and Autg(a) in (15) via the isomorphism (17), the description of
d : Autg(a) → H2(g, a)0 gets changed accordingly. Clearly using the commutativity of
the diagram bellow we have d : Autg(a) → H2(g, a)0 given by d(φ) = [β − φ ◦ β]. This
is negative of the map λ1 of (2) given in [1]. This establishes (2) as a consequence of
our Theorem 3.1 upto a sign of λ1 which anyway does not affect the exactness at all.

(QR(Endg(a)), ∗)

H2(g, a)0

Autg(a)

h 7→ id+h≃

d(h)=−[h◦β]

d

d(φ)=[β−φ◦β]

3.3. More corollaries

Here we present several other consequences of Theorem 3.1.

Corollary 3.11. For an abelian extension of Lie algebra 0 → a −→ e −→ g → 0 we
have the following exact sequence of rings

0 → Enda,g(e)
i
−→ Endga(e)

r̃es
−−→ Endg(a)

d
−→ H2(g, a) (23)

where the ring structures are those coming from Theorem 3.1.

Proof. Take the odd part g1 of g to be trivial in (10).

Corollary 3.12. For an abelian extension of Lie algebra 0 → a −→ e −→ g → 0 we
have the following exact sequence of groups:

1 → Auta,g(e)
i
−→ Autga(e)

r̃es
−−→ Autg(a)

d
−→ H2(g, a). (24)

Proof. Again take the odd part g1 of g to be trivial in (15).

Remark 1. With a slight modification wherever necessary we get the first exact
sequence of [5, Theorem 2.8] from our Corollary 3.12 above.
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Corollary 3.13. For a Lie superalgebra g and a module a over g if H2(g, a)0 = 0 then
any map φ ∈ Endg(a) can be extended to an endomorphism of e inducing identity map
on g.

Here we note that for any map φ ∈ End(a) to get extended to a map in Endga(e) it
is necessary that φ ∈ Endg(a). Also, some of the Lie superalgebras and modules over
them can be found in [1] for which H2(g, a)0 = 0.

Proof. Since in this case the map d ≡ 0 the lemma follows from exactness of (10).

Corollary 3.14. If in particular 0 → a → e → g → 0 is a split exact sequence of Lie
superalgebras then any map φ ∈ Endg(a) can be extended to a map in Endga(e).

Proof. If the exact sequence splits then we can choose a section η : g → e which is
also a Lie superalgebra map, this implies that the map β ≡ 0. Then it follows from
the description of the map d in Lemma 3.10 that d ≡ 0. Now the lemma follows from
exactness of (10).

4. Construction of the second exact sequence

In this section we establish our second exact sequence which is also given in (5). This
exact sequence helps us obtain some necessary and sufficient conditions for certain en-
domorphisms of g to get lifted to that of e fixing a pointwise. The approach taken here
is rather direct, considering appropriate maps between the monoids of endomorphisms
and checking for exactness at each stage. We state our result in the next theorem:

Theorem 4.1. Let 0
i
−→ a → e

p
−→ g → 0 be an abelian extension of the Lie superalgebra

g. Then we have the following exact sequence of monoids:

1 → Enda,g(e)
i
−→ Enda(e)

σ
−→ Enda(g)

χ
−→ H2(g, a)0 (25)

Here kernel of a monoid homomorphism t : M → N is defined to be the set ker t :=
{m ∈M | t(m) = eN} where eN is the identity of N .

Before we proceed to prove the above theorem, note that the first three terms are
monoids with respect to the composition of maps with identity maps being the identity
elements. The map σ is the obvious map defined by σ(γ) := ψ such that the following
diagram is commutative:

0 a e g 0

0 a e g 0

i p

γ ψ

i p

We have seen such a map ψ can be described as ψ = pγs where s is a section of p.
Now we prove a couple of simple lemmas which we shall use in the proof of Theorem

4.1.

Lemma 4.2. For every pair of endomorphisms (γ, ψ) with σ(γ) = ψ there is a ho-
mogeneous linear map λ : g → a of degree 0 such that γ(s(g)) = λ(g) + sψ(g).
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Such a map λ has also been constructed in [1, Theorem 1] and the lemma follows from
there. However for the sake of completeness we prove it here.

Proof. Since ps = 1 we can write pγs(g) = ψ(g) = psψ(g). This implies p(γs(g) −
sψ(g)) = 0. So γs(g)− sψ(g) ∈ a. Now we define λ(g) := γs(g)− sψ(g)∀g ∈ g. It can
be very easily checked that λ is homogeneous of degree 0, hence the lemma follows.

Lemma 4.3. The image of the map σ lies in Enda(g) and σ : Enda(e) → Enda(g) is
a monoid homomorphism.

Proof. Let γ ∈ Enda(e), then γ(a) = a∀a ∈ a. So

[s(g), a] = γ([s(g), a])

= [γ(s(g)), a]

= [λ(g) + sψ(g), a] (using Lemma 4.2 )

= [sψ(g), a] ∀ g ∈ g, a ∈ a.

This implies ψ(= σ(γ)) ∈ Enda(g).
For the second part let γ1, γ2 ∈ Enda(e). Also let σ(γi) = ψi for i = 1, 2 and the

corresponding maps as in Lemma 4.2 are λ1 and λ2. Then

σ(γ1 ◦ γ2)(g) = p(γ1 ◦ γ2)s(g)

= pγ1(λ2(g) + sψ2(g)) (using Lemma 4.2 )

= p(λ2(g) + λ1(ψ2(g)) + sψ1(ψ2(g)))

= psψ1(ψ2(g))

= ψ1 ◦ ψ2(g) = σ(γ1) ◦ σ(γ2)(g).

Also as σ(id) = id, the lemma follows.

Now to each map in Enda(g) we associate a 2-cocycle in H2(g, a)0 in the following
way. Let ψ ∈ Enda(g). Define Ψ : g×g → a by Ψ(g, h) := β(ψ(g), ψ(h))−β(g, h);g, h ∈
g where β is defined in Lemma 3.10. It is well-known that β is a homogeneous 2-cocycle
of degree 0 and with the help of that it can be easily proved that Ψ is also a homo-
geneous 2-cocycle of degree 0. So [Ψ] ∈ H2(g, a)0 where [ · ] denotes the cohomology
classes. Now we define χ : Enda(g) → H2(g, a)0 given by χ(ψ) := Ψ. Then as in [1,
Lemma 4.3] one can show that χ is well-defined that is it does not depend on the
section used in the definition of β(denoted by θ in [1]). The map χ is not in general
a monoid homomorphism but its kernel will have usual meaning. Keeping the above
discussions in mind now we proceed to prove Theorem 4.1:

Proof. (Proof of Theorem 4.1)
It is easy to see that ker(σ) = Enda,g(e). So i being the inclusion map clearly (25)
is exact at the first and second term. Now to check exactness at the third term,
let Enda(g) ∋ ψ = σ(γ) for some γ ∈ Enda(e). Then from Lemma 4.2 we have
γs(g) = λ(g) + sψ(g) for g ∈ g. Using this fact along with the facts that a is abelian
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and γ|a = id, we can write

β(ψ(g), ψ(h)) = [sψ(g), sψ(h)] − s[ψ(g), ψ(h)]

= [sψ(g), sψ(h)] − sψ([g, h])

= [γs(g) − λ(g), γs(h) − λ(h)] − γs([g, h]) + λ([g, h])

= [γs(g), γs(h)] − [γs(g), λ(h)] + (−1)|g||h|[γs(h), λ(g)] − γs([g, h]) + λ([g, h])

= γ([s(g), s(h)] − s[g, h]) − γ([s(g), λ(h)]) + (−1)|g||h|γ([s(h), λ(g)]) + λ([g, h])

= β(g, h) − d(λ)(g, h)

for homogeneous elements g, h ∈ g and then extend linearly, here d is the coboundary
map on the 1-cochains.
Therefore χ(ψ) = [Ψ] = [β(ψ(g), ψ(h)) − β(g, h)] = [0], consequently ψ ∈ ker χ

and img σ ⊆ ker χ. Now to prove the other inclusion let ψ ∈ Enda(g) be such that
ψ ∈ ker χ. Then using the definition of χ, we can have a linear homogeneous map
λ : g → a of degree 0 such that β(ψ(g), ψ(h))−β(g, h) = −d(λ)(g, h) = −[s(g), λ(h)]+
(−1)|g||h|[s(h), λ(g)]+λ([g, h]) for homogeneous g, h ∈ g. Then it turns out that the map
γ : e → e defined by γ(a⊕ s(g)) := a+ λ(g) + sψ(g); a ∈ a, g ∈ g is a Lie superalgebra
homomorphism. Moreover γ(a) = a for a ∈ a and σ(γ) = pγs = ψ. Taking all these
together we get γ ∈ Enda(g) and ker χ ⊆ img σ. Consequently (25) is exact at the
third term, then result of Lemma 4.3 completes the proof of the theorem.

Clearly the proof of the theorem above, unlike the proof of Theorem 3.1, does not
use any cohomological exact sequence and in view of this fact we ask the following
question:

Question 1. Do we have any known cohomological exact sequence from which (25)
would follow ?

Remark 2. The answer to this question for the case of groups is yes. An exact
sequence like (25) for groups was obtained in [11] by making use of a non-abelian
cohomology exact sequence though the article does not provide any description of
the final map. Also that proof heavily relies on the availability of a set bijection
End(G) ≃ Z1(G,G), the set of derivations or the (non-abelian) 1-cocycles of G with
coefficients in G. However, we do not know of any such bijection for Lie superalgebras.

Now we have the following immediate corollaries of the above theorem.

Corollary 4.4. Let 0
i
−→ a → e

p
−→ g → 0 be an abelian extension of the Lie superalge-

bra g. Then the following is an exact sequence of groups:

1 → Auta,g(e)
i
−→ Auta(e)

σ
−→ Auta(g)

χ
−→ H2(g, a)0 (26)

Proof. In Theorem 4.1 above if we restrict our maps to the corresponding groups of
invertible endomorphisms of the monoids we get the required exact sequence.

Remark 3. The exact sequence (26) resembles the second exact sequence obtained in
[1, Theorem 4.6]. In that sense Theorem 4.1 generalises the second exact sequence of [1,
Theorem 4.6]. The only point we should note here is that the maps χ in Theorem 4.1
(and hence in (26)) and λ2 in [1, Theorem 4.6] are not exactly the same. Nevertheless,
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the above corollary also gives necessary and sufficient conditions for the lifting of
automorphisms of g.

Corollary 4.5. Let 0
i
−→ a → e

p
−→ g → 0 be an abelian extension of the Lie superal-

gebra g. If this extension splits or if H2(g, a) = 0 then any endomorphism of g which
keeps the action of g on a invariant can be lifted to g fixing a pointwise. Moreover if the
extension is central then any endomorphism of g can be lifted to g fixing a pointwise.

Proof. Clearly if the extension splits then β ≡ 0 which in turn implies χ ≡ 0, which
is also the case when H2(g, a) = 0 itself. This implies the image of the map σ is whole
of Enda(g) and the first part of the lemma is proved. Now in addition if the extension
is central then the action of g on a becomes trivial and in that case Enda(g) = End(g)
from which the second part of the lemma also follows.

5. Application to semidirect products

In this section as an application of our results we describe certain automorphism
groups of semidirect products of Lie superalgebras. Let g be a Lie superalgebra and a

a module over g. Then the semidirect product of a and g is another Lie superalgebra
denoted by g ⋉ a which is the vector space g ⊕ a on which the bracket is defined
by [(x, a), (y, b)] := ([x, y], x · b − (−1)|a||y|y · a) for all homogeneous elements x, y ∈
g; a, b ∈ a and then extended linearly. Then a can be seen as an abelian ideal in g⋉ a

while g is just a subalgebra. Corresponding to this semidirect product one obtains the
following abelian extension of the Lie superalgebra g:

0 → a
a7→(0,a)
−−−−−→ g⋉ a

(g,a)7→g
−−−−−→ g → 0 (27)

Then it happens that the induced action of g on a coming from (27) coincides with
the action we started with. Also (27) splits, a section which is also a Lie superalgebra
homomorphism is given by the map s : g → g ⋉ a defined by s(g) := (g, 0). Now we
have the following description of certain automorphism groups:

Theorem 5.1. Let g be a Lie superalgebra and a a module over g. Then we have the
following isomorphisms of groups:

(1) Autga(g⋉ a) ≃ Autg(a)⋉Auta,g(g⋉ a)
(2) Auta(g⋉ a) ≃ Auta(g)⋉Auta,g(g⋉ a)

The theorem says that certain automorphism groups of semidirect products are again
semidirect products.

Proof. From the above discussion, corresponding to a semidirect product g ⋉ a we
have the abelian extension given in (27).

Since (27) splits, the corresponding map d : Autg(a) −→ H2(g, a)0 in (15) becomes
trivial and (15) takes the following form in this case:

1 → Auta,g(g⋉ a)
i
−→ Autga(g⋉ a)

r̃es
−−→ Autg(a) → 0 (28)

Now we prove that the above exact sequence also splits. For that let us consider the
map ǫ : Autg(a) → Aut

g
a(g⋉ a) given by ǫ(φ) := γ for φ ∈ Autg(a) where γ is defined

14



by γ(g, a) := (g, φ(a)) for all g ∈ g, a ∈ a. We need to check that γ is indeed an
element of Autga(g ⋉ a). Clearly γ(a) = a and γ induces identity map on g. To prove
that γ is a homomorphism, let x, y ∈ g; a, b ∈ a be homogeneous elements. Then

γ([(x, a), (y, b)]) = γ([x, y], x · b− (−1)|y||a|y · a)

= ([x, y], φ(x · b− (−1)|y||a|y · a))

= ([x, y], x · φ(b)− (−1)|y||a|y · φ(a)) [as φ ∈ Autg(a)]

= [(x, φ(a)), (y, φ(b))]

= [γ(x, a), γ(y, b)]

So γ is a Lie superalgebra homomorphism. Also since γ is a bijection, φ being a
bijection, γ ∈ Aut

g
a(g ⋉ a). Moreover, one can easily check using (18) that r̃es ◦ ǫ

is the identity map of g, so ǫ is a section. It is also easy to check that ǫ is a group
homomorphism. Consequently the exact sequence (28) splits and the first isomorphism
of the theorem follows.

Since (27) splits we also have that the corresponding map χ : Auta(g) → H2(g, a)0
in (26) is trivial and the sequence (26) becomes

1 → Auta,g(g⋉ a)
i
−→ Auta(g⋉ a)

σ
−→ Auta(g) → 0. (29)

Again, to prove that (29) splits we consider a map α : Auta(g) → Auta(g⋉ a) defined
by α(ψ) := γ, here γ is defined by γ(g, a) := (ψ(g), a). Clearly γ fixes a pointwise
and γ is a bijection. To prove γ is a homomorphism, let us again take homogeneous
elements x, y ∈ g; a, b ∈ a. Then

γ([(x, a), (y, b)]) = γ([x, y], x · b− (−1)|y||a|y · a)

= (ψ([x, y]), x · b− (−1)|y||a|y · a)

= ([ψ(x), ψ(y)], ψ(x) · b− (−1)|ψ(y)||a|ψ(y) · a) [as ψ ∈ Auta(g)]

= [(ψ(x), a), (ψ(y), b)]

= [γ(x, a), γ(y, b)]

So γ is a homomorphism. In a similar way to the previous part one can also check
that α is a section as well as a homomorphism. Therefore the sequence (29) also
splits and we have the second isomorphism of groups. This completes the proof of the
theorem.

The exact sequence (27) which was playing the role of abelian extension in the
above theorem was of very particular type. For a general abelian extension 0 → a →
e → g → 0, the group isomorphisms of the above theorem might not hold true. For
example, the first example below shows that first isomorphism of Theorem 5.1 does
not hold true in general.

In both the examples below the underlying field F is of characteristic 0, as was
assumed earlier.

Example 5.2. Consider the 3-dimensional Heisenberg Lie algebra h3 which is
span{x, y, z} as vector space in which the only non-zero bracket is [x, y] = z. Clearly
the center Z(h3) = span{z}. Also let Ab(n) denotes the n-dimensional abelian Lie
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algebra. Then h3 can be seen as 1-dimensional central extension of the 2-dimensional
abelian Lie algebra in the following way where q is the obvious quotient map:

0 → Z(h3)
i
−→ h3

q
−→ Ab(2) → 0 (30)

In this case AutZ(h3),Ab(2)(h3) = Aut
Ab(2)
Z(h3)

(h3) =







1 0 0
0 1 0
a b 1


 : a, b ∈ F



 ≃ F ⊕

F and AutAb(2)(Z(h3)) = F ∗, the group of non-zero elements of F . Now since

Aut
Ab(2)
Z(h3)

(h3) is abelian, if Aut
Ab(2)
Z(h3)

(h3) is a semidirect product then it has to be

the direct product in particular. But that would imply F ⊕ F ≃ F ∗ ⊕ F ⊕ F

which can not be true as the later has an element of order 2. So Aut
Ab(2)
Z(h3)

(h3) 6≃

AutAb(2)(Z(h3))⋉AutZ(h3),Ab(2)(h3).

In the example above one checks that (30) does not split and hence h3 is not a
semidirect product. However, it is not necessary for e to be a semidirect product for
the isomorphism Auta(e) ≃ Auta(g)⋉Auta,g(e) to hold true. The next example shows
that although Auta(e) ≃ Auta(g)⋉Auta,g(e), e 6≃ g⋉ a.

Example 5.3. Let us consider the Lie superalgebra ba1 having basis {x | y, z} and the
only non-zero bracket is given by [x, y] = z. This is the Lie superalgebra corresponding
to n = 1 from the family ban given in [1, Section 6]. Here the bar in the basis separates
even elements from odd, |x| = 0 and |y| = |z| = 1. Also the center Z(ba1) = span{z}.
Now for simplicity rename ba1 to be H, then H can be seen as a central extension of
an abelian Lie superalgebra in the following way:

0 → Z(H)
i
−→ H

q
−→ Ab(1|1) → 0 (31)

where q is the obvious quotient map and Ab(1|1) is the abelian Lie superalgebra of

superdimension (1, 1). Then one has AutZ(H),Ab(1|1)(H) =








1
1 0
a 1


 : a ∈ F



,

AutZ(H)(H) =








b

c 0
d 1


 : b, c, d ∈ F ; bc 6= 0



 and

AutZ(H)(Ab(1|1)) =

{(
e

f

)
: e, f ∈ F ; ef 6= 0

}
.

It can now easily be checked that the following is an exact sequence of groups:

1 → AutZ(H),Ab(1|1)(H)
i
−→ AutZ(H)(H)

σ
−→ AutZ(H)(Ab(1|1)) → 1 (32)

where i is the obvious inclusion map and the map σ can be given by σ(




b

c 0
d 1


) =

(
b

c

)
. Now consider the map ǫ : AutZ(H)(Ab(1|1)) → AutZ(H)(H) given by

ǫ(

(
e

f

)
)=




e

f 0
0 1


. Then ǫ is a section of the map σ, also ǫ is a group homo-
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morphism. Therefore (32) splits and consequently AutZ(H)(H) ≃ AutZ(H)(Ab(1|1))⋉
AutZ(H),Ab(1|1)(H). However, H 6≃ Ab(1|1) ⋉ Z(H) as that would imply H has a 2-
dimensional abelian subalgebra not containing the center.
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