Header menu link for other important links
Exact distribution of spacing ratios for random and localized states in quantum chaotic systems
Tekur S.H., , Santhanam M.S.
Published in American Physical Society
PMID: 30011473
Volume: 97
Issue: 6
Typical eigenstates of quantum systems, whose classical limit is chaotic, are well approximated as random states. Corresponding eigenvalue spectra are modeled through an appropriate ensemble described by random matrix theory. However, a small subset of states violates this principle and displays eigenstate localization, a counterintuitive feature known to arise due to purely quantum or semiclassical effects. In the spectrum of chaotic systems, the localized and random states interact with one another and modify the spectral statistics. In this work, a 3×3 random matrix model is used to obtain exact results for the ratio of spacing between a generic and localized state. We consider time-reversal-invariant as well as noninvariant scenarios. These results agree with the spectra computed from realistic physical systems that display localized eigenmodes. © 2018 American Physical Society.
About the journal
Published in American Physical Society
Open Access
Impact factor