Header menu link for other important links
X
Enhanced Oxidation Resistance of Ultrafine-Grain Microstructure AlCoCrFeNi High Entropy Alloy
Garg M., Sharma R.K., ,
Published in American Chemical Society
2022
Volume: 7
   
Issue: 15
Pages: 12589 - 12600
Abstract
This work investigates the effect of ultrafine-grain microstructure on the oxidation behavior of AlCoCrFeNi high entropy alloy (HEA). The ultrafine-grain microstructure is obtained using stationary friction processing performed at two different rotational speeds, 400 and 1800 rpm, for 5 min duration. Processed samples demonstrate high depth of refinement (DOR) and ultrafine grain size (0.43-1 μm) at high rotational speeds along with significant phase transformations from BCC/B2 to FCC microstructure. Further, surface free energy of the ultrafine-grain microstructure is enhanced up to 35%. Oxidation kinetics of the ultrafine-grained sample is decelerated up to 12-48% in a temperature range of 850-1050 °C for a duration of 100 h. Chromia and alumina were the predominant oxides formed in almost all the samples oxidized at elevated temperature. In addition, spinel Co(Cr,Fe)2O4/Fe(Co,Cr)2O4 formation is also detected in the unprocessed oxidized samples. Processed samples rich in grain boundaries (GBs) promote internal oxidation to form Al-rich inner oxides. The enhanced oxidation resistance of the processed samples is attributed to the microstructural refinement and homogenization resulting in the formation of protective chromia followed by Al-rich inner oxides. © 2022 American Chemical Society.
About the journal
Published in American Chemical Society
Open Access
no
Impact factor
N/A