New fluorescent molecular rotors (FMRs) were developed by modification of the Thioflavin T (ThT) structure via introduction of methyl and methoxy groups. Effects of the substituents on fluorescence properties and twisted intramolecular charge transfer (TICT) rate in the excited state of the molecules were studied using steady-state fluorescence and time-resolved absorption spectroscopy. Quantum chemical calculations of the molecules in the ground and excited states were carried out to aid interpretation of the experimental results. Only cationic forms of ThT derivatives have FMR properties and exhibit viscosity-dependent fluorescence. The TICT rate was found to be affected by the size of the molecular fragments, which experience mutual rotation, dihedral angle φ between the fragments in the ground state as well as their donor/acceptor properties. © 2019 World Scientific Publishing Company.