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Viral respiratory tract diseases pose serious public health problems.

Our ability to predict and thus, be able to prepare for outbreaks is

strained by the complex factors driving the prevalence and severity

of these diseases. The abundance of diseases and transmission

dynamics of strains are not only affected by external factors, such as

weather, but also driven by interactions among viruses mediated by

human behavior and immunity. To untangle the complex out-of-

phase annual and biennial pattern of three common paramyxovi-

ruses, Respiratory Syncytial Virus (RSV), Human Parainfluenza Virus

(HPIV), and Human Metapneumovirus (hMPV), we adopt a theoret-

ical approach that integrates ecological and immunological mecha-

nisms of disease interactions. By estimating parameters from

multiyear time series of laboratory-confirmed cases from the in-

termountain west region of the United States and using statistical

inference, we show that models of immune-mediated interactions

better explain the data than those based on ecological competition

by convalescence. The strength of cross-protective immunity among

viruses is correlated with their genetic distance in the phylogenetic

tree of the paramyxovirus family.

paramyxoviruses | respiratory syncytial viruses | human parainfluenza |
pathogen interactions | cross-immunity

Respiratory Syncytial Virus (RSV) and Human Parainfluenza
Virus (HPIV), two important closely related members in the

Paramyxovirus family (1), are leading causes of hospitalization in
young children with community-acquired respiratory disease (2–13).
Each year, they impose a huge burden on public health by de-
manding substantial healthcare system resources (14). Human
Metapneumovirus (hMPV), a relatively recently identified member
of the same Paramyxovirus family, causes upper and lower re-
spiratory tract infections in young children. These viruses are now
recognized as important pathogens in adults as well (15–17) but
poorly characterized, because they present less distinctive clinical
findings than in children and are clinically similar to other viral
infections, such as influenza.
The consistent annual outbreaks of these agents and the fre-

quency of reinfection suggest that they impose a considerable dis-
ease burden throughout life. Despite several decades of effort, there
are no effective means to control RSV and HPIV infections. The
development of successful vaccines has been confounded by the
lack of durable immunity (18), even after natural infection, and the
diversity and ubiquity of populations at risk for infection (19, 20).
Both extrinsic factors, such as weather (21–23) and pollution

(24, 25), and intrinsic factors, such as host heterogeneity (26–28),
could drive the cyclic dynamics of these viruses.
In the United States, most RSV infections occur during a period

of about 22 wk from November to May (3, 29, 30). The peak activity
in most of the country is usually in January or February, although
slightly earlier in the southeast. In contrast, the seasonal patterns of
serotypes 1, 2, and 3 of HPIV are curiously interactive (3, 30, 31).
Data on HPIV hospitalizations in Utah show HPIV-1 causing the
largest and most clearly defined outbreaks, marked by sharp bi-
ennial rises in cases of croup in the autumn of odd-numbered years

(Fig. 1). Outbreaks of infection with HPIV-2, although more erratic,
are also biennial but occur in even years. Outbreaks of HPIV-3
occur yearly, mainly in spring and summer, and last longer than
outbreaks of types 1 and 2. HPIV-4 is infrequently isolated (32).
The timing of these respiratory pathogen outbreaks may be

driven by external forces, such as weather (33), or interactions
between pathogens (34) that drive out of phase dynamics. Because
these pathogens belong to same RNA virus family Paramyxovirus
and are responsible for respiratory disease in mostly children and
adults of similar ages, we investigate whether interactions (either
immunological or ecological) among them are the primary drivers
of their epidemic patterns. In fact, there are previous theoretical
and empirical studies that discuss interactions among these re-
spiratory viruses (35, 36). Understanding the factors that regulate
epidemiological patterns and predicting the seasonal abundance of
these viruses are central to their effective management.
We confront a seasonally forced mechanistic transmission

model with incidence reports of RSV, serotypes 1–3 of HPIV, and
hMPV. Using statistical likelihoods, we compare two hypothetical
mechanisms of interaction between diseases: cross-immunity
(immune-mediated interaction) (37–42) and convalescence (eco-
logical interaction) (43, 44). Accurate assessment of the nature of
interaction among these viruses has important potential public
health consequences for prediction of outbreaks and control of
disease by targeting and timing of control strategies.

Significance

Pathogens that invoke an immune response immediately after

infection can also provide partial cross-protection against other

strains of the same or closely related pathogens. This cross-

protection can shape the epidemiological dynamics of multi-

strain pathogens when an epidemic of one strain temporarily

suppresses the transmission of another. Identifying these in-

teractions from time series of epidemiological data is difficult,

particularly when prevalence oscillates seasonally. We use

long-term incidence data on Respiratory Syncytial Virus (RSV),

three serotypes of Human Parainfluenza Virus (HPIV), and

Human Metapneumovirus to study mathematical models of

different mechanisms of pathogen interaction. Our results

show a strong signal of cross-protection from RSV in control-

ling the timing and magnitude of HPIV outbreaks, and a

stronger interaction with more closely related serotypes.
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Results

Data Analysis.We perform wavelet decomposition of all time series
from the years 2002 to 2014 to analyze the data in time–frequency
domain. The continuous wavelet transformations of the RSV and
HPIV time series are shown in SI Appendix, Fig. S2. The signifi-
cant peaks of RSV periodicity are around the 52-wk band, whereas
peaks of HPIV-1 and HPIV-2 activity are around the 104-wk band.
However, there is high power for HPIV-2 around the 52-wk band
in the period from 2010 to 2013. In contrast, HPIV-3 does not
exhibit any consistent period, although there is significant high
power around 52 and 104 wk in the periods of 2008–2010 and
2010–2012, respectively.
The wavelet coherence (WC) (SI Appendix, Fig. S3) and cross-

wavelet transformation (XWT) (SI Appendix, Fig. S4) between
pairs of strains reveal how strongly they are correlated in the
time and frequency domain. Both XWT and WC of RSV with
HPIV serotypes 1 and 2 (SI Appendix, Fig. S3 A and B) indicate
that HPIV serotypes 1 and 2 are strongly correlated with RSV in
the 52-wk band and lead RSV throughout the entire period. In
contrast, the WC between RSV and HPIV-3 (SI Appendix, Fig.
S3C) shows several significant spots of correlation along the
52-wk band with RSV leading HPIV-3. WC between HPIV-1
and HPIV-2 (SI Appendix, Fig. S3D) shows consistent significant
power in the 104-wk band in a perfect antiphase relation. The
wavelet analysis of hMPV data also shows high power in the
52-wk band, and cross-wavelet analysis with RSV exhibits in-
phase relation in the 52-wk band. Thus, XWT and WC between
RSV and HPIV serotypes are strong preliminary indicators of
interactions among these pathogens.

Cross-Immunity and Competition Models of Disease Interactions. We
extend the susceptible–infected–recovered (SIR) compartmental
model (45) to include two different disease interaction mecha-
nisms: cross-immunity and convalescence (detailed descriptions
are given in Materials and Methods and SI Appendix). Cross-im-
munity acts by reducing the rate at which a host that has recently
recovered from one pathogen may become infected with another
(38). Convalescence acts by temporarily removing individuals after
infection because of behavioral modification and thus, transiently
reducing the susceptible pools of the infections (43). Our models
include seasonally forced transmission dynamics and temporary
immunity of acquired infection. Studies suggest that reinfection by
RSV and HPIV is likely in infants and the elderly, although it
remains largely undetected in the latter (19, 20). A detailed de-
scription and schematic (SI Appendix, Fig. S1) of the models are
given in SI Appendix.
Both models can exhibit a variety of dynamics depending on the

strength of interactions (46). For example, when the two viruses
are in a similar parameter regime with no interaction, they often
have annual and in-phase oscillations. Increasing the strength of
cross-protection can induce oscillations with higher-order cycles

and out of phase dynamics (SI Appendix, Fig. S5). Generally, ei-
ther cross-immunity or convalescence has little influence on the
interepidemic period (SI Appendix, Fig. S6). These theoretical re-
sults indicate that both mechanisms may generate broad dynamical
features of our paramyxovirus case studies. In the next section,
along with the no interaction model (as “null model”), we fit these
two models to the time series of case reports to select the most
parsimonious model to explain RSV, HPIV, and hMPV dynamics.

Parameter Estimation and Model Selection. We begin parameter
estimation by fitting the single-disease seasonally forced SIR model
(i.e., no interaction model) for each strain separately [a detailed
discussion of the observation model, baseline parameter values (SI
Appendix, Table S1), parameter estimation, and model selection
methodology is given in Materials and Methods and SI Appendix].
The single-disease SIR model gives a good fit to timing and size of
RSV peaks, a poor fit to the biennial dynamics of HPIV-1 and
HPIV-2 (the goodness of fit being negative), a moderately accurate
fit for HPIV-3 (SI Appendix, Fig. S7 and Table S2), and good
predictive power for hMPV (results in SI Appendix).
The two-disease cross-immunity model fits well to the paired

datasets with RSV and each serotype of HPIV (Fig. 2), describing
the high annual peak of RSV and the relatively small biennial
peaks of HPIV (Fig. 2 A and B). The estimated strength of cross-
protection (SI Appendix, Table S2) suggests that strong cross-
protective immunity created by RSV on HPIV serotypes 1 and 2
shapes the biennial abundance pattern in these serotypes. The
model also captures the behavior of the pair of RSV and HPIV-3,
describing relatively lower annual peaks of HPIV-3. The cross-
immunity model also captured the dynamics of the paired dataset
of RSV and hMPV (SI Appendix, Fig. S9).
The two-disease convalescence model, in contrast, broadly fails

to simultaneously explain the dynamics of RSV and serotypes of
HPIV (SI Appendix, Fig. S8), although it exhibits a biennial os-
cillation at low convalescence rate and the annual peaks of HPIV-
3 at a higher convalescence rate (SI Appendix, Table S2). This
model does provide a relatively better fit for the hMPV data.
However, the error profile of the convalescent parameter θ for all
three estimations in SI Appendix, Fig. S13 indicates that the con-
valescence mechanism has less influence in explaining the paired
RSV–HPIV datasets.
Altogether, the data suggest that the dynamics are shaped, in

part, by interactions among strains and the cross-immunity hy-
pothesis (SI Appendix, Table S2). Confidence intervals, best-
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Fig. 2. Dynamics with best-fit parameters of the two-disease cross-immu-

nity model showing pairwise (Left) RSV and (Right) HPIV serotypes: (A) RSV

and HPIV-1, (B) RSV and HPIV-2, and (C) RSV and HPIV-3. The model captures

the timing and peak of all pairs of datasets, including the biennial pattern of

HPIV-1 and HPIV-2.
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fitting parameter values, and AIC index for all models are given
in SI Appendix, Figs. S15–S18 and Tables S2 and S5.
Although HPIV-1 and HPIV-2 are less common among hos-

pitalized cases, they could have a strong interaction among the
potentially many more less severe cases. The outbreaks of these
two serotypes are separated by the outbreak of RSV in alternate
years. Therefore, we further extended the SIR model to a three-
strain model to check if including the full web of potential inter-
actions better explains the dynamics of these three pathogens.
However, the three-disease model does not explain the data better
than the two-disease cross-immunity model (SI Appendix, Table
S3), perhaps because the resultant model has many parameters
relative to the total amount of data available.
To investigate further statistical limitations on inference, we

compute the correlation matrix among parameters (obtained from
inverting the Hessian matrix) (SI Appendix, Fig. S11). We also
represent the two-parameter profile (eP − eR) of normalized error
from each paired dataset (SI Appendix, Fig. S12). As is to be
expected from this type of mechanistic model, there is substantial
multicollinearity among parameters.

Discussion

Understanding the dynamics of multiple infections that cocir-
culate in a community helps to forecast disease outbreaks and
aids disease management. Respiratory pathogens that cocircu-
late in a population or co-occur within individual hosts may serve
as cofactors that shape outbreaks and modulate attack rates (30).
Despite their high prevalence, detecting interactions among re-
spiratory pathogens remains a challenge to public health pro-
grams and disease management.
This study focuses on the common respiratory pathogens RSV,

HPIV, and hMPV, all members of the paramyxovirus family, that
cocirculate in the greater Salt Lake City area of Utah [including
other Intermountain Healthcare (IHC) facilities] and explores
possible interaction among them. We fit a hierarchy of multistrain
disease models to the time series of incidence data to evaluate
mechanisms that shape their dynamics. Our results indicate that
seasonality in transmission is an important driver of intraannual
variation in weekly incidence. The no interaction model (null
model) cannot explain the pattern of HPIV serotypes in our data,
although the seasonally forced SIR model does exhibit biennial
oscillation in a different parameter regime (such as that governing
the dynamics of measles) (47).
The immunity from natural infection is transient in these in-

fections (lasting for around 1 y), which has a significant influence
on the possible dynamics of the no interaction model. Allowing
greater statistical flexibility by freely estimating the duration of
immunity from the data permits biennial dynamics (SI Appendix,
Fig. S14). However, the required estimated periods of immunity
for HPIV-1 and HPIV-2 are 8.74 and 5.82 y, respectively (SI
Appendix, Table S4), which are inconsistently long compared with
available clinical data. We, therefore, base our general analysis on
a shorter duration of immunity as consistent with previous models
of these respiratory viruses (19, 20).
Among the mechanisms of disease interaction considered, we

find the strongest support for transient cross-immunity among
strains. Ecological interference through convalescence can affect
phase differences in the dynamics of interacting pathogens but
generally does not alter pathogen outbreak periodicities (46).
We find that the cross-protective mechanism can modulate both
peak size and timing of RSV (annual) and HPIV-1 and HPIV-2
(biennial) outbreaks, indicating that phase association is the key
dynamical signature of interaction. This immunological interac-
tion has also been observed for other multistrain pathogens, like
dengue (37, 48, 49).
We find that RSV infection generates pronounced cross-pro-

tective immunity on each HPIV serotype and hMPV, although
the reciprocal effects on RSV appear much smaller. These

interactions combined with seasonality point toward a dynamic
regime, where RSV dynamics may be largely autonomous with
clear annual peaks that then drive or modulate the dynamics of
the other viruses. Our best models could not capture the higher
peak in 2009, which is especially pronounced in the hMPV data
(SI Appendix, Fig. S9). The higher peak size in 2009 is likely, at
least in part, the result of increased surveillance because of the
pandemic H1N1 influenza (swine flu) outbreak in that year (50).
We checked the identifiability of important interaction pa-

rameters in the two-disease cross-immunity model by relaxing
the assumption regarding reporting probabilities. We found that
undernotification does not significantly impact the key signature
in the pattern of temporal dynamics of these pathogens, except
outbreak size. Our results indicate that pathogen interactions
remain identifiable in the incidence data, even when the extent
of underreporting is not known and must be estimated along with
other parameters.
Interestingly, our cross-immunity estimates correlate broadly

with the distribution of these viruses within their phylogenetic tree
(ref. 1, p. 242). RSV belongs to the subfamily Pneumovirus, most
distant from the subfamily Rubulavirus that includes HPIV-2. In
contrast, hMPV belongs to the subfamily Metapneumovirus, and
HPIV-1 and HPIV-3 belong to the subfamily Respirovirus, both
closer to Pneumovirus. Our estimates mirror this pattern of taxo-
nomic proximity. The estimated cross-protective immunity of RSV
on HPIV-2 is lowest and higher for more closely related patho-
gens, such as HPIV-1, HPIV-3, and hMPV (Fig. 3). The estimated
strengths of cross-immunity on RSV are weaker and do not clearly
follow this pattern, perhaps because of lower power to estimate
these effects or epidemiological dominance of RSV.
Although we suspect that other two-way interactions, such as

those between HPIV-1 and HPIV-2, could be important, our time
series are likely too short for these less commonly reported in-
fections to provide accurate inference. Similarly, models involving
more complex interactions among more than two viruses proved
less accurate, again perhaps because of the limitations of the data.
In addition, as always with mechanistic ecological models, corre-
lation among certain parameters causes identifiability issues.
Stochasticity could provide another reason for the better pa-

rameter estimates involving HPIV (51). Our deterministic models
of unbroken chains of transmission better fit RSV incidence during
annual outbreaks, whereas HPIV spends a significant fraction of
time in the stochastic regime with low numbers of infections or
fluctuations in reporting (7). With appropriate assumptions, a fully
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stochastic model could be better fit to these same data to perhaps
allow better estimations of parameters.
Biologically, we make several restrictive assumptions. Our

two-disease cross-immunity model is deliberately simple, and we
focus on interactions that only modulate host susceptibility, al-
though it can act in other ways, such as reducing infectiousness. We
also treat each virus as a single entity, although they have sub-
stantial genetic variability and potentially, multiple serotypes (52).
Furthermore, concurrent or prior infection with heterotypic path-
ogens may modify host susceptibility, transmissibility, virulence,
and infection duration, with concomitant impacts on epidemiology.
Previous studies have indicated that epidemiological inter-

ference can potentially have important consequences for the de-
sign of effective immunization schemes (53). Currently, there are
no vaccines for RSV or HPIV, although research is underway (18,
54, 55). Our work could aid in timing vaccination to make optimal
use of interference.

Materials and Methods
Time Series Data. The data presented in the paper (Fig. 1) are weekly case

reports of respiratory virus results (RSV and serotypes of HPIV from 2000 to

July of 2014 and hMPV from 2007 to July of 2014) from all IHC laboratories (22

hospitals and a medical group with more than 185 clinics) in the states of Utah

and Idaho in the intermountain west with a population of ∼3 million in 2011

(56). During the study period, direct respiratory sampling (mainly saline-assis-

ted nasopharyngeal aspiration) for respiratory viral testing was performed on

children admitted in the clinic or hospitals with respiratory complaints. The test

methods were enzyme immunoassay for RSV, direct fluorescent antibody

strain, culture, and/or PCR. Test methods differ in sensitivity and turnaround

time. Testing algorithms vary across IHC facilities, with some facilities using

automatic reflex testing to more sensitive methods (e.g., direct fluorescent

antibody to PCR), whereas other facilities require a clinician order for a more

sensitive method to be performed. Results of testing are aggregated into a

single patient encounter, even if multiple tests are performed. The RSV epi-

demic year was defined to be from July 1 of the year to June 30 of the fol-

lowing year. This time period was chosen to place the beginning date close to

the middle of the interepidemic period, approximately 6 mo from the average

historical peak of the seasonal epidemic. This study was reviewed by the In-

stitutional Review Boards of IHC and the University of Utah and determined by

both organizations to be exempt.

Model. The full set of equations and the descriptions of all three models

(cross-immunity, convalescence, and no interaction) are given in SI Ap-

pendix. Here, we outline how the interaction mechanisms are implemented in

the model framework.

Cross-Immunity. The precise immunological mechanisms of cross-protective

immunity between strains of paramyxoviruses are not yet known. Our models

incorporate a parameter to reflect the strength of cross-immunity between

strains that is assumed to hold for the same duration as for the primary

pathogen but with lesser effect. We also assume that partial cross-immunity

acts as reducing susceptibility to other pathogens. Usually, the acquired im-

munity from infection protects the individual from original pathogen, but the

same immunitymaywork for other antigenically related pathogens, and hence,

the host will be rarely infected by such strains. Thus, two strains interact by

conferring some protection to the host against other strains. Here, we assume

that cross-protective immunity has the same duration for the related and

original pathogens. In our main analysis, we follow clinical data that suggest

that immunity lasts for around 1 y. However, in the analysis in SI Appendix, we

allow this parameter to vary freely to be estimated from time series data.

Convalescence. This interaction between strains arises by competition for

susceptible hosts and the temporary removal of individuals after infection

because of quarantining or convalescence (43, 44, 53). In respiratory viral in-

fections, such as RSV, child patients are often sent home or to the hospital until

they are recovered or cured. We incorporate a parameter for the decreased

likelihood of acquiring another infection during the convalescent period.

Observation Model, Parameter Estimation, and Model Selection. We estimate

transmission rate, seasonality, interaction parameters, and reporting proba-

bility along with initial conditions for all different models using the time series

data from the years 2002–2014. The reporting probability (i.e., observation

model) is modeled in the following way: if Ti,t is the total number of newly

infected in week t for pathogen i, and f is the reporting probability, then

weekly case notification is assumed to have been drawn from a Poisson dis-

tribution with mean fTi,t. We estimate parameters of two-disease models us-

ing pairs of time series and parameters of three-disease models using data of

RSV, HPIV-1, and HPIV-2. We minimize the negative of log likelihood to esti-

mate on the best parameter values that describe the case data and use the

Akaike Information Criterion (57) to evaluate the parsimony of competing

models. Detailed descriptions of the likelihood function and model selection

methodology are given in SI Appendix.

Sensitivity Analysis. We find confidence intervals of estimated parameters

using generalized cross-validation (SI Appendix, refs. 8 and 9). In this case, we

generate 100 samples by randomly partitioning the entire dataset into two

subsets (training set and test set) and validate parameter estimates on the

test set. Three different partitions (70%, 80%, and 90%) were used in each

case. Details are in SI Appendix.

We also use rms error to calculate the mean deviance for error profile. We

calculate rms error from 10 sample model fits and average these to calculate

the mean deviance. Details are given in SI Appendix.
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