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Abstract

Ultrasmall MoS2 nanocrystals have unique optoelectronic and catalytic properties that have

acquired significant attraction in many areas. We propose here a simple and economical

method for synthesizing the luminescent nanocrystals MoS2 using the hydrothermal tech-

nique. In addition, the synthesized MoS2 nanocrystals display photoluminescence that is

tunable according to size. MoS2 nanocrystals have many advantages, such as stable dis-

persion, low toxicity and luminescent characteristics, offering their encouraging applicability

in biomedical disciplines. In this study, human lung cancer epithelial cells (A549) are used to

assess fluorescence imaging of MoS2 nanocrystals. MTT assay, trypan blue assay, flow

cytometry and fluorescence imaging results have shown that MoS2 nanocrystals can selec-

tively target and destroy lung cancer cells, especially drug-resistant cells (A549).

Introduction

Few-layered MoS2 nanocrystal, one of the typical two-dimensional (2D) transition metal

dichalcogenide materials, show the unique mechanical, optical, electrical, and chemical prop-

erties correlated with their ultrasound atomic layer structure and tendering them an appealing

alternative to fluorescent dyes, and have attracted particular attention in the scientific uses.

MoS2 nanocrystals can be used in many biomedical applications because of their tunable size

and adequate luminescence properties. It has been widely applied in medicine, drug delivery,

diagnostics, and outstanding biocompatibility in living organisms [1,2].

Lung cancer is the leading cause of cancer patient fatalities in the United States. And

throughout the world. Nearly as many Americans die from lung cancer each year as prostate,

breast and colon cancers combined. Chemotherapy has always been one of the most common

ways to treat cancer over the last few decades. However, chemotherapy creates some remedial

barriers, such as serious side effects, low solubility and a tendency to drug resistance [3–5].

However, the trade-in nanotechnology is growing rapidly, and nanoparticles apply to a variety
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of areas of our real-world applications [6]. For this reason, the possibility of communication of

individuals with different types of nanoparticles is also underway. For this purpose, it is essen-

tial to study how nanoparticles can influence the human body because they can do so through

respiration, skin contact or ingestion [7]. Despite the fact that nanocrystals have been pro-

duced and applied for several decades. Their impact on health and the environment has not

been fully explored due to the complexity of how nanocrystals and their ingredients interact

with cells [8].

The challenges of producing the synthesis and versatility of nanocrystal compositions and a

wide spectrum of the available surface ligand still exist. A number of nanostructures, including

carbon nanotubes, graphene, fullerenes and quantum dots, have been synthesized because

they demonstrate the encouraging potential to overcome the shortcomings of chemotherapy

drugs for cancer treatment. Corresponding to specific nanoparticles, two-dimensional (2D)

nanoparticles have unique chemical, optical and electronic characteristics and are therefore

provided with unique healing tools for biomedicine, particularly cancer treatment [9]. The

bulk MoS2 contains multilayered arrangements with weak van der Waals force of attraction

between layers and strong S-Mo−S interlayer covalent bonding. This allows for easy isolation

of a single layer of MoS2 of bulk crystals. Therefore, mechanical exfoliation, electrochemical

intercalation, liquid exfoliation, ultra-sonication and were investigated to produce a single- or

few-layer MoS2. These methods also lack low productivity, complexity and time. In addition,

synthetic MoS2 production should be monitored to understand the maximum production

yield. Thus, it is necessary to produce new approaches to the production of layered MoS2 with

the tunable size to investigate the implications of emerging applications [10,11].

Some important studies show the promising potential application of 2D nanoparticles in

targeted cancer control [8,12,13]. An additional effort has been made to look for other similar

2D materials in relation to distinctive unique properties. The MoS2 nanoparticle, like a variety

of metallic transition dichalcogenides (TMDC), has demonstrated potential applications in

nanoelectronics, energy storage devices, and electrochemical storage, catalysis, biomedical sci-

ence, and diagnostic applications. Despite remarkable progress in MoS2 nanoparticle synthe-

sis, it is necessary to find out a facile approach to produce MoS2 nanocrystals with strong

fluorescence. MoS2 is an excellent material with high dielectric, thin and highly available sur-

face area that constantly increase the path of light propagation in the sample. It also shows the

considerable formation of surface defects having Mo and S vacancies during the synthesis pro-

cess and acts as dipoles under the irradiation of light to boost interface polarization and defect

dipole polarization for more attenuation of light. In recent years, the synthesis and use of

atomically thin MoS2 nanocrystals has received considerable attention in materials research

[14–16].

The synthesis and treatment of MoS2 nanocrystals for the viability of A549 cancer cells is

demonstrated here. This work aims to show an eco-friendly, facile and reproducible synthesis

method based on a hydrothermal process for the scalable production of MoS2 nanocrystals (2–

10 nm). This work explains the preparation of thin-layer MoS2 nanocrystals using a single-step

hydrothermal method using sodium molybdate and thioacetamide as sources of molybdate

and sulfur, respectively. Cost-effective and facile approaches to controllable synthesis of MoS2
nanocrystals are quiet in critical demand, and the potential biomedical application of these

MoS2 nanocrystals should be developed. As the study of the TMDs, nanomaterial toxicity is

still in its origin with hardly a few assessments conducted on a mono or few-layer TMDs (e.g.,

MoS2, WS2). It is not surprising that no consistent research has yet been conducted to detect

the toxicity of TMDs. It is necessary to start studying the toxicological consequences of nano-

materials to indicate the health risks they can claim. It is fairly well researched that bulk TMDs

have low toxicity. Yet their research on nanostructures is still inadequate and poorly
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understood. The chemically exfoliated layers of MoS2 nanosheet are more toxic, which is due

to the increase in surface area. Low toxicity of MoS2 and thin WS2 was observed from their cel-

lular evaluations using MTT and water-soluble tetrazolium salt (WST-8) analyses on A549

cells [13,17–23]. The toxicity of the MoS2 sample is also caused by the organic solvents used in

chemical exfoliation. It has been an impediment to the accurate analysis of its toxicity for a

duration. However, it is difficult to synthesize the thin layer MoS2 without chemical exfolia-

tion. Atomically thin MoS2 films prepared using mechanical exfoliation and chemical vapor

deposition methods yield very less amount than sufficient for biological testing [24–29]. Jun

Lou et al. confirmed the low toxicity of molybdenum disulfide (MoS2) as a thin layer and

microparticles. Also, allergy tests evaluated on guinea pig skin to examine the allergic effect.

The results showed lower toxicity of MoS2 nano-structures to the biological medium when the

mass is less than 0.016 mg mL-1 [30].

This article details a straightforward, low-cost approach that employs an aqueous hydro-

thermal method for synthesizing two-dimensional molybdenum disulfide (MoS2) nanocrystals

and their potential applications to explore cytotoxicity, bioimaging, and cellular uptake of

A549 cancer cells. The high-resolution transmission electron microscopy (HRTEM) and

atomic force microscopy (AFM) results revealed that the sizes of the as-grown polydisperse

MoS2 nanocrystals range between 2 and 5 nm; their corresponding thicknesses were verified

to lie between 1 and 2 nm, a shred of clear evidence that a few-layer of MoS2 nanocrystals have

been synthesized. Photoluminescence (PL) and time-resolved PL spectra for the MoS2 nano-

crystals exhibited a strong emission in the blue region with a further slow decay constant.

Hence, in this report, the human lung carcinoma epithelial cell line (A549) after 24 hours

exposure to the MoS2 nanocrystals was estimated and interpreted by applying the methyl-thia-

zolyl diphenyl-tetrazolium bromide (MTT) and water-soluble trypan blue assays. A549 cell

line was favourably preferred for this research because the lungs are expected to be the first

place in which TMD occupies and communicates with the whole body when breathed into the

respiratory tract. MTT and trypan blue assays are founded cell viability assays that act in the

same way. The number of viable cells after treating with the MoS2 will be comparable to the

formation product’s color intensity. By using both MTT and trypan blue assays in our

research, we could be convinced that the cytotoxicity results are assured if the order collected

from each assay were consistent and complemented each other. In this direction, we analyzed

the sensitivity of A549 cells to the tested nanomaterials. Cell viability was monitored using

blue trypan and MTT assays. Reactive oxygen species (ROS) formation produced by MoS2
nanocrystals was also studied. Our research is also based on morphologic studies with the use

of microscopic study.

Experimental details

Materials and reagents

Sodium molybdate dihydrate (Na2MoO4.2H2O) and thioacetamide (CH3CSNH2) were pur-

chased from Sigma Aldrich. A549 Cell lines (a human alveolar epithelial cell line) was pro-

cured from the American Type Cell Culture (ATCC).

Synthesis of MoS2 nanocrystals

All the chemicals applied in the study were scientific-grade and used as such. The synthesis

procedure details are as follows: 0.8 g (3.3 mMol) of sodiummolybdate dihydrate

(Na2MoO4.2H2O) was added into 50 ml of deionized water, and then 0.7 g (9.31 mMol) of

thioacetamide (CH3CSNH2) was mixed into the aqueous solution while stirring at room tem-

perature. The solution mixture was carried into a Teflon-lined stainless-steel autoclave loaded
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with the aqueous solution up to 60% of the full capacity, then sealed and kept at 200˚C for 24

hours. The collected black precipitates were centrifuged, cleaned with distilled water and etha-

nol five times, and then dried inside a vacuum oven at 60˚C for 12 hours.

Characterization details

The UV-2401(Shimadzu Corporation) spectrophotometer was used to study the absorption

spectra of as-synthesized nanocrystal and bulk powder. The crystal structure of the bulk pow-

der and as-grown nanocrystal was examined through the Rigaku Miniflex diffractometer with

typical X-ray tube (Cu Kα radiation, 40 KV, 30 mA) and Hypix-400 MF 2D hybrid pixel array

detector (HPAD) and the corresponding structure obtained from the analysis by High-score

plus software. The size distribution and morphology of MoS2 nanocrystals were checked in the

non-contact mode by Park XE-70 atomic force microscope (AFM). Structural analysis was car-

ried out using a transmission electron microscope (TEM) (Model JEOL JEM-2100F) per-

formed at accelerating voltage 200 kV. TEM analysis was made by drop casting the diluted

MoS2 dispersion over the carbon-coated copper grid, followed by proper drying. The Raman

spectra of the MoS2 nanocrystal was taken with the Renishaw Raman microscopes help using

532 nm (0.3 mW) laser, 10-second scans acquired with the laser 20-x objective of an Olympus

microscope. PL spectra were obtained with Fluromax 4C HORIBA Scientific Spectro-fluorom-

eter upon excitation of a spectrum of wavelengths using 450W Xe lamp. The lifetime analysis

was carried using the same HORIBA equipment with a PPD detector and nano led-320 excita-

tion source (peak wavelength: 321 nm, pulse duration< 1.0 ns), and the result was interpreted

using Data Station software. PL decay profile was obtained by time-correlated single-photon

counting (TCSPC) method to know the recombination mechanism of photo-excited charge

carriers.

Cell culture

A549 cells were cultured in a humidified incubator at 37˚C and 5% CO2 and maintained in

RPMI 1640 culture medium supplemented with 2 mM glutamine, 4.5g glucose per litre, 10

mMHEPES buffer pH 7.2, gentamycin (10 μg/ml), and fetal bovine serum (10% V/V).

In vitro cell viability assay

A549 cells [0.3×106/ml/well] were seeded in triplicate in 24 well culture plates, treated with 5,

10 and 20 μg/ml of MoS2 for 24 hours, cells were harvested by trypsinization, and recoveries of

trypan blue excluding viable cells proportion in the cell population was analyzed by cell count-

ing using a hemocytometer. For MTT assay, cells [1×104/ml/well] were seeded in a 96 well

plate in triplicate for 24 hours and grown to 70 to 80% confluence. The cells were then incu-

bated with fresh media containing 5, 10, and 20 μg/ml of MoS2 for 24 hours. Cells with only

RPMI media served as the negative control. Following treatment, the cells were incubated with

MTT (20 μL/well from 5 mg/mL stock) for 4 h. Mitochondrial dehydrogenases of viable cells

reduce the yellowish water-soluble MTT to water-insoluble formazan crystals, which were sol-

ubilized with the addition of DMSO. The medium was then removed, and 150 μL of DMSO

was added into each well to dissolve formazan crystals. Cell viability was measured by MTT

assay, and absorbance was recorded at 560 nm.

Reactive oxygen species (ROS) measurement

To detect the production of ROS, A549 cells [0.5 ×106/ml/well] were cultured in each well of a

6 well plate, treated with or without 10 and 20 μg/ml of MoS2 for 24 hours. Cells were washed
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with PBS twice and incubated with 3 μM of H2DCFDA dye in PBS for 30 minutes in the dark

at 37 0C. Production of ROS inside the A549 cell in response to MoS2 was analyzed by NIS-Ni-

kon fluorescence microscopy at 10X magnification.

Cellular uptake MoS2 by A549 cells

To study the uptake of MoS2, cells [0.3 ×10
6/ml/well] were cultured in each well of 12 well

plates; after 24 hours of incubation, the cells were treated with or without 5, 10, and 20 μg/ml

of MoS2 for 24 hours respectively. Then cells were trypsinized, washed twice with PBS, and the

uptake was evaluated on a flow cytometer, BD FACS Verse.

Statistical analysis

All experiments were executed in triplicate, and results were expressed in Mean± SEM.

Results and discussion

MoS2 nano-crystals sample was prepared using a one-step hydrothermal method wherein

sodium molybdate and thioacetamide were used as sources of molybdate and Sulphur, respec-

tively. The overall synthesis methodology is shown in Fig 1. The synthesis process is outlined

in the experimental segment. To probe the optical properties, the UV absorption spectra of the

nanocrystals and the bulk MoS2 were studied (Fig 2(A)). The excitonic peaks at positions A

and B show the direct band-to-band transition at the K-point of the Brillouin zone. Further-

more, C and D peaks show the direct transition from the split valence band to the conduction

band at the Brillouin zone’s M-point. The energy splitting within various absorbance peaks

("A & B" and "C & D") in the bulk MoS2 results from spin-orbit coupling and inter-player cou-

pling. The energy splitting rises steadily with the reduction of layers number starting from the

bulk sample. The absorption spectra of MoS2 nanocrystal with a strong excitonic peak near the

ultraviolet regime at 224 nm confirm the synthesis of a few nanometer particles [31]. The

Fig 1. Schematic illustration of the steps for synthesis of spherical MoS2 nanocrystals.

https://doi.org/10.1371/journal.pone.0260955.g001
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crystal structure of bulk and nanocrystal MoS2 was studied using the X-ray diffraction (XRD)

technique, as shown in Fig 2(B). The XRD spectra of bulk 2H-MoS2 show an intense peak at

2θ = 14.4˚, which is assigned to (002) plane, along with other diffraction peaks, respectively

(JCPDF-00-037-1492). Notably, the peak of the (002) position of MoS2 nanocrystals is becom-

ing broad, symbolizing the lateral size reduction of the nanocrystals [32]. The reduction of

intensity at (002) peak along the c-axis shows that the nanocrystals are few layers and too thin

to be identified by XRD, which is exactly matching with the AFM and TEM results. Fig 2(C)

reveals the characteristic Raman spectra of bulk powder and as-synthesized nanocrystals. The

E2g
1 mode appears from the in-plane vibrations of two S atoms with respect to the Mo atom,

and A1gmode results from out of plane vibration of S atoms only. The frequency difference

(Δk) between the two Raman modes gives an idea about layer thickness. It has been seen that

the Δk value for synthesized nanocrystals decreases to 24 cm-1 as compared to bulk MoS2 pow-

der having a Δk value of 26 cm-1 [15,33]. However, the quantum size effect is accountable for

tuning 2D TMDs nanocrystal’s optical properties. The PL emission spectra of as-synthesized

MoS2 nanocrystals were studied under different excitation wavelengths ranging from 300 to

420 nm as shown in Fig 2(D). PL in MoS2 nanocrystals arises due to the excitation recombina-

tion at the electron or hole trap formed by uncompensated positive or negative charge at the

dangling bond. An intense emission peak is observed at 460 nm under an excitation wave-

length of 320 nm, while the intensity of emission spectra is continuously reduced and red-

shifted with a further increase of excitation wavelength. Here, the excitation-dependent PL

measurements prove the poly-dispersive nature of MoS2 nanocrystals. The excitation-depen-

dent spectra indicate polydispersity of the MoS2 nanocrystals distributions, which is vital of

excitation recombination at the electron (hole) trap formed by the uncompensated positive

Fig 2. (a) UV–vis spectra of the as-prepared MoS2 nanocrystals and bulk MoS2. (b) XRD spectra (c) Raman spectra (d) Emission PL spectra of the as-prepared MoS2
nanocrystals under different excitation wavelengths (e) Fluorescence lifetime of MoS2 nanocrystals. The data are fitted using a tri-exponential decay model (black line) (f)
Table shows PL lifetime (τ1, τ2 and τ3), and amplitude corresponding to different lifetime.

https://doi.org/10.1371/journal.pone.0260955.g002
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(negative) charge at the dangling bond from as-grown MoS2 nanocrystals. This excitation-

dependent PL response of fluorescent nanocrystals is useful for multicolor imaging purposes.

As observed in earlier reports, the photoluminescence features of MoS2 nanocrystals is propor-

tional to their particle dimension, which is related to the quantum size-effect of semiconductor

for nanocrystals. The red shift of the emission spectra is also observed because of the size effect.

MoS2 nanocrystal products have excellent dispersal, small size and PL properties in aqueous

suspension and have encouraged biomedical applications [34–36]. The PL decay curve of

MoS2 nanocrystals is exhibited in Fig 2(E). The photoluminescence decay of the as-grown

sample is performed using a 321 nm laser LED excitation source. Instrumental response func-

tion (IRF) (shown by the green dotted line) was recorded using dilute Ludox colloid to maxi-

mize Rayleigh scattering and decrease the scattering effect from impurities, cuvette, and

solution. The emission monochromator was fixed to the same wavelength as the excitation

source (321 nm), and both polarizers were set to perpendicular to measure the IRF. It has been

fitted with a third-order exponential equation I ¼ I
0
þ A

1
e
�t=

t1 þ A
2
e
�t=

t2 þ A
3
e
�t=

t3 with an

average reduced weighted residual value of<1.2, and the fitted curve (solid red and pink line)

convoluted with IRF is shown in Fig 2(E).

The curve is fitted with a third-order exponential function, appearing in three governing

excitonic phenomena accompanied by nanosecond luminescence lifetime. The average PL life-

time of the as-prepared MoS2 nanocrystals was determined to be 5.615 ns. The increase in

nanocrystals’ average PL lifetime is due to the defect state formation during synthesis [12,31].

The collected lifetime (τ1, τ2 and τ3) and amplitude of ith lifetime components (Ai) are shown

in Table 1.

Fig 3(A) shows the HR-TEM image of MoS2 nanocrystals presenting the hexagonal lattice

structure. The MoS2 nanocrystals with diameters of 2–10 nm are uniformly distributed; the

size distribution of MoS2 nanocrystals is sketched and shown in Fig 3(B). The high-crystalline

nature of the nanocrystals with lattice spacing of 0.2 nmmatching to the very clear lattice

fringes along with the (006) directions (shown in inset of Fig 3(C)), this is indicative of the

high crystalline order of the nanocrystals. The atomic force microscopy (AFM) image was

obtained to identify the morphology and the thickness distribution of the MoS2 nanocrystals,

as shown in Fig 3(D) and 3(E) respectively. The nanocrystal thickness ranges from 1nm to 4

nm, indicating that the synthesized nanocrystals are of few-layer. The composition of as-pre-

pared MoS2 samples was studied by Energy-dispersive X-ray spectroscopy (EDAX). Fig 3(F)

exhibits the EDAX image of MoS2 nanocrystals. The EDAX study proved that the as-synthe-

sized MoS2 nanostructure comprises Mo and S elements, including oxygen atoms. Further, no

other elements were found, which verified the purity of as-prepared samples [1,12,32].

Effect of MoS2 on cell viability

For the cytotoxic effect of MoS2, trypan blue cell exclusion dye and the MTT colorimetric test

were used. After incubation of 5,10, 20 μg/ml of MoS2 for 24 hours, using the trypan blue

method, it is observed that MoS2 did not produce any significant cytotoxic effect on the A549

cell viability up to 10 μg/ml of concentration. However, there was a significant decline in the

number of viable cells (Fig 4(A)) in the highest concentration 20 μg/ml MoS2 used, compared

to the control cells. For further confirmation, the effect of MoS2 on the cell viability of A549

Table 1. The collected lifetime (τ1, τ2 and τ3) and amplitude of ith lifetime components (Ai).

τ1(ns) A1 τ2(ns) A2 τ3(ns) A3 hτi(ns)

3.612 47.32 0.582 15.45 10.253 37.22 5.615

https://doi.org/10.1371/journal.pone.0260955.t001
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cells by MTT assay was investigated. The result showed a concentration-dependent toxic pro-

file with maximum toxicity observed at the highest concentration used, a 60% reduction in cell

viability, which corresponds to the decrease in the absorbance measurement, as shown in Fig 4

(B). Therefore, the two cytotoxic tests confirmed the toxic response of MoS2 to higher doses

on the cell viability of A549 cells.

Effect of MoS2 on the production of ROS in A549 cells

Several studies have suggested that ROS generation and oxidative stress production may be

one of the underlying mechanisms, leading to nanoparticle-induced cytotoxicity in different

cell types [37–40]. We analyzed the formation of reactive oxygen species in response to MoS2,

and found a significant production of ROS in cells at higher doses of MoS2 (Fig 5(A)–5(C)).

These results are also correlated with our result of the cytotoxic effect of particles and could be

the cause of cell death seen at higher doses.

Cellular uptake of MoS2 by A549 cells

To study MoS2 uptake by A549 cells, flow cytometry was used after cellular incubation with

MoS2. The side scatters (SSC) value of flow cytometry reflects the evaluation at a 90˚ angle and

correlates with the cell’s concentration. It has been studied that the value of SSC is correlated

Fig 3. (a) HRTEM image of MoS2 nanocrystals (b) shows the size distribution (c) show the lattice fringes (d) Corresponding AFM image of nanocrystals (e) Height
profile corresponding the line in d and (e) EDAX spectrum of MoS2 nanocrystals.

https://doi.org/10.1371/journal.pone.0260955.g003
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with complexity and internalized nanoparticles. Therefore, we compared the SSC value of

both control and MoS2 treated cells and observed an increase in the SSC value of cells treated

with different concentrations of MoS2 with respect to control cells (Fig 6(A)–6(D) and

Table 2). A significant change in the SSC signal was recorded in the treated cells corresponding

to the control (Fig 6(E)–6(H)). This increase in the SSC value is significantly higher (8.4% for

20 μg/ml concentration) than control (3.2%) at the highest doses used in the study. These find-

ings indicate that the MoS2 nanoparticles could be taken up by the A549 cells and internalized

inside the cells, causing the generation of ROS and affecting cell viability. However, further

study is needed to confirm a detailed picture of the internalization and localization of MoS2
inside the cells and how exactly it is interfering and modulating the cell behaviour.

Fig 4. (A) Trypan blue exclusion and (B) MTT assay were used to assess the effects of MoS2 nanocrystals on A549 cells viability.

https://doi.org/10.1371/journal.pone.0260955.g004

Fig 5. Effect of MoS2 nanocrystals on ROS production in A549 cells (a) Control (b) 10 μg/ml and (c) 20 μg/ml.

https://doi.org/10.1371/journal.pone.0260955.g005
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Conclusion

This study used a one-step, bottom-up, hydrothermal route to synthesize blue luminescence

MoS2 nanocrystals using sodium molybdate dihydrate (Na2MoO4.2H2O) and thioacetamide

(CH3CSNH2) as precursors. The as-prepared MoS2 nanocrystals show a small lateral size dis-

tribution. Complete microscopic and spectroscopic techniques, including TEM, EDAX, AFM,

XRD, UV-Vis, PL, TRPL, and Raman spectroscopy, were employed to confirm the

Fig 6. Uptake of MoS2 nanoparticles by A549 cells. Side scatter (SSC) measure of (a) control, (b) 5 μg/ml, (c) 10 μg/ml and (d) 20 μg/ml subjects under flow cytometry.
Flow cytometry analysis of the dot plot of mean SSC value distribution of control and different concentration of MoS2 (e) control, (f) 5 μg/ml, (g) 10 μg/ml and (h) 20 μg/
ml respectively.

https://doi.org/10.1371/journal.pone.0260955.g006

Table 2. SSC-Amean value of A549 cells after 24 h incubation with MoS2.

Dosimetry Control MoS2 5 μg/ml MoS2 10 μg/ml MoS2 20 μg/ml

A549 cells 114,313 116,970 120,697 121,444

https://doi.org/10.1371/journal.pone.0260955.t002
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morphology and composition of the MoS2 nanocrystals. The PL properties, linked with the

adequate biocompatibility and physiological stability of MoS2 nanocrystals, directed to suitable

bioimaging performance. Finally, cell viability measurements were performed with MTT and

trypan blue assays after exposing human lung epithelial cell (A549) culture with different con-

centration of MoS2 nanocrystals for the duration of 24 h. Treatment of A549 cells with MoS2
nanocrystals caused a dose-dependent increase in ROS formation up to 20 μg/ml. Eventually,

as the toxicity studies of MoS2 nanocrystals are still in its start, further study will be needed

from the scientific societies to resolve their health impacts in the long period and assure that

the potential hazards are estimated before incorporating the MoS2 nanocrystals into several

biomedical application.
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