Comment on
 "From $N=2$ supersymmetry to quantum deformation"

B Bagchı
Department of Applied Mathemattcs, Vidyasagar University, Midnapore 721102, West Bengal, India

Received 30 November 1992, revised manuscript received 8 March 1992
Editor M Dine

Abstract

We consider the possibility of reducing the recently proposed $N=2$ deformed supersymmetric Hamiltonian to the standard form

Recently, Beckers and Debergh have developed an interesting link between $N=2$ supersymmetry and quantum deformation [1] To this end they have proposed the following forms of two hermitian (odd) supercharges
$Q_{1}=\frac{-1 M \partial_{x}+R W}{\sqrt{2}}, \quad Q_{2}=\frac{-1 N \partial_{x}+S W}{\sqrt{2}}$,
where W is the superpotential and the matrices M, N, R, S are restricted to the choices $M=\sigma_{1}, N=\sigma_{2}$, $R=a \sigma_{1}+b \sigma_{2}, S=a \sigma_{1}-B \sigma_{2}, \sigma_{1}$ and σ_{2} beng the usual Paulı matrices The parameters a and b satısfy the constraints $a^{2}+b^{2}=1, a, b \in \mathbb{R}, b \geqslant 0$ One should realize that superpotential $W(x)$ is associated with the ground-state wave function so that the latter can be normalized [2]

The supersymmetric Hamiltonian (even) is defined through $H_{a b}^{\mathrm{SS}}=Q_{1}^{2}=Q_{2}^{2}$ leadıng to

$$
\begin{align*}
& H_{a b}^{\mathrm{SS}}=-\frac{1}{2} \partial_{x}^{2}+\frac{1}{2} W^{\prime 2}+\frac{1}{2} b W^{\prime \prime} \sigma_{3} \\
& \quad-1 a\left(W^{\prime} \partial_{x}+\frac{1}{2} W^{\prime \prime}\right), \tag{2}
\end{align*}
$$

where the prime implies a partial derivative with respect to x In contrast the standard Witten's Hamiltonian has the underlying structure [3]
$H_{\mathrm{Wrten}}^{\mathrm{SS}}=-\frac{1}{2} \mathrm{\partial}_{x}^{2}+\frac{1}{2} W^{\prime 2}+\frac{1}{2} W^{\prime \prime} \sigma_{3}$
It may be seen that (3) follows from (2) on setting $a=0$ and $b=1$

The purpose of this comment is to point out that the deformed Hamiltonian $H_{a, b}^{\mathrm{SS}}$ can always be brought to Witten's form by gauging away the superfluous terms in (2)

To justify our point let us consider making a replacement $1 \partial_{x} \rightarrow 1 \partial_{x}+a W^{\prime}$ in (1) and consequently in (2) It is easy to verify that such a shift not only drives away the first derivative term in (2) but reduces $H_{a b}^{\mathrm{SS}}$ to the standard form
$H_{b}^{\mathrm{ss}}=-\frac{1}{2} \partial_{x}^{2}+\frac{1}{2} b^{2} W^{\prime 2}+\frac{1}{2} b W^{\prime \prime} \sigma_{3}$
Indeed a correspondence with (3) may be established by scalıng $W \rightarrow b W$

For the harmonic oscillator case considered in ref [1] where $W=\frac{1}{2} w x^{2}$, the deformed energy-levels expectedly emerge as b tımes the energy-levels induced by (3) Should we choose to work with the form (4), the eigenfunctions of the oscillator system turn out to be simply proportional to $\exp \left(-1 b w x^{2} / 2\right) \times$ $H_{n}(\sqrt{b w} x)$

The work was supported by the DST, New Delhi

References

[1] J Beckers and N Debergh, Phys Lett B 286 (1992) 290
[2] A Lahırı, P K Roy and B Bagch, Intern J Mod Phys A 5 (1990) 1383
[3] E Witten, Nucl Phys B 188 (1981) 513

