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ABSTRACT

Antimicrobial peptides (AMPs) are gaining popu-

larity as better substitute to antibiotics. These

peptides are shown to be active against several

bacteria, fungi, viruses, protozoa and cancerous

cells. Understanding the role of primary structure

of AMPs in their specificity and activity is essential

for their rational design as drugs. Collection of Anti-

Microbial Peptides (CAMP) is a free online database

that has been developed for advancement of the

present understanding on antimicrobial peptides.

It is manually curated and currently holds 3782

antimicrobial sequences. These sequences are

divided into experimentally validated (patents and

non-patents: 2766) and predicted (1016) datasets

based on their reference literature. Information like

source organism, activity (MIC values), reference

literature, target and non-target organisms of

AMPs are captured in the database. The experimen-

tally validated dataset has been further used to

develop prediction tools for AMPs based on the

machine learning algorithms like Random Forests

(RF), Support Vector Machines (SVM) and

Discriminant Analysis (DA). The prediction models

gave accuracies of 93.2% (RF), 91.5% (SVM)

and 87.5% (DA) on the test datasets. The prediction

and sequence analysis tools, including BLAST,

are integrated in the database. CAMP will be a

useful database for study of sequence-activity and

-specificity relationships in AMPs. CAMP is freely

available at http://www.bicnirrh.res.in/antimicrobial.

INTRODUCTION

Microbial resistance to antibiotics is a rising concern
among health care professionals, driving them to search
for alternative therapies. In the past few years,
antimicrobial peptides (AMPs) have attracted lot of atten-
tion as a substitute for conventional antibiotics (1). AMPs
are naturally present in all organisms and play a vital
role in their innate immunity. These peptides cause cell
death either by disrupting the microbial cell membrane;
inhibiting extracellular polymer synthesis or intracellular
functions (2–4). They generally act on structural
components of the cell wall and can have multiple
cellular targets (2). The plausibility of microbial resistance
to AMPs is highly reduced due to the considerable diffi-
culty for microbes to modify their cell wall composition or
alter each of their multiple targets. AMPs are also effective
against multidrug resistant bacteria (5). The differences in
membrane structure of microbes and higher eukaryotes
help them in selectively targeting the microbial membranes
and thereby making it less toxic for therapeutic use. Some
AMPs also possess antitumor activity and can act as
mitogens and signaling molecules (6).

AMPs vary in their spectrum of biological activity.
Some peptides have a broad range of activity. For
example, maximins from Bombina maxima are active
against bacteria (Gram-positive and -negative), certain
fungi and HIV-1 virus (7), while AMPs like formaecin-1
and 2 from Myrmecia gulosa are active against Escherichia
coli but not active against Gram-positive bacteria and
yeast Candida albicans (8). Experiments have revealed
that small variations in the primary structure of peptides
may lead to drastic changes in their specificity and activity
(9). In case of carnobacteriocin B2, a single residue alter-
ation renders the peptide inactive (10). Sequence changes
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may not always render the peptide completely non-
antimicrobial but may lead to changes in their minimum
inhibitory concentration (MIC). Studies on HP 2–20
peptide and its analogs derived from Helicobacter pylori
ribosomal protein L1, showed that a single L11S mutation
almost doubles the MIC of the peptide whereas E16W and
D18W mutations in HP analogs 1 and 2, respectively,
decreases the MIC of the peptides almost by half (11).
Several such experiments strongly indicate that primary
structure of a peptide influences its antimicrobial activity.

Sequence studies on AMPs have revealed that they are
‘mostly’ cationic with length ranging from 6 to 100 amino
acids (3,5). Few AMPs like maximin H5, dermcidin and
enkelytin are known to be anionic in nature (3,12).
Anionic peptides are generally more active when com-
plexed with zinc or highly cationic peptides (3). AMPs
also exhibit a high composition of hydrophobic residues
(5). Most AMPs are amphipathic with hydrophilic domain
on one side and hydrophobic domain on the other. It is
proposed that the positive charge, hydrophobic nature
and amphipathicity of these peptides help them to
interact with the microbial cell membranes leading to
cell permeation and lysis (2,13). A thorough understand-
ing of the role of sequence of AMPs on their specificity
and activity is essential to exploit them as antimicrobial
drugs. A comprehensive database on AMPs with informa-
tion on their activity is a pre-requisite to carry out
sequence-specificity and sequence-activity studies. The
existing databases on AMPs are APD (14), AMSdb
(http://www.bbcm.units.it/�tossi/pag1.htm), RAPD (15),
PhytAMP (16), BACTIBASE (17), Defensin
knowledgebase (18), PenBase (19), Peptaibol Database
(20), SAPD (21) and BAGEL (22). CAMP is created
with an objective to provide a useful resource for
sequence-specificity and sequence-activity studies on
AMPs. A detailed comparison of the existing databases
on AMPs with CAMP is shown in Supplementary
Table S1.

CONSTRUCTION AND CONTENT

Data collection and organisation

Sequences of AMPs were collected from NCBI data-
base using a combination of keywords like ‘antimicrobial’,
‘antibacterial’, ‘antifungal’, ‘antiviral’, ‘antitumor’,
‘anticancer’ and ‘antiparasitic peptides’. Each of the
obtained hits was validated with literature available for
reference. Experimentally deduced sequences were
included in the experimentally validated dataset while
sequences patented to be antimicrobial were included
under the patents dataset. Sequences predicted to be
antimicrobial based on the similarity or with annotations
in NCBI as ‘antimicrobial regions’ without experimental
validation were included in a separate predicted dataset.
The reference literature was used to ensure that the AMP
sequence alone, excluding the signal and propeptide
region, was included in CAMP. Information on accession
numbers, protein definition, source, taxonomy, literature
reference and target organisms with MIC values (if avail-
able) were extracted from NCBI and included in CAMP.

Any other relevant information; for example, mention of
peptides being inactive against certain organisms; were
also included as comments for the database entries.
The data in CAMP is organized into 17 fields

viz. CAMP ID, sequence, sequence length, source,
taxonomy, activity, Gram nature, target organisms,
hemolytic activity, PubMed ID, protein name, protein
definition, GenInfo ID, Swiss-Prot, PDB accession
numbers, comments and the dataset type (experimentally
validated/patents/predicted). Based on their activity,
peptides are classified as ‘antibacterial’, ‘antifungal’,
‘antiviral’ or ‘antiparasitic’. The classification of AMPs
in CAMP is similar to that of AMSdb (http://www
.bbcm.units.it/�tossi/pag1.htm) and APD (14) databases.
Peptides that have a wider range of activity are depicted as
‘Antibacterial: Antifungal’ or ‘Antibacterial: Antifungal:
Antiviral’ etc. as the case may be. Links are provided
to access further information on the peptides, if present
in external databases like NCBI, NCBI Taxonomy
Browser, Swiss-Prot and PDB.

Database architecture

CAMP is built on Apache HTTP Server 2.0.59 with
MySQL Server 5.0 as the back-end and PHP 5.2.9,
HTML and JavaScript as the front-end. Apache,
MySQL and PHP technology were preferred as they are
open-source softwares and platform independent. Besides
these advantages, MySQL supports multithreading and
multiuser environments.

Prediction algorithm

Creation of datasets. Datasets were created for
antimicrobial (positive dataset) and non-antimicrobial
(negative dataset) peptides. The positive dataset
comprised of the experimentally validated (patents and
non-patents) AMPs present in CAMP. Redundant
sequences and sequences containing ‘X’ were eliminated
to obtain the final positive dataset containing 2578
sequences. There are very few peptides that are experimen-
tally proven to be non-antimicrobial. AMPs are generally
secretory in nature (23). Hence, along with the experimen-
tally proven non-antimicrobial peptides (25 sequences),
non-secretory proteins randomly searched from the
UniProt database without annotation as ‘antimicrobial’
(2413 sequences), arbitrary sequences generated using
random numbers (1200 sequences) and proteins retrieved
randomly without ‘antimicrobial’ annotation from the
UniProt database (1200 sequences) were used to build
the negative dataset. Since the length of peptides in the
positive dataset ranged from 10–80 amino acids, the
sequences in the negative dataset were truncated to be in
the same range. The Cd-hit program (24) was used to
eliminate sequences with >90% identity in the negative
dataset. The entries in the negative dataset (4011
sequences) were restricted to �1.5 times that of the
positive dataset. These datasets were randomly split to
generate the training (70%) and test (30%) datasets.
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Calculation of sequence features. Sequence features known
to be important for antimicrobial activity and in vivo sta-
bility of AMPs were considered for classification. These
features include composition, physicochemical properties
and structural characteristics of amino acids. Amino acids
were converted to the reduced alphabets based on
BLOSUM-50 matrix (25), conformational similarity (26),
hydrophobicity (27,28), normalized van der Waals
volume, polarity, polarizability, charge, secondary struc-
ture and solvent accessibility (28,29; Supplementary Table
S2). Along with composition, dipeptide and tripeptide
frequencies of the reduced alphabets; the transition and
distribution of some of the features along the sequence
of peptides were also computed for classification
(29–31). Thus, 257 features were used for classification
(Supplementary Table S3).

Prediction methods

Random forest. RF uses an ensemble of trees for classifi-
cation and regression problems (32). RF implementation
in R statistical language based on the original FORTRAN
code by Leo Breiman was used for this study (33,34).

Support vector machines. SVMs are a class of machine
learning algorithms that can perform pattern recognition
and regression (35,36). It can very effectively handle noise
and large datasets and thus is increasingly used for classi-
fication of biological data. SVM non-linearly transforms
the original input space into a higher dimensional feature

space by means of kernel functions (37,38). Of the three
SVM kernel functions viz., linear, polynomial and radial
basis, polynomial function-based model performed
the best and hence was adopted for this study. SVM
implementation of Kernlab package in R-language was
employed in this study (33,39).

Discriminant analysis. DA is a classification algorithm
that uses linear combination of independent variables to
predict the group membership for each of the dependent
variables (40). Stepwise selection algorithm with backward
elimination was used for variable selection. DA applica-
tion in SPSS 16.0 package was used for this study.

Feature selection. Rigorous recursive feature elimination
(RFE) method based on RF Gini score was adopted to
handle the background noise and identify the most infor-
mative sequence-based features for classification (34). The
features, based on their gini scores, were reduced to 50%
at each step. Thus, starting with 257 features, models cor-
responding to 128, 64, 32, 16, 8 and 4 features were used to
build the models for classification based on RF. These
models were evaluated using 10-fold cross validation
accuracy and Matthews Correlation Coefficient (MCC)
on training and test datasets. MCC is considered to be a
balanced measure for evaluating the performance of the
algorithm, even in datasets of different sizes (41,42). The
subset of 64 features gave the best performance with RF.
These 64 features were further used to build SVM and DA
models of classification.

Figure 1. User interfaces in CAMP.
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Database interfaces

The interfaces in CAMP are designed in a manner to help
users in easy navigation and use of the various tools
integrated in the database (Figure 1). The database
interfaces include: Home, Search, Tools, Prediction,
BLAST (43), Submit Sequence, Feedback and Help.
A brief description of the interfaces is given below.

Home. The CAMP database along with its various
features is described in this section.

Search. The search features in CAMP are designed to
accommodate all possible queries of the users. The differ-
ent search options are:

(i) Simple search: this feature allows users to search the
database with keywords in all fields or in a specific
field by selecting the field of interest from the drop
down menu.

(ii) Advanced search: this feature enables specific
searches by using the advanced query form. Users
can limit their search to a particular field without
the use of field descriptors in the query. An example
query for each search field is displayed when the
field is in focus.

(iii) Search sequences with MIC values: users can search
and download sequences active against a particular
target organism.

(iv) Browse all sequences: user can browse all the
sequences present in CAMP using this feature.

(v) Browse protein families: users can browse sequences
present in CAMP belonging to a particular protein
family.

Multiple records can be viewed at a time. Users can
download the AMPs of interest and save in Excel
format using the ‘Export’ feature.

Tools. Algorithms for calculation of some of the
properties that are known to influence the in vivo stability
and antimicrobial activity of peptides are included in
CAMP. Properties that can be calculated are length, net
charge, amino acid composition, aliphatic index (44),
instability index (45), hydropathy (46) and secondary
structure propensities (30). The users can either paste
their peptide sequence/s in FASTA format or upload a
text file with sequences of interest.

Prediction. The prediction interface in CAMP allows
users to predict the antimicrobial activity of sequences.
Users can input sequence/s in FASTA format and select
an algorithm (RF, DA and SVM) for prediction. The
predicted antimicrobial activity of the peptide/s along
with the probability of the prediction being true is
displayed. In case of DA, the discriminant scores for the
peptide/s are displayed.

BLAST. CAMP has two modules:

(i) BLAST AGAINST NCBI-PROT: this module
allows users to compare peptide sequence/s with
the non-redundant protein dataset of NCBI. The

user-defined parameters are database for compari-
son, E-value, alignment type (gapped/ungapped),
matrix for alignment and proteome of the organism.

(ii) BLAST AGAINST CAMP: this module allows
users to compare sequences with the CAMP
database. The user-defined parameters available
here are E-value, alignment type (gapped/
ungapped) and matrix for alignment.

Submit sequence. Researchers can submit new
antimicrobial sequences using this feature.

Database statistics. This link can be used to understand
the composition and access the entries of the CAMP
database based on validation, source and activity of
AMPs.

Feedback. Users can submit their suggestions/comments/
queries using this feature.

Help. A detailed description on the use of the various
features incorporated in CAMP is provided in this
section for the benefit of users.

RESULTS AND DISCUSSION

CAMP is a comprehensive database on AMPs. It has 3782
peptides, which include experimentally validated peptides,
patents and sequences predicted to be antimicrobial based
on similarity. These peptides are separated into three dif-
ferent datasets (experimentally validated, patents and
predicted) and thus users can restrict study on the
dataset of their choice. The information on sequence,
activity (MIC), target and non-target organisms are essen-
tial to delineate the sequence features important for
specificity and activity of AMPs. Literature references,
taxonomy and structural information of AMPs aid in
understanding the nature of these peptides and identifying
sequence patterns conserved across species. For this
purpose, links to external databases like NCBI, NCBI
Taxonomy Browser, Swiss-Prot and PDB are provided
in CAMP. The browse and search features in the
database facilitate easy retrieval of information present
in CAMP. Hydrophobicity, net charge and secondary
structure of the peptides are known to influence their
antimicrobial activity (3). Tools for calculation of these
parameters and the stability of AMPs like aliphatic
and instability index are integrated in CAMP. Aliphatic
index is a measure of the thermostability of the peptides
(44) and instability index predicts the in vivo half-life of
the peptide (45).
Research on AMPs is currently focused on rational

design of peptides that would act as substitutes to
antibiotics. Often, researchers would also want to
enhance the antimicrobial activity of the peptide/s of
their interest. Comparison of the user-defined sequence
with that of existing AMPs will help in design of
mutations that could enhance the antimicrobial activity
of the query sequence. For this purpose, BLAST module
has been incorporated in the database, which would
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identify similar sequences in CAMP and NCBI-protein
database. A prediction algorithm for antimicrobial
activity, based on machine learning algorithms like RF,
SVM and DA, is integrated in CAMP to help in
estimating the antimicrobial potential of the peptides.
The performance of the algorithms can be understood

from the MCC of test datasets, which are 0.86 (RF), 0.82
(SVM) and 0.74 (DA). All models have good sensitivity
and specificity (Table 1). The prediction algorithm
developed using RF performed the best with an MCC of
0.86 on the training dataset and 0.86 on the test dataset.
SVM and DA also gave good prediction accuracies. It was
observed that SVM and/or DA correctly predicted the
antimicrobial potential of a few peptides that were
wrongly predicted by RF. Hence, to increase the strin-
gency of prediction, all three-prediction models are incor-
porated into CAMP and the probability values are
included in the output. It is to be noted that not all of
the experimentally validated AMP sequences have MIC
value information and the use of different methods for
the evaluation of MIC could be a deterrent in getting a
good prediction model.
The results of the feature selection algorithm indi-

cated that composition and distribution of charged
and hydrophobic residues of peptides are the major
determinants of their antimicrobial activity. AMPs are
known to be mostly cationic and hydrophobic in nature.
They elicit antimicrobial activity by attraction, attachment
and permeation of the microbial cell membrane (3).
The positive charge on AMPs brings about their interac-
tion with the negatively charged microbial cell membrane
leading to cell permeation and lysis. The hydrophobic
domains in AMPs help in effective membrane
permeabilization by partitioning the lipid bilayer (2,3).

Comparison with existing databases and prediction tools

Presently, there exist few databases of AMPs. Most of
these databases are dedicated to specific classes of
AMPs. For example, AMSdb (http://www.bbcm.units
.it/�tossi/pag1.htm), PhytAMP (16), BACTIBASE (17)
and PenBase (19) are databases of AMPs from
eukaryotes, plants, bacteria and shrimps, respectively.
While RAPD (15) deals with recombinant AMPs,

SAPD (21) contains information on synthetic
antimicrobial peptides. The Defensin knowledgebase (18)
and Peptaibol Database (20) deal with defensins and
peptaibols respectively. These databases are very useful
while searching for AMPs belonging to specific classes.

Although Antimic (47), AMPer (48) and APD (14) are
databases of AMPs, which include information of all
classes of AMPs, APD (45) is the lone database that is
currently available. APD also includes a tool for design of
AMPs based on some known principles. CAMP contains
nearly thrice the number of sequences as compared to
APD (14) with additional information on taxonomy and
activity (MIC values). The data in CAMP is divided into
three datasets (experimentally validated, patents and
predicted). The search features present in CAMP allow
search against all or each of these datasets. The
advanced search features in CAMP are similar to that of
APD (14). The database can be queried with a combina-
tion of keywords using the Boolean operators ‘and/or/
not’. Records can be viewed and exported to Excel
format for analysis using the ‘Export’ feature of CAMP.
A detailed comparison of the existing databases on AMPs
with CAMP is shown in Supplementary Table S1.

Some of the existing prediction servers for AMPs are
APD (14), BACTIBASE (17), PhytAMP (16) and AntiBP
(49). AMP prediction of APD is based on similarity and
some known principles of AMPs. BACTIBASE and
PhytAMP have an HMM-based model that predicts the
AMP family of the query sequence/s. While these
algorithms help in prediction of AMPs, they are trained
and tested only with their specific source organisms.
AntiBP predicts antibacterial peptides based on
Quantitative Matrices (QM), Artificial Neural Network
(ANN) and SVM. The training datasets are limited to N
and/or C termini residues of antibacterial peptides
(positive dataset) and non-secretory proteins (negative
dataset). The users are constrained to predict the antibac-
terial activity for peptides that have to be at least 15
residues long. In contrast, the prediction algorithms in
CAMP are trained on all classes of AMPs (antibacterial,
antifungal and antiviral) and different classes of negative
datasets (UniProt, non-secretory, non-antimicrobial and
random sequences). The algorithms are trained on
complete sequences and the antimicrobial activity can be
predicted for sequences of variable length.

CONCLUSION

The role of AMPs in therapeutics is well-known.
However, not much progress has been made in exploiting
them as potent drugs. The understanding of the role of
sequence of AMPs in their activity is important for their
rational design as drugs. However, the precise sequence
features important for antimicrobial activity are still not
clear. The accuracy of prediction algorithms for AMPs
heavily depends on the correctness and extent of informa-
tion available in the training datasets used for the study.
Hence, CAMP has been created with an objective to help
researchers understand the role of primary structure
of AMPs in their antimicrobial activity. The prediction
algorithm available in CAMP will be useful in identifying
potential AMPs based on their primary structure. In
addition, tools to calculate some of the properties
known to influence antimicrobial activity and in vivo sta-
bility of the peptides are also included. CAMP will be

Table 1. Performance of prediction algorithms

Algorithm MCC Prediction accuracy for
test dataset (%)

Training
dataset

Test
dataset

Overall Positive
dataset

Negative
dataset

DA 0.75 0.74 87.5 87.8 87.4
RF 0.86 0.86 93.2 89.9 95.4
SVM 0.88 0.82 91.5 88.0 93.8
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updated monthly and should provide a valuable resource
for research on AMPs.

AVAILABILITY AND REQUIREMENTS

CAMP is freely available at http://www.bicnirrh.res
.in/antimicrobial/.
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Supplementary Data are available at NAR Online.
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