PAPER • OPEN ACCESS

Branched Hamiltonians for a Class of Velocity Dependent Potentials

To cite this article: B Bagchi et al 2017 J. Phys.: Conf. Ser. 839012011

View the article online for updates and enhancements.

Related content
Painlevé IV Solutions from Hamiltonians with Equidistant Gapped Spectrum M I Estrada-Delgado and D J Fernández C

Warped product of Hamiltonians and extensions of Hamiltonian systems Claudia Maria Chanu, Luca Degiovanni and Giovanni Rastelli

Branched Hamiltonians and supersymmetry
T L Curtright and CK Zachos

Recent citations

- Generalized Uncertainty Principle and Momentum-Dependent Effective Mass Schrödinger Equation B Bagchi et al
- Nonstandard Lagrangians and branching: The case of some nonlinear Liénard systems
Bijan Bagchi et al

IOP ebooks"'

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

Branched Hamiltonians for a Class of Velocity Dependent Potentials

B Bagchi ${ }^{1}$, S M Kamil ${ }^{1}$, T R Tummuru ${ }^{1}$, I Semorádová ${ }^{2}$ and M Znojil ${ }^{2}$
${ }^{1}$ Department of Physics, Shiv Nadar University, Dadri, UP 201314, India
${ }^{2}$ Nuclear Physics Institute, ASCR, 25068 Řež, Czech Republic
E-mail: bbagchi123@gmail.com, kamil.syed@snu.edu.in, tt295@snu.edu.in,semoradova@ujf.cas.cz and znojil@ujf.cas.cz

Abstract

Hamiltonians that are multivalued functions of momenta are of topical interest since they correspond to the Lagrangians containing higher-degree time derivatives. Incidentally, such classes of branched Hamiltonians lead to certain not too well understood ambiguities in the procedure of the quantization. Within this framework we pick up a model which samples the latter ambiguities and which, simultaneously, turns out to be amenable to a transparent analytic and perturbative treatment.

1. Introduction

Models of classical systems with branched structures [1], in either coordinate (x) space or in its momentum (p) counterpart, have of late been a subject of active theoretical enquiry [2-9]. The key idea is that classical Lagrangians possessing time derivatives in excess of quadratic powers inevitably lead to p becoming a multi-valued function of velocity (v) thereby yielding a multivalued class of Hamiltonian systems.

Branched Hamiltonians in the classical context, and their quantized forms, have been recently discussed by Shapere and Wilczek [2]. Following it, Curtright and Zachos [3] analyzed certain representative models for a classical Lagrangian described by a pair of convex, smoothly tied functions of v. The underlying v turns out to be a double-valued function of p. Proceeding to the quantum domain shows that the double-valued Hamiltonians thus obtained have the inherent feature of being expressible in a supersymmetric form in the p space. Subsequently, a class of nonlinear systems whose Hamiltonians exhibit branching was explored by Bagchi et al [4] who also considered the possibility of quantization for some specific cases of the underlying coupling parameter.

In this paper we present a class of velocity-dependent Lagrangians which define a canonical momentum that yields exactly a pair of velocity variables in fractional terms. As a consequence, the corresponding Hamiltonians develop a branching character. An interesting aspect of our scheme is that it is well-suited for a perturbative treatment.

2. Branched Hamiltonians: A brief review

Let us briefly review the example of a branched system that was put forward in [3]. It was noted that a typical classical model of branched Hamiltonians results from a non-conventional form of the Lagrangian say, for the one given by

$$
\begin{equation*}
L=(v-1)^{\frac{2 k-1}{2 k+1}}-V(x) \tag{1}
\end{equation*}
$$

where the traditional kinetic-energy term features the replacement of a typical quadratic form by a fractional function of "velocity" v while the function $V(x)$ stands for a convenient local interaction potential. The fractional powers of the difference $v-1$ was invoked to make plausible connections to known phenomenology such as the supersymmetric pairing. In detail, the $(2 k+1)-$ st root was required to be real and positive or negative for $v>1$ or $v<1$, respectively. Correspondingly, the quantity v turned out to be a double-valued function of p.

Working out the standard steps leads to the following two branches:

$$
\begin{equation*}
H_{ \pm}=p \pm \frac{1}{4 k-2}\left(\frac{1}{\sqrt{p}}\right)^{2 k-1}+V(x) . \tag{2}
\end{equation*}
$$

Note that the $k=1$ case speaks of the canonical supersymmetric structure [10] for the difference $H_{ \pm}-V(x)$ namely, $p \pm \frac{1}{2 \sqrt{p}}$, but in the momentum space if viewed as a quantum mechanical system. The spectral and boundary condition linkages of these Hamiltonians are not difficult to set up.

3. A velocity dependent potential

Against the above background we consider setting up of an extended Lagrangian model having a velocity dependent potential $U(x, v)$ that gives rise to a branched Hamiltonian under Legendre transformation:

$$
\begin{equation*}
L(x, v)=C(v-1)^{\frac{2 k+1}{2 k-1}}-U(x, v) \text { where } C=\frac{2 k-1}{2 k+1}\left(\frac{1}{4}\right)^{\frac{2}{2 k+1}} \tag{3}
\end{equation*}
$$

where we assume $U(x, v)$ to be given in a separable form $U(x, v)=f(v)+V(x), f(v)$ and $V(x)$ are certain functions of v and x respectively.

Using the standard definition of the canonical momentum, we find that it is given by

$$
\begin{equation*}
p=\left(\frac{1}{4}\right)^{\frac{2}{2 k+1}}(v-1)^{\frac{2}{2 k-1}}-f^{\prime}(v) . \tag{4}
\end{equation*}
$$

The above equation is too complicated to put down the multivalued nature of velocity in a tractable closed form.

If we try to determine the associated branches of the Hamiltonian corresponding to this Lagrangian (3), $H_{ \pm}$emerge in a mixed form involving the momentum p, the function $f(v)$ and its derivative.

$$
\begin{equation*}
H_{ \pm}=p \pm \frac{1}{4}\left[p+f^{\prime}(v)\right]^{-\frac{2 k-1}{2}}\left(\frac{2 k+1}{2 k-1}-p\left[p+f^{\prime}(v)\right]^{-1}\right)+U(x, v) . \tag{5}
\end{equation*}
$$

Since a Hamiltonian has to be a function of the coordinate and the corresponding canonical momentum, $H_{ \pm}$as derived above is of little use.

We note that the case $k=1$ is particularly interesting to understand the spectral properties of $L(x, v)$. Explicitly, the Lagrangian assumes the simple but a general form

$$
\begin{equation*}
L=3\left(\frac{1}{4}\right)^{\frac{2}{3}}(v-1)^{\frac{1}{3}}-f(v)-V(x) . \tag{6}
\end{equation*}
$$

A sample choice for $f(v)$ could be

$$
\begin{equation*}
f(v)=\lambda v+3 \delta(v-1)^{\frac{1}{3}} \tag{7}
\end{equation*}
$$

with $\lambda(\geq 0)$ and $\delta\left(<4^{-\frac{2}{3}}\right)$ being suitable real constants. Observe that the presence of δ rescales the kinetic energy coefficient which now enjoys a parametric representation.

The above form of f facilitates determination of the canonical momentum p in a closed form as given by

$$
\begin{equation*}
p=\mu(v-1)^{-\frac{2}{3}}-\lambda \tag{8}
\end{equation*}
$$

where $\mu=4^{-\frac{2}{3}}-\delta>0$. On inversion, we find a pair of relations for the velocity depending on p :

$$
\begin{equation*}
v_{ \pm}(p)=1 \mp \mu^{\frac{3}{2}}(p+\lambda)^{-\frac{3}{2}} . \tag{9}
\end{equation*}
$$

As a consequence, we run into two branches of the Hamiltonian which we put down in the form

$$
\begin{equation*}
H_{ \pm}-V(x)=(p+\lambda) \pm \frac{2 \gamma}{\sqrt{p+\lambda}} \tag{10}
\end{equation*}
$$

For the ease of notation, note that we have replaced $\mu^{3 / 2}$ with γ. In the special case where $\lambda=0$

Figure 1. When $\lambda=1$ and $\gamma=\frac{1}{2}, H_{ \pm}-V(x)$ branches correspond to the upper and lower curves respectively.
and $\gamma=\frac{1}{4}$, we recover the Hamiltonian derived in [3]. However, the presence of the parameter γ in (10) is nontrivial as our following treatment of perturbative analysis will show. In Figure 1, we have given a graphical illustration (for $\lambda=1$ and $\gamma=\frac{1}{2}$) of the behavior of the two branches of the Hamiltonian against some typical values of the momentum variable. As in the $\lambda=0$ case of [3] here also we encounter a cusp asymptotically with regard to p for a fixed γ.

4. Lowest excitations and the Fourier transform

After one decides to consider just small excitations of our quantum system over a local or global minimum $\left(x_{0}\right)$ of a generic analytic potential $V(x)$, one may put the origin of the coordinate axis to this minimum, $x \rightarrow y=x-x_{0}$, and write down the Taylor series

$$
\begin{equation*}
V(x)=V\left(x_{0}\right)+\left(x-x_{0}\right) V^{\prime}\left(x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right)^{2} V^{\prime \prime}\left(x_{0}\right)+\ldots \tag{11}
\end{equation*}
$$

Recall that $V^{\prime}\left(x_{0}\right)=0$ and the zero of the energy scale can be shifted in such a manner that $V\left(x_{0}\right)=0$. Finally, the series is truncated after the first non-trivial term yielding, in ad hoc units,

$$
\begin{equation*}
V\left(x_{0}+y\right)=y^{2} \tag{12}
\end{equation*}
$$

After a Fourier transform to the momentum space, we get a transformed quantum form of the Hamiltonian guided by the second-order differential operator,

$$
\begin{equation*}
H=-\frac{d^{2}}{d p^{2}}+W(p) \tag{13}
\end{equation*}
$$

containing a one-parametric family of pseudo-potentials

$$
\begin{equation*}
W(p)=p+\frac{2 \gamma}{\sqrt{p}} . \tag{14}
\end{equation*}
$$

Here, the original subscript \pm entering Eq. (10) may be perceived as equivalent to an optional switch between positive coupling-type parameter $\gamma>0$ and its negative alternative $\gamma<0$. Besides such a freedom of the sign of the dynamical characteristic, the consequent quantumtheory interpretation of the model requires also a few nontrivial mathematical addenda. The form Eq. (14) matches with Eq. (10) for $\lambda=0$ which will now be our point of inquiry.

First of all, the most natural tentative candidate

$$
\begin{equation*}
H \phi_{n}(p)=E_{n} \phi_{n}(p), \quad p \in(-\infty, \infty) \tag{15}
\end{equation*}
$$

for the quantum Schrödinger equation living on the whole real line of momenta (i.e., with $\left.\phi_{n}(p) \in L^{2}(\mathbb{R})\right)$ is characterized by the asymptotically linear decrease of the pseudo-potential (14) along the left half-line. Hence, the negative half-axis of momenta p must be excluded, a priori, as unphysical. In other words, the acceptable wave functions $\phi_{n}(p)$ should vanish, identically, whenever $p \in(-\infty, 0)$. The consistent quantization of our model must be based on the modified, half-line version of Eq. (15), viz., on Schrödinger equation

$$
\begin{equation*}
H \phi_{n}(p)=E_{n} \phi_{n}(p), \quad p \in(0, \infty) \tag{16}
\end{equation*}
$$

such that (cf. also [2] and [3])

$$
\begin{equation*}
\phi_{n}(p) \in L^{2}\left(\mathbb{R}^{+}\right) . \tag{17}
\end{equation*}
$$

Still, the discussion is not yet complete. Due care must be also paid to the fact that the inverse-square-root singularity of $W(p)$ in the origin is "weak" (see, e.g., Ref. [11] for a detailed explanation of the rigorous, "extension theory" mathematical contents of this concept). In the language of physics, such a comment means that the information about possible bound states and physics represented by Eq. (16) with constraint (17) is incomplete.

In the rest of this paper (i.e., in sections 5 and 6) we shall, therefore, describe the two alternative versions of the completion of the missing, phenomenology-representing information.

5. Eligible "missing" boundary conditions at small γ and $p=0$

As we emphasized above, the existence of the usual discrete spectrum of bound states can only be guaranteed via an additional physical boundary condition at $p=0$. Although, from the point of view of pure mathematics, the choice of such a condition is flexible and more or less arbitrary, the necessary suppression of this unwanted freedom can rely upon several forms of the physics-based intuition.

Let us split the problem into two subcategories. In a simpler scenario we shall assume that the central core is repulsive and strong (i.e., that our parameter is positive and large, $\gamma \gg 1$). This possibility will be discussed in the next section 6 . For the present, let us admit that the (real) value of γ is arbitrary and that the regular nature of our ordinary differential Schrödinger equation near $p=0$ implies that the integrability condition (17) itself still does not impose any constraint upon the energy E [11]. A fully explicit and constructive demonstration of such an observation may be based on the routine reduction of (16) to its simplified, leading-order form

$$
\begin{equation*}
-\sqrt{p} \frac{d^{2}}{d p^{2}} \psi(p)+2 \gamma \psi(p)=0 . \tag{18}
\end{equation*}
$$

Being valid at the very small (though still positive) values of $p \ll 1$ this equation is exactly solvable in terms of Bessel functions [12]. Thus, one may choose either $\gamma>0$ or $\gamma<0$.

After some algebra we obtain the respective two-parametric families of the general solutions which depend on two parameters $C_{1,2}$ or $D_{1,2}$ and which remain energy-dependent. At small p they behave, respectively, as follows,

$$
\begin{equation*}
\psi(p)=C_{1} \sqrt{p} I_{2 / 3}\left(\frac{4 \sqrt{2}}{3} \sqrt{\gamma} p^{\frac{3}{4}}\right)+C_{2} \sqrt{p} K_{2 / 3}\left(\frac{4 \sqrt{2}}{3} \sqrt{\gamma} p^{\frac{3}{4}}\right) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(p)=D_{1} \sqrt{p} J_{2 / 3}\left(\frac{4 \sqrt{2}}{3} \sqrt{-\gamma} p^{\frac{3}{4}}\right)+D_{2} \sqrt{p} Y_{2 / 3}\left(\frac{4 \sqrt{2}}{3} \sqrt{-\gamma} p^{\frac{3}{4}}\right) \tag{20}
\end{equation*}
$$

On this purely analytic background, one of the most natural resolutions of the paradox of the ambiguity of the physical boundary conditions at $p=0$ may be based on the brute-force choice of the parameters $C_{1,2}$ or $D_{1,2}$ in these formulae.

Finally, let us emphasize that intuitively by far the most plausible requirement of the absence of the jump in the wave functions at $p=0$, i.e., the Dirichlet boundary condition

$$
\begin{equation*}
\lim _{p \rightarrow 0} \psi(p)=0 \tag{21}
\end{equation*}
$$

would remove the latter ambiguity of quantization in the most natural manner. The resulting pair of the requirements

$$
\begin{equation*}
C_{2}=0, \quad D_{2}=0 \tag{22}
\end{equation*}
$$

may be then recommended as easily derived from the well known approximate formulae for the Bessel functions near the origin [12].

6. Perturbation-theory analysis at large $\gamma \gg 1$

In a purely formal spirit one could complement the above-recommended Dirichlet boundary condition (21) by its Neumann vanishing-derivative analogue

$$
\begin{equation*}
\lim _{p \rightarrow 0} \psi^{\prime}(p)=0 \tag{23}
\end{equation*}
$$

or, more generally, by a suitable Robin boundary condition. In this context it is worth adding that with a systematic strengthening of the repulsive version of the barrier (i.e., with the growth of the positive coupling constant γ) the specification of the additional boundary conditions at $p=0$ becomes less and less relevant because the two alternative energy levels will degenerate in the limit $\gamma \rightarrow \infty$.

The most immediate explanation of this phenomenon may be provided by perturbation theory. In the dynamical regime, when the parameter is large, a perturbative approach seems to be particularly well suited. With $\gamma \gg 1$, we look at the absolute minimum of the potential $W(p)$ which occurs at p_{0}, say. This value is, incidentally, unique

$$
\begin{equation*}
p_{0}=\gamma^{\frac{2}{3}} \gg 1 \tag{24}
\end{equation*}
$$

With the construction of a Taylor series in its vicinity,

$$
\begin{equation*}
W(p)=W\left(p_{0}\right)+\left(p-p_{0}\right) W^{\prime}\left(x_{0}\right)+\frac{1}{2}\left(p-p_{0}\right)^{2} W^{\prime \prime}\left(p_{0}\right)+\ldots \tag{25}
\end{equation*}
$$

we observe that the first term, which is given by

$$
\begin{equation*}
W\left(p_{o}\right)=3 \gamma^{\frac{2}{3}} \tag{26}
\end{equation*}
$$

in very large in this scenario. In contrast, all of the further Taylor coefficients remain very small and asymptotically negligible,

$$
\begin{equation*}
W^{\prime \prime}\left(p_{o}\right)=\frac{3}{2} \gamma^{-\frac{2}{3}}, \quad W^{\prime \prime \prime}\left(p_{o}\right)=-\frac{15}{4} \gamma^{-\frac{4}{3}} \ldots \tag{27}
\end{equation*}
$$

Clearly then, with $\gamma \gg 1$, H can be expressed as

$$
\begin{equation*}
H=-\frac{d^{2}}{d p^{2}}+3 \gamma^{\frac{2}{3}}+\frac{3}{4} \gamma^{-\frac{2}{3}}\left(p-p_{0}\right)^{2}+\mathcal{O}\left(\gamma^{-\frac{4}{3}}\left(p-p_{0}\right)^{3}\right) \tag{28}
\end{equation*}
$$

After one re-scales the axis $p=\rho q$, equation (16) acquires the modified form

$$
\begin{equation*}
\tilde{H} \tilde{\phi}_{n}(q)=E_{n} \rho^{2} \tilde{\phi}_{n}(q) \tag{29}
\end{equation*}
$$

where,

$$
\begin{equation*}
\tilde{H}=-\frac{d^{2}}{d q^{2}}+3 \rho^{2} \gamma^{\frac{2}{3}}+\frac{3}{4} \rho^{4} \gamma^{-\frac{2}{3}}\left(q-q_{0}\right)^{2}+\mathcal{O}\left(\rho^{5} \gamma^{-\frac{4}{3}}\left(q-q_{0}\right)^{3}\right) \tag{30}
\end{equation*}
$$

One may now set

$$
\begin{equation*}
\rho=\left(\frac{4}{3}\right)^{\frac{1}{4}} \gamma^{\frac{1}{6}} \tag{31}
\end{equation*}
$$

yielding the very weakly perturbed harmonic-oscillator Hamiltonian

$$
\begin{equation*}
\tilde{H}=-\frac{d^{2}}{d q^{2}}+\left(q-q_{0}\right)^{2}+\gamma \sqrt{12}+\mathcal{O}\left(\rho^{5} \gamma^{-\frac{4}{3}}\left(q-q_{0}\right)^{3}\right) \tag{32}
\end{equation*}
$$

In full analogy to many models with similar structure (cf., the study [13] containing further references), the exact solvability of the model in the leading-order harmonic-oscillator approximation proves sufficient because in the domain of large $\gamma \gg 1$ the contribution of the anharmonic corrections becomes negligible.

International Conference on Quantum Phenomena, Quantum Control and Quantum Optics IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 839 (2017) 012011 doi:10.1088/1742-6596/839/1/012011

7. Summary

To summarize, we looked at the particular example of a non-conventional form of a velocitydependent Lagrangian that leads to a double-valued structure of the associated Hamiltonian for some specific choice of the underlying coupling parameter. We showed that our scheme allows for a perturbative analysis by constructing a Taylor series near the vicinity of the absolute minimum of the potential.

Acknowledgments

For one of us (BB), it is a pleasure to thank Prof. Sara Cruz y Cruz and Prof. Oscar RosasOrtiz for warm hospitality during Quantum Fest 2016 held at UPIITA-IPN, Mexico City. MZ acknowledges the short-stay hospitality by Shiv Nadar University and the support by the GAČR Grant Nr. 16-22945S. We also all thank Prof. Bhabani Prasad Mandal for fruitful discussions.

References

[1] Henneaux M, Teitelboim C and Zanelli J 1987 Phys. Rev. A36 4417
[2] Shapere A and Wilczek F 2012 Phys. Rev. Lett. 109200402
[3] Curtright T L and Zachos C K 2014 J. Phys. A: Math. Gen. 47145201
[4] Bagchi B, Modak S, Panigrahi P K, Ruzicka F and Znojil M 2015 Mod. Phys. Lett. A 301550213
[5] Zhao L, Yu P and Xu W 2013 Mod. Phys. Lett. A 281350002
[6] Chi H-H and He H-J 2014 Nucl. Phys. B 885448
[7] Avraham E and Brustein R 2014 Phys. Rev. D 90024003
[8] Rosu H C, Mancas S C and Chen P 2015 Phys. Scp. 90055208
[9] Ruz S, Mandal R, Debnath S and Sanyal A K 2016 Gen. Rel. Grav. 481
[10] Witten E 1981 Nucl. Phys. B 185513
[11] Znojil M 2000 Phys. Rev. A 61066101
[12] Olver F W J and Maximon L C Bessel Functions in the NIST Digital Library of Mathematical Functions. Chapter 10 (Open access at http://dlmf.nist.gov/10)
[13] Znojil M 1994 J. Phys. A: Math. Gen. 274945

