This article describes synthesis, characterization and properties of blends of benzoxazine (Bz) monomers, i.e., m-alkylphenyl-3,4-dihydro-2H-benzoxazine (Bz-C), 6,6′-(propane-2,2-diyl)bis(3-phenyl-3,4-dihydro-2H-benzoxazine (Bz-A) and 3-phenyl-3,4-dihydro-2H-benzoxazine-p-carboxylic acid (Bz-pA). Binary blends of Bz-C with Bz-pA, and Bz-A with Bz-pA were prepared by first synthesizing Bz-C or Bz-A followed by the addition of all the ingredients of Bz-pA. In a similar manner, ternary blends of Bz-C, Bz-A and Bz-pA were prepared by first synthesizing Bz-C and subsequent addition of all the ingredients of Bz-A and Bz-pA in one pot. The Bz monomer blends were characterized by 1H-NMR, FTIR spectroscopy, and differential scanning calorimetry. The temperature of onset of curing (T o), due to ring-opening polymerization of Bz was found to decrease significantly by incorporation of carboxyl groups (Bz-pA) showing thereby the catalytic effect of acid functionality. Bz polymers showed good thermal stability and incorporation of Bz-pA in blends resulted in a highly cross-linked network. The interlaminar shear strength of glass fabric reinforced composites and the lap shear strength of metal-metal joints using these resin blends was also investigated. © 2012 Akadémiai Kiadó, Budapest, Hungary.