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Using the magnetofluid unification framework, we show that the accretion disk plasma (embedded
in the background geometry of a blackhole) can relax to a class of states known as the Beltrami-
Bernoulli (BB) equilibria. Modeling the disk plasma as a Hall MHD system, we find that the
space-time curvature can significantly alter the magnetic/velocity decay rate as we move away from
the compact object; the velocity profiles in BB states, for example, deviate substantially from
the predicted corresponding geodesic velocity profiles. These departures imply a rich interplay of
plasma dynamics and general relativity revealed by examining the corresponding Bernoulli condition
representing “homogeneity” of total energy. The relaxed states have their origin in the constraints
provided by the two helicity invariants of Hall MHD. These helicities conspire to introduce a new
oscillatory length scale into the system that is strongly influenced by relativistic and thermal effects.

I. INTRODUCTION

Magnetized plasmas can exhibit a spontaneous ten-
dency to evolve towards equilibrium configurations of or-
dered magnetic and velocity field structures. A highly
investigated example of this class of equilibria is the so

called “relaxed” state, ∇ × ~B = χ~B ( ~B is the magnetic
field configuration and χ is the Lagrange multiplier).
First derived in the context of single fluid magnetohy-
drodynamics (MHD) [1, 2], these states were continually
extended to include two-fluid effects initially in [3–5], and
then more definitively in a later set of papers [6–10]. The
essence of all these “relaxed state” derivations was the
construction of a constrained minimum energy principle:
an appropriate energy functional was minimized while
keeping the system helicities constant. The procedure
results in what are known as Beltrami conditions that
express the alignment of flow-vorticity along its veloc-
ity. The full equilibrium, referred to as the Beltrami-
Bernoulli (BB) equilibrium, requires the simultaneous
satisfaction of the Beltrami and Bernoulli conditions, the
latter signifying a homogeneous energy density. In the
introduced nomenclature, the original relaxed state of
Woltjer and Taylor is a single Beltrami state while the
Hall MHD states are double Beltrami. The BB equilib-
ria have been studied in relativistic and non-relativistic
contexts and have yielded interesting results in several
areas such as astrophysics, cosmology, high energy den-
sity physics, etc [6–10].

In this paper, we investigate an electron-ion plasma in
an accretion disk near a stationary or rotating black hole.
The hydrodynamics of such a plasma will be controlled
by a strong coupling between electromagnetism and grav-
ity. We will derive the self-organized equilibrium states
(for these accretion disks) by invoking the simplest non-
trivial two-fluid model, Hall MHD, a two fluid formula-
tion that neglects electron mass. Since gravity plays a
dominant role near a black hole, the fluid model must be
formulated in the curved spacetime geometry of general

relativity (GR). As long as the structure of the curved
background space-time of the embedded plasma is spec-
ified, one can incorporate it into the special relativistic
fluid model through the GR extension of the minimal
coupling prescription

pµ → Aµ +
m

q
GUµ = Pµ, (1)

invoked in the original magnetofluid unification [11].
Here, Pµ, Aµ, G and Uµ are the canonical 4-momenta, 4-
vector potential, thermodynamic enthalpy statistical fac-
tor and plasma 4-velocity respectively. Throughout the
paper, we adopt the convention c = 1 unless explicitly
stated.

The coalescence of electromagnetic and thermody-
namic attributes of the special relativistic (SR) hot fluid
is achieved through the construction of an antisymmetric
hybrid tensor [11],

Mµν = Fµν +
m

q
Sµν , (2)

obeying the equation of motion

qUνM
µν =

∇µp−mn∇µG
n

= T∇µσ, (3)

where Fµν (weight = charge q) and Sµν = ∇µ(GUν) −
∇ν(GUµ) (weight =mass m) are the electromagnetic
and composite (kinematic-statistical) fluid tensors re-
spectively [12]; n is the number density of the plasma
constituents. The right-hand side of Equation (3) is the
thermodynamic force expressed in terms of the fluid en-
tropy σ and temperature T , found using the standard
thermodynamic relation between entropy and enthalpy.

Since the advanced fluid formalism encapsu-
lated in Eqs. (1-3) looks so different from the
conventional familiar MHD, a few clarifying com-
ments that will, in particular, offer a justification
for the “language” used in the rest of this paper,
are in order:
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1) In this new formalism, the Faraday ten-
sor Fµν (representing the electromagnetic field)
and the new fluid tensor Sµν (representing both
the kinematic and the thermal attributes) appear
symmetrically. In fact the tensor Mµν , just a
weighted sum of Fµν and Sµν , is an expression
of the unification of the magnetic and the fluid
attributes, that is, the composite system behaves
as if the magnetic and fluid traits act in unison. In
order to formalize this union, a new terminology
was introduced in [11]- that of a magnetofluid.
The magnetofluid, thus, is defined as a hybrid
fluid whose “flow” vector is the canonical momen-
tum ~P (Eq. (3)), and its generalized vorticity (or

the effective magnetic field) is ~∇× ~P . Because of
this deep and simplifying unification, the preced-
ing formulation of fluid dynamics has been called
the magnetofluid formalism. The usage ‘mag-
netofluid’ has no connection to fluids with large
permeability.

2) Even though Eq.(3) (with T=0, for simplic-
ity) looks so different from the ideal MHD Ohm’s
law, its vector part is, in fact, nothing but a gen-
eralized Ohm’s law for a magnetofluid

~E + ~v × ~B = 0, (4)

where ~E and ~B are simply the generalized electric
and magnetic fields [11]. This reveals the power of
the formalism, that the complicated dynamics of
relativistic hot plasma has the MHD structure if
expressed in suitably constructed variables. Sev-
eral new results found using the formalism are
given in Refs. [13–15].

Before returning to the generalization to curved
space time, it is worthwhile to remark that the
basic formalism Eqs. (1-3) is fully compressible.
However, later we will deal with an incompress-
ible subclass of solutions applied to plasma in a
black hole accretion disk.

Gravitational coupling changes Eq.(3) to

qUνMµν = QT∇µσ, (5)

where Q = (1 + λfm(R)) with fm(R) as a function of
the Ricci scalar R. Consequently, the new hybrid tensor
Mµν defined as

Mµν = Fµν +
m

q
Dµν (6)

with

Dµν = (1 + λfm(R)− λRFm)Sµν +
m

q
λFmK

µν (7)

includes an additional gravity coupled flow field tensor,
Kµν = ∇µ(RGUν) − ∇ν(RGUµ)[16]. Here, Fm(R) =
f ′m(R) and λ is the phenomenological parameter repre-
senting the coupling between matter and background ge-
ometry [16–19].

With this new formalism, the Beltrami-Bernoulli con-
ditions of interest can be found by analyzing the new
3D vorticity evolution equations obtained by perform-
ing a 3 + 1 decomposition (of spacetime) of Eq. (5).
We find that, working within the framework of the Hall
MHD model, the equilibrium of the gravitating accretion
disk plasma, just like in its flat space-time counterpart,
is described by a double Beltrami state. Our derived
fluid velocity structure (and the corresponding magnetic
field profile) in both geometries exhibits a faster radial
decay compared to that in geodesic motion; the change
reflects the electromagnetic interactions present in the
fluid. Furthermore, the two-fluid configuration of our
system introduces radial oscillatory structure to the ve-
locity and magnetic field that is dependent upon the new
generalized helicities.

The paper is arranged as follows: We first present a
brief overview of the vorticity evolution equation, ob-
tained by applying the Arnowitt-Deser-Misner (ADM)
formalism of electrodynamics [16, 20–23] (Appendix A)
to Eq. (5), the magnetofluid equation of motion in
curved space-time. Then, we derive the equations for
the so called relaxed state equilibrium. After displaying
an analytical solution of the equilibrium configuration
in the non-relativistic case, we adopt numerical meth-
ods to solve the more complicated General Relativistic
equilibrium. Finally, we compare the results obtained
in the classical and General Relativistic cases by deriv-
ing the corresponding Bernoulli condition to explore the
new “structure” induced by GR.

II. VORTICAL DYNAMICS

In the 3+1 decomposition (see Appendix A), the
derivation of the 3D vorticity evolution equation begins
with taking the spacelike projection (the application of
the spacelike projection operator γβ µ) of the unified field
equation of motion (5). The resulting momentum evolu-
tion is

αqΓ~ξ + qΓ(~v × ~Ω) = −(1 + λfm(R))T ~∇σ. (8)

Similarly, the timelike projection (the application of nµ)
gives the equation of energy conservation

αqΓ~v · ~ξ = T (1 + λfm(R))(Ltσ − ~β · ~∇σ), (9)

where ~ξ and ~Ω are, respectively, the generalized electric
and magnetic fields [ Eqs. (A6) and (A7)]. Also, α, Γ,
and ~v (spatial velocity of plasma) are defined in Eqs.
(A1), (A2), and (A3). Here, α represents the lapse func-
tion needed to capture the change of proper time between
two adjacent spacelike hypersurfaces, and Γ represents
the Lorentz factor in curved spacetime.

Next, the desired vorticity evolution equation (which is
really the generalized Faraday’s law) with gravity driven
sources can be obtained from the momentum evolution
equation Eq. (8) by using the antisymmetric property of
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Mµν , ∇µM∗µν = 0. Combining the γβ µ projection of
the preceding identity,

Lt~Ω = L~β~Ω− ~∇× (α~ξ)− αΘ~Ω, (10)

with the momentum evolution equation (8), gives us the
generalized vorticity evolution equation [16, 24, 25]

Lt~Ω−~∇×(~v×~Ω)−L~β~Ω+αΘ~Ω = ~∇×
(
T

qΓ
(1 + λfm(R))~∇σ

)
,

(11)
where L denotes Lie derivatives with Lt = ∂t along tµ,

L~β~Ω = [~β, ~Ω], and the expansion factor Θ is defined in

Appendix A. The shift function β denotes the motion
on spacelike hypersurfaces during the evolution of 3D
surfaces, and Θ measures the average expansion of the
infinitesimally nearby surrounding geodesics (or congru-
ences). It should be noted that, in this formalism, the
plasma is coupled to gravity even in the limit λ = 0.

One cannot fail to observe that all terms on the left-
hand side of the generalized vorticity evolution equation

(11) operate on the vorticity 3-vector ~Ω, while the right-
hand side provides, just as in the conventional picture,

possible sources for generating ~Ω. The left-hand side,
however, has considerably more structure than the con-
ventional 3D vortex dynamics; the first two terms reflect

the standard Helmholtz vortical dynamics whereas αΘ~Ω

and L~β~Ω are nontrivial gravity modifications. Thus, the

gravity coupling does, fundamentally, modify the pro-
jected 3D vortex dynamics, in spite of the fact that the
4D vortex equations had exactly the same form and that
this modification was manifest only through the non-
inertial splitting of spacetime.

A. Equilibrium states

In this paper, we will investigate the equilibrium
states in two background geometries, i.e., ‘Schwarzschild’
and ‘Kerr’ with minimal coupling only. The standard
metric describing the stationary and axially symmetric
(static and spherically symmetric) spacetime for Kerr
(Schwarzschild) black holes can be written as [26]

ds2 = gttdt
2 +2gtφdtdφ+grrdr

2 +gθθdθ
2 +gφφdφ

2. (12)

In the geometries described by the above metric, it
can be shown that the terms involving Θ and β in Eq.
(11) vanish and, therefore, make no contribution to the
vortical dynamics of the plasma. While the vanishing of
Θ follows directly from the metric, the vanishing of the
β term follows from the assumption that the generalized
vorticity Ω varies along the radial direction only.

We will concentrate, in this paper, on the simplest
vortical dynamics without any sources (originating in
inhomogeneous thermodynamics or in nontrivial-gravity
modifications), i.e, the left hand side of Eq. (11) is put
equal to zero,

Lt~Ω− ~∇× (~v × ~Ω) = 0. (13)

The source free vortical dynamics allows the conservation

of helicity, H =< ~Ω · ∇×−1~Ω >, constructed out of the
generalized vortical field and its corresponding canon-
ical momenta. The next task is to work out possible
equilibrium solutions of the aforementioned vortex dy-
namics relevant to an accretion disk plasma consisting
of electrons and ions; each species has its own vortical
dynamics- vorticity, helicity, etc.

We will not consider here a very special, well-known

superconducting solution ~Ω = 0 of Eq. (13) since it
yields a rather trivial solution for the accretion disk[27].
Instead, we will investigate the equilibrium relaxed solu-

tion ~Ω = Λ~v that makes the generalized force vanish by
aligning the vorticity and the flow (Beltrami condition).
The separation constant Λ is equivalent to a Lagrange
multiplier if we were to derive the Beltrami condition by
the standard constrained energy minimization procedure.
The equilibrium is fully determined by the two Beltrami
conditions (one for each species), and Ampere’s law:

~B +
mec

q
(∇× (GΓe ~ve)) = Λe ~ve, (14)

~B +
mic

q
(∇× (GΓi~vi)) = Λi~vi, (15)

∇× (
√
−gtt ~B) =

4π
√
−gtt qn(r)

c
(Γi~vi − Γe ~ve), (16)

where n(r) is the density profile of the fluid in the ac-
cretion disk. The separation constants Λe,i are Lagrange
multipliers that are to be, eventually, related to the two
topological constants - the conserved individual helicities
of the two species. These two helicities, as constants of
motion, are two labels of an equilibrium system. Note
that the 3-gradient in the above equations is also modi-
fied through spacetime metric elements; for an arbitrary
scalar function P , it can be written as

~∇P =
1
√
grr

∂rP êr +
1
√
gθθ

∂θP êθ +
1
√
gφφ

∂φP êφ. (17)

III. NON-RELATIVISTIC SOLUTION

An analytic investigation of Eqs. (14-16) is quite im-
possible because they are highly nonlinear in the veloc-
ities. However, to extract some basic features of the
equilibrium states, let us analyze the system in its non-
relativistic limit: Γ → 1, thermodynamic statistical fac-
tor G → 1,

√
−gtt → 1 and me << mi. The resulting

normalized equations are:

~B = µe~ve, (18)

~B +∇× ~vi = µi~vi, (19)

∇× ~B = ηn̂(~vi − ~ve), (20)

where all the gradients are normalized to a macroscopic
length scale rg = GM/c2 (half of the Schwarzschild ra-
dius used below), velocities are normalized to the speed
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of light c, η = r2
g/λ

2
s is a dimensionless factor, n̂(r) is

the density factor, q is the ion charge, λ2
s = c2/ω2

p is

the ion skin depth, ω2
p = (4πq2n0)/mi is the ion-plasma

frequency and µe,i = (qrg/mic)Λe,i. Notice that all
fields are divergence-free (solenoidal), so our anal-
ysis is localized to an incompressible subclass of
solutions.

Manipulating Eqs. (18)-(20), we derive a single second
order differential equation

−µe∇2~ve + (ηn̂− µiµe)~∇× ~ve = ηn̂(µi − µe)~ve (21)

for the velocity ~ve. For spherically symmetric solutions
for the solenoidal fields, the radial component vr = 0.
The equations for vθ(r) and vφ(r) are, then, written as

µe
r2

∂

∂r
(r2vθ) + ηn̂(µi − µe)vθ = (µiµe − ηn̂)

1

r

∂

∂r
(rvφ),(22)

µe
r2

∂

∂r
(r2vφ) + ηn̂(µi − µe)vφ = (ηn̂− µiµe)

1

r

∂

∂r
(rvθ).(23)

Here, we dropped the index e from ~ve for simplicity.
In terms of the variables, Qθ = rvθ and Qφ = rvφ, we

find autonomous (in r) equations

µe
∂2Qθ
∂2r

+ ηn̂(µi − µe)Qθ = (µiµe − ηn̂)
∂Qφ
∂r

, (24)

µe
∂2Qφ
∂2r

+ ηn̂(µi − µe)Qφ = (ηn̂− µiµe)
∂Qθ
∂r

(25)

that are readily solved in terms of exponentials: Qθ =
Q̂θe

sr and Qφ = Q̂φe
sr where the exponent s is deter-

mined by the quadratic

µes
2 + ηn̂(µi − µe) = ±is(ηn̂− µiµe). (26)

One must recognize that the parameter η, the ratio of
the Schwarzschild radius to the ion skin depth, is � 1.
Thus, the dominant balance in Eq.(27) yields

s ' ∓i(µi − µe). (27)

In this limit ve = vi, and the azimuthal and poloidal
velocities are

vθ =
C

r
cos[(µi − µe)r + δ], (28)

vφ = −C
r

sin[(µi − µe)r + δ], (29)

where C and δ are constants determined by the initial
conditions. It should be noted here that, to this order,
the solutions are independent of density profiles. In all
figures displayed in this paper, we will plot only the above
equilibrium velocity profiles. Since the magnetic field is
simply proportional to velocity, the plots could just as
well be seen as representing normalized magnetic fields.

In Fig. (1), we plot vθ and vφ for different values of ε =
µi−µe. When the two Lagrange multipliers are the same,
one observes only the ∼ r−1 decay. Oscillations ensue for

FIG. 1: (Color Online)Velocity profiles for the non-relativistic
solution with different values of ε = µi−µe. The blue (upper)
and red (lower) solid lines represent the vφ and vθ, respec-
tively, for η = 0. The dashed and dotted curves represent
the velocity components for the η = 0.5 and η = 1 cases,
respectively. The blue (initially at 10−2) curves represent vφ,
whereas the red curves (initially at 2 × 10−3) curves denote
vθ. As the η values change, the frequency of the oscillating
solution varies.

nonzero ε, increasing in frequency as ε becomes larger.
The relatively slow ∼ r−1 decay is overwhelmed by radial
oscillations on a new scale dictated by ε. The origin of
this scale lies in the values of the system invariants that
manifest through the Lagrange multipliers; it is different,
for instance, from the intrinsic scale defined by the ion
skin depth.

The preceding non-relativistic solutions, in the (η →
∞) limit, provide us a fiducial backdrop for the study of
more advanced/numerical equilibrium solutions of accre-
tion disk plasmas embedded in curved space-time. Be-
fore proceeding in that direction, it is easy to calculate
the first order correction to the frequency:

s1(r) = ± iµe
ηn̂

[(µi − µe)2 − µi(µi − µe)]. (30)

Note that even s1 = 0 for µi = µe; there are still no
oscillations to this order.

IV. GENERAL RELATIVISTIC SOLUTION

In General Relativity, the nonlinearity of Eqs. (14-
16) describing the equilibrium state of a hot fluid-like
plasma (minimally coupled to gravity) becomes exacer-
bated with gravity entering into the equations through
both spacetime metric elements and the Lorentz factor.
While seeking the equilibrium state of a plasma in the
accretion disk around a black hole, one must remember
that the accreting plasma gains kinetic energy but loses
angular momentum as it approaches the black hole [28].
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An analysis of the dynamics of plasma in these disks is
crucial for obtaining its equilibrium state.

In order to obtain the equilibrium states of plasma in
accretion disks, it is necessary to “choose” the correct
velocity dependence of the associated Lorentz factor Γ
buried in the equations (14-16). The correct choice can
be made only after the following observations. First,
we assume that the plasma itself does not contribute
to the background spacetime structure specified by the
spacetime metric (12) and, therefore, the plasma be-
haves like test matter moving in the curved spacetime
of the black hole. Thus, the plasma particles would fol-
low the geodesic motion (dictated by the spacetime met-
ric) if the electromagnetic interactions were absent. In
other words, these plasma particles with mass m, charge
q and four velocity Uµ in geodesic motion will satisfy
aν = Uµ∇µUν = 0 (aν is the absolute acceleration of
the plasma particles defined in Appendix A). However,
when electromagnetism is turned on, the particle trajec-
tories will obey aν = Uµ∇µUν = (q/m)F νµU

µ. One
must, therefore, be cognizant of the non-geodesic motion
induced by an external electromagnetic field.

Second, the magnetofluid formalism provides an ele-
gant approach to determining the velocities of plasma
elements interacting electromagnetically. For minimal
coupling to gravity, it easily follows from Eq. (5) that
the force-free motion of plasma particles with electro-
magnetic interactions can be described by qUνMµν = 0,
which is equivalent to Uµ∇µUν = (q/m)F νµU

µ, for
G → 1 (i.e., by turning off thermodynamics), when the
latter is cast in unified magnetofluid variables. The ma-
jor difference is that the former can also describe the
dynamics of a continuous matter distribution (with the
inclusion of thermodynamics) like plasma in an equilib-
rium state, whereas the latter describes the dynamics of
only discrete charged particles in an external electromag-
netic field.

Third, with a 3+1 decomposition of spacetime, the
force-free (equilibrium) motion of plasma particles in
an external electromagnetic field can also be described
by Eqs. (14-16) for G → 1 and Γ = −(1/α)nµU

µ =

1/
√
−gtt − v2 as defined in Appendix A. Note that the

second equality follows from UµUµ = −1. Physically,
the Lorentz factor Γ relates an Eulerian observer (flowing
with the timelike normal vector nµ perpendicular to the
spacelike hypersurface) to a Lagrangian observer moving
with plasma four-velocity Uµ at each point in spacetime.
Since the plasma four-velocity Uµ at each point in the
accretion disk is the consequence of all the forces (not
just gravity) acting on the plasma, it can be used in Γ
in equations (14-16) to solve for the equilibrium states of
plasma. Thus, for geodesic motion, Γ is completely de-
termined by the corresponding metric elements, whereas
it is determined from both metric elements and velocities
in non-geodesic motion of equilibrium state plasma, the
latter of which need to be determined by Eqs. (14-16).

Finally, for geodesic motion, the plasmas rotate along
stable circular orbits around black holes with vθ ≈ 0.

In the thin accretion disk model, it is also assumed that
vφ >> vr. However, since we investigate a system of
plasma influenced by both gravity and electromagnetism,
we relax the condition of a negligible poloidal velocity vθ
of a thin accretion disk and search for the equilibrium
magnetic/velocity field profile in the equatorial plane of
the accretion disk, i.e., at θ = π/2.

Using the Lorentz factor

Γ =
1√

−gtt − v2
θ − v2

φ

, (31)

we will now numerically solve Eqs.(14-16) to obtain the
equilibrium states of plasma in accretion disks of both
Schwarzschild and Kerr geometry.

A. Schwarzschild geometry

For a spherically symmetric and static space-time
(Schwarzschild space-time), the relevant space-time met-
ric elements are

gtt = −α2 = −(1− 2rg
r

) ; grr = (1− 2rg
r

)−1,

gθθ = r2 ; gφφ = r2 sin2 θ. (32)

For this geometry, normalized Eqs. (18)-(20) read

~B = µe~ve, (33)

~B + (∇× (GΓi~vi)) = µi~vi, (34)

∇× (α~B) = ηn̂(r)α(Γi~vi − Γe~ve), (35)

where the density factor n̂ can be a function of radial
distance in the accretion disk, decaying as we move away
from the event horizon. We have numerically solved this
system again in the overwhelmingly justified limit η →
∞.

Fig. (2) shows the velocity profiles for vφ and vθ. The
main figure gives the profiles for the azimuthal velocity
vφ, whereas the inset shows the poloidal velocity vθ for
three different values of the thermodynamic function G.
This factor is approximated as G ≈ 1 + (5/2) kbT/mc

2

with kb being the Boltzmann constant [11]. The tem-
perature profile is chosen to be that of a blackbody,
T (r) ∼ r−3/4. It should be noted that in standard accre-
tion disk theory with proper GR corrections, the accre-
tion disk is divided into inner, middle and outer regions
with slightly different temperature profiles for each re-
gion [29, 30]. Since the goal of the paper is to investigate
the changes due to GR, we adopt only one profile and
note that the qualitative features of our results are still
valid for different regions in the accretion disk.

Starting with initial values of vφ(r = 6) = 0.408 and
vθ(r = 6) = 0.04 for a system with ε = 0, the plot
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FIG. 2: (Color Online)Decaying solution of vφ and vθ in an
accretion disk near a Schwarzschild black hole for initial values
of 0.408 and 0.04 respectively. Starting from r = 6, three
lines for both velocity profiles show decay for three different
initial values of temperature from T = 0K (cold) to T = 2 ×
109K(hot). For both velocity profiles, the decaying solution
with the highest temperature decays slowest.

shows the decay rate for both velocity components slow-
ing down with increasing temperature. It should be noted
here that our system has a certain ambiguity for the ex-
act initial values of velocity profiles, as we can set the
values either far away or at the inner most stable circu-
lar orbit (isco) in the black hole accretion disk. Unlike
geodesic motion where the azimuthal velocity for the isco,
vφ(r = 6) = 0.408, can be derived solely from the met-
ric elements and their radial derivatives as shown in Eq.
(44), determining the same for non-geodesic motion re-
quires solving the involved orbital plasma dynamics in
accretion disks with electromagnetic interactions as well
as a complicated set of disk structure equations in GR.
On the other hand, as r →∞, it is obvious that geodesic
and non-geodesic velocities approach zero which, though
a viable analytical option for an initial value, turns out
be infeasible for numerical computation. Therefore, ini-
tial values for geodesic velocities at isco in the accretion
disk can serve as a convenient benchmark for numerical
computation; these in fact have been used in this paper
for both black hole geometries.

Fig.(3), on the other hand, shows an oscillatory decay-
ing profile of both velocity components in the accretion
disk near a Schwarzschild black hole. This oscillatory
behavior can be understood from the classical solution
where sinusoidal behavior emerges as soon as there is a
difference between the two Lagrange multipliers, in this
case ε = 0.5. The difference in Lagrange multipliers in-
troduces a new length scale on which the new oscillatory
behavior depends. In contrast to the decaying solution,
these profiles show change in frequency as well as decay
rate for different temperatures. Similar to the classical
case, the poloidal velocity oscillates approximately π/2

FIG. 3: (Color Online)Oscillatory solution of vφ and vθ in an
accretion disk near a Schwarzschild black hole for initial val-
ues of 0.408 and 0.04 respectively. Starting from r = 6, three
oscillatory lines for both velocity profiles show decay for differ-
ent initial temperatures T = 0K (solid), T = 109K (dashed),
and T = 2 × 109K(dotted). Blue lines (initially upper) and
red lines (initially lower) represent vφ and vθ respectively. For
both velocity profiles, the frequency of oscillation changes as
the temperature changes.

out of phase and with the same decaying amplitude as
the azimuthal velocity.

As a simple exercise to gain insight into the role gravity
plays in shaping the equilibrium states, we explore the
regime where v2 << r−1 << 1 and Taylor expand α and
Γ to lowest order: α ≈ 1 − 1/r and Γ ≈ 1 + 1/r. The
approximate solutions, now, still take the form Qθ =
Q̂θe

s(r)r and Qφ = Q̂φe
s(r)r, where s(r) obeys

(
1− 1

r

)[(
s+ r

ds

dr

)(
1 +

1

r

)
− 1

r2

]
= ±i(µi − µe),

(36)
and is solved as

s(r) = ±i(µi−µe)
(

1− tanh r

r

)
+

1

r
log

(
r

1 + r

)
, (37)

implying that the frequency and the decay rate have
changed compared to the classical solution; the changes
are most pronounced at small r. In particular, now
v ∼ 1/(1 + r) so that the decay rate is slower than the
1/r decay seen in the classical case; as expected, it ap-
proaches 1/r for large r. Furthermore, the frequency of
oscillation also reduces at small distances from the black
hole due to the additional tanh(r) term. In other words,
the curvature of space-time tends to extend the length
scales associated with the variations in the velocity pro-
files.
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FIG. 4: (Color Online)Decaying solution of vφ and vθ in an
accretion disk near a Kerr black hole for initial values of 0.394
and 0.03 respectively. Starting from r=4, three lines for both
velocity profiles show decay for three different initial values of
temperature from T = 0K (cold) to T = 2 × 109K(hot). For
both velocity profiles, the decaying solution with the highest
temperature decays slowest.

B. Kerr geometry

Now, for an axisymmetric (but not spherically sym-
metric) stationary system, like the Kerr black hole, the
shift function β is non-zero. Consequently, the pertinent
equation (11), in general, does not show any similarity
to standard 3D vortex dynamics. The shift function for

rotating black holes can be taken to be ~β = −ω êφ, where
ω = −gtφ/gφφ represents the angular velocity of the black
hole measured by a zero angular momentum observer.
The term involving the shift function, however, will give
zero contribution since we assumed that Ω has only ra-
dial dependence. It can be further shown that the term
involving the expansion factor Θ vanishes for the Kerr

metric as well. Thus, the solution ~Ω = Λ~v is valid in this
case also.

The relevant space-time metric elements in Boyer-
Lindquist coordinates are [31]

gtt = −α2 = − (∆r − a2)

r2
; grr =

r2

∆r
,

gtφ = −2a

r2
(r2 + a2 −∆r) ; gφφ =

(r2 + a2)2 −∆ra
2

r2
,

(38)

where ∆r = (r2 + a2) − 2rgr and a is the angular mo-
mentum of the black hole. Though the Lorentz factor
from Eq. (31) is taken to be of the same form as for
Schwarzschild spacetime, it is understood from the na-
ture of spacetime that the velocity profiles subsume ef-
fects from black hole angular momentum.

Figs. (4) and (5) show azimuthal and poloidal velocity
profiles, respectively, in the Kerr spacetime for different

FIG. 5: (Color Online)Oscillatory solution of vφ and vθ in an
accretion disk near a Kerr black hole for initial values of 0.394
and 0.03 respectively. Starting from r = 4, three oscillatory
lines for both velocity profiles show decay for different initial
temperatures T = 0K (solid), T = 109K (dashed), and T =
2 × 109K(dotted). Blue lines (initially upper) and red lines
(initially lower) represent vφ and vθ respectively. For both
velocity profiles, the frequency of oscillation changes as the
temperature changes.

temperatures starting at r = 4.0 with vφ(r = 4) = 0.394,
vθ(r = 4) = 0.03, and a = 0.99rg. The reason for
initializing the system at r = 4, rather than at isco
(r = 1.4545), is discussed in Sec. VI. The temperature
profile in the accretion disk is assumed to be similar to
that of a blackbody spectrum. Both decaying and oscilla-
tory solutions have similar features to the Schwarzschild
geometry, again with the oscillatory behavior developing
from a difference between µi and µe.

At this juncture, it will be interesting to understand
the related physics behind the above velocity profiles rep-
resenting electron-ion Beltrami states in the accretion
disks around Schwarzschild and Kerr black holes. In par-
ticular, it is necessary to understand why the velocity
profiles for equilibrium states in different geometries de-
cay at different rates. One potential cause for these differ-
ences may arise from a redistribution of the total energy
of the plasma in both accretion disks as it relaxes. How-
ever, a detailed account of this redistribution can only be
discovered by exploring the relativistic Bernoulli condi-
tion for the plasma dynamics, which is examined next.

V. BERNOULLI CONDITION

In GR, ∇νTµν = 0 does not always imply strict local
energy conservation because the gravitational tidal forces
work on the plasma and may increase or decrease its lo-
cally measured energy. Only when the background space-
time structure possesses some kind of symmetry, such
as the static (stationary) and spherically symmetric (ax-
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isymmetry) of Schwarzschild (Kerr) spacetimes, might
the spacetime allow some form of local energy conserva-
tion. Due to the symmetry in both Schwarzschild (static
and spherically symmetric) and Kerr geometry (station-
ary and axisymmetry), the time evolution vector field tµ,
introduced in Appendix A, must be a Killing vector field
satisfying Killing’s equation ∇µtν +∇νtµ = 0 [22]. Phys-
ically, the corresponding metric along this vector field
remains invariant. Also, it implies that Lie derivatives
along tµ can be considered as regular ‘time derivatives’.
Next, since the equation of motion (5) projected along
the time evolution vector field tµ yields the energy con-
servation equation, the Bernoulli condition for plasma in
both geometries can be derived as follows:

qtµUνMµν = Ttµ∇µσ = tµ∇µH −
1

n
tµ∇µp (39)

with H = G/n denoting enthalpy per baryon. Next, with
Eq. (1), (7) and ∇µtν + ∇νtµ = 0, Eq. (39) becomes,
after some algebra,

Uµ∇µ (−qtµPµ) + L~t(qUµAµ)

+ 1
nL~tp− qAµL~tU

µ = 0. (40)

Note that we have used the generalized momentum Pµ =
Aµ+(mc/q)GUµ defined in Eq. (1). It is obvious that the
left hand side of the above equation cannot be expressed
as a perfect gradient along the plasma four-velocity Uµ.
However, since all the Lie derivatives (time derivatives)
in Eq. (40) vanish for stationary and symmetric flow in
the equilibrium states of plasma, the desired Bernoulli
condition in covariant form manifests as

Uµ∇µ
(
−tµP̃µ

)
= 0 (41)

with P̃µ := qPµ. This condition implies that the scalar

quantity within the gradient, −tµP̃µ, remains constant
along the fluid line. However, as expected, this quantity
is nothing but the time component of the generalized mo-
mentum and thereby is related to the local total energy
density of plasma in its equilibrium states.

In order to express −tµP̃µ in familiar physical quan-
tities, it is necessary to divide both sides of Eqn.
(41) by −tµP̃µ and rewrite the Bernoulli condition as

Uµ∇µ
(
ln(−tµP̃µ)

)
= 0. Then, using tµ = αnµ + βµ

from Appendix A to expand −tµP̃µ, we find

ln(−tµP̃µ) = ln

[
αqA0 + α2HΓ

(
1− vµβ

µ

α2

)]
, (42)

where tµAµ = A0 := −αΦE + βµAµ (with ΦE being
the electric potential) is the time component of the four-
vector potential. While the first term of the above ex-
pansion obviously implies the electromagnetic potential
energy of a plasma element in a curved background space-
time, the meaning of the second term is not clear from the
way it is expressed. If the effect of the electromagnetic

field was small, i.e., the first term in the above equation is
much smaller than the second term (the effect of gravita-
tional and other fields) in curved background spacetime,
the meaning of the second term can become clear after
re-expressing Eq. (42) as

ln
[
αqA0 + α2HΓ

(
1− vµβ

µ

α2

)]
= ln

[
α2HΓ

(
1− vµβ

µ

α2

)(
1 + qA0

HαΓ
(

1− vµβ
µ

α2

))]
' ln(α2) + ln(H) + ln(Γ) + ln

(
1− vµβ

µ

α2

)
+ qA0

HαΓ
(

1− vµβ
µ

α2

) . (43)

It is evident from the above Eq. (43) that the follow-
ings take place in the Newtonian limit: ln(α2) ' 2ΦG/c

2

with ΦG being the gravitational potential, ln(H) tends
towards the non-relativistic specific enthalpy, ln(Γ) '
U2/2 for U2 << 1, ln

(
1− vµβ

µ

α2

)
→ 0 (energy related to

black hole rotation) since βµ → 0, and the last term goes
to −qΦE/H.

For simple geodesic motion without electromagnetic
interactions, on the other hand, a similar condition can
easily be derived as ln(−Uµtµ) = constant that trans-

lates into ln(α2) + ln(Γ) + ln
(

1− vµβ
µ

α2

)
= constant. In

the non-relativistic limit, as expected, it is the sum of the
gravitational potential energy and the associated kinetic
energy that remain constant.

In principle, it is possible to determine how the total
energy is redistributed by computing the relative ratios
of individual to total energy from the functional form
of each energy. The exact functional forms of ln(α2),

ln(Γ) and ln
(

1− vµβ
µ

α2

)
can easily be determined from

the metric of the background geometry. However, the
functional forms of ln(H) and Aµ can only be determined
from the structure equations of a thin disk formed from
relaxed states of plasma in non-geodesic motion, which
is rather involved and thus will be explored in our future
endeavor. Next, we explore the related physics with the
use of the above Bernoulli condition to explain the behav-
ior of equilibrium states of plasma in black hole accretion
disks.

VI. DISCUSSION

In this paper, we have explored the general relativis-
tic solutions of equilibrium states of a hot fluid in ac-
cretion disks within the framework of magnetofluid uni-
fication and have examined the corresponding relativis-
tic Bernoulli condition. The non-relativistic solution has
turned out to be qualitatively similar to the general rela-
tivistic solutions. However, due to the presence of space-
time curvature in the background of accreting plasma,
general relativistic corrections turned out to be signifi-
cant. Also, semi-relativistic temperatures of the fluid in
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FIG. 6: (Color Online)Comparison between Schwarzschild
and Minkowski profiles for vφ and vθ for cold plasma. Two
azimuthal velocity profiles for nongeodesic motion with dif-
ferent initial values 0.5 and 0.408 (same as geodesic value at
r = 6) are shown. The initial values of the poloidal velocity
profiles for Schwarzschild and Minkowski systems are kept at
0.04.

FIG. 7: (Color Online)Comparison between Kerr and
Minkowski profiles for vφ and vθ for cold plasma. Two az-
imuthal velocity profiles for nongeodesic motion with different
initial values 0.5 and 0.394 (same as geodesic value at r = 4)
are shown. The initial values of the poloidal velocity profiles
for Schwarzschild and Minkowski systems are kept at 0.03.

the accretion disk change the decay rate and oscillation
frequency of the velocity profile.

Figs.(6) and (7) show comparative decaying (ε = 0) ve-
locity profiles for accretion disk plasmas in Schwarzschild
and Kerr geometries respectively. Each set contains so-
lutions for two different initial conditions, and also for
Minkowski spacetime (under the appropriate special rel-
ativistic limits). Both of these figures present, addition-
ally, the azimuthal velocity profile vφ for geodesic motion
in a gravitational field. The general expression for vφ in

geodesic motion is [25]

vφ = r
dφ

dt
= r
−gtφ,r +

√
(gtφ,r)2 − gtt,rgφφ,r
gφφ,r

, (44)

where we assumed that fluid elements are moving in Ke-
plerian orbits. Solving for geodesic motion in the space-
time of a Schwarzschild black hole yields a very simple so-
lution vφ = 1/

√
r. We need to resort to numerical means

to find the geodesic velocity profile for a Kerr black hole.
The calculated velocity profile, along with the associated
Lorentz factor, for a Kerr black hole increases at very
small radii (progressing to larger r) before settling into
its decay [25]. To isolate the large-scale decaying be-
havior of the equilibrium states, we initialized our Kerr
geometry profiles at r = 4, outside of this anomalous re-
gion. In order to avoid redundancy, we did not include a
comparative plot on oscillating solutions in this section.
It must be emphasized that a nonzero vθ is required for
the non-geodesic solutions (also presented in Figs. (6)
and (7)), each exhibiting a similar decay rate to its vφ
counterpart. Of particular interest are the velocity pro-
files for Minkowski spacetime, which exhibit faster decay
rates than the general relativistic systems.

At this point, it would be desirable to substantiate our
motivations for resorting to the above geodesic velocity
profiles for comparison. First, as discussed in section
IV, turning off thermodynamics and electromagnetism in
non-geodesic motion of plasma presents us with two dis-
tinct systems but with similar mathematical structure: i)
non-interacting neutral fluid (dust particles) in geodesic
motion in the accretion disk, and ii) discrete plasma par-
ticles in geodesic motion. An analysis of the former sys-
tem (the fluid model), however, encounters the same is-
sues with arbitrariness in initial values as discussed in sec-
tion IV A and, therefore, its solution cannot be used as a
standard velocity profile for comparison with our equilib-
rium hot charged fluid. On the contrary, the analysis of
the latter system, though void of properties of interacting
continuous media, offers us exact velocity profiles deter-
mined exclusively from metric elements and their radial
derivatives as shown in Eq. (44). Therefore, the compar-
ison of these known velocity profiles to the non-geodesic
ones, along with the corresponding relativistic Bernoulli
conditions, unravels the associated physics concealed in
an N-particle system (a hot charged fluid in the accretion
disk of a black hole) interacting via thermodynamics and
electromagnetism.

Now, the comparative velocity profiles in Figs. (6) and
(7) can be understood by examining Eq. (43) derived in
the discussion on the Bernoulli condition. First, it is
obvious that the inclusion of general relativistic correc-
tions has slowed down the decay rate (or growth rate) of
velocity profiles significantly for both background geome-
tries. The plasmas further away from the black holes are
moving faster compared to its motion in flat (Minkowski)
spacetime. Second, for both geometries, the non-geodesic
velocity profiles would decay faster than the correspond-
ing geodesic velocity profiles, even though the same initial
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velocity is assumed for both cases. We included an addi-
tional initial value solution to better compare the decay
rates with geodesic motion. Though the two correspond-
ing dynamic systems are intrinsically different, such be-
havior of faster decay rates arises from the possibility
that the kinetic energy of plasma in non-geodesic mo-
tion is redistributed into electromagnetic, kinetic, gravi-
tational and thermal energies of the system. This results
in a lower kinetic energy for non geodesic motion, but the
geodesic kinetic energy is transformed into only gravita-
tional energy as the radius of the circular orbit increases.

Also, it is obvious from Eq. (43) that the term

ln
(

1− vµβ
µ

α2

)
signifies a higher total energy for plasmas

in Kerr as compared to Schwarzschild geometry. Hence,
though the realm of stable circular orbits are different,
the velocity profiles in Kerr geometry will decay slower
than that in Schwarzschild geometry, which can be seen
from the corresponding radial derivatives of the velocity
profiles. The plasmas surrounding a Kerr blackhole can
maintain stable circular orbits at distances closer than
that of the closest stable orbits in Schwarzschild geom-
etry, which can be attributed to the rotation in Kerr
spacetime [25, 31]. The Bernoulli condition, Eqn. (43),
clearly shows that, for non-geodesic plasma flow in the ac-
cretion disks for both geometries, the plasma is endowed
with additional energies from thermodynamics and elec-
tromagnetism, thus displaying a rich interplay of plasma
dynamics and GR.

On the other hand, the oscillating solutions displayed
in Figs. (1), (3), and (5) show that vθ oscillates with
the same amplitude as vφ. The presence of such large az-
imuthal velocities calls into question the disk structure we
have assumed to describe our system. To better visualize
this system (in comparison to the decaying solution), we
show a 3D rendering of the Kerr solution (T = 0 and
ε = 0.5) in Fig. (8). The largest velocities out of the
plane are very close to the black hole. These could ac-
count for steady plasma winds from the disk that could
fuel ambipolar relativistic jets. This motion outside of
the plane is beyond the scope of this current paper; a
more detailed study of disk-jet physics would be required
to understand more precisely the mechanisms at play.

We recall that this oscillatory behavior is traced back
to the difference ε = µi − µe between the Lagrange mul-
tipliers, which in turn depends upon each species’ con-
served generalized helicity. The associated helicities have
contributions from both the electromagnetic and flow
fields. As the mass of the electron is negligible, there
will be a difference between the two helicities:

He =< ~B · ~A >, (45)

Hi =< ( ~B +
mic

q
~∇× ( ~GΓivi)) · ( ~A+

mic

q
G~vi) > . (46)

The microscopic phenomenon related to the correspond-
ing difference in Lagrange multipliers manifests itself in
the large scale oscillatory velocity profile. With changing
ε, the frequency of the macroscopic oscillating velocity

FIG. 8: (Color Online)Poloidal velocity for the Kerr oscillat-
ing (ε = 0.5) solution in the plane of the disk. vφ is given
by the color scheme whereas vθ represents height in the plot.
The axes from −40 to 40 depict the length scale in the plane
of the disk in units of rg.

profile changes.

VII. CONCLUSION

The relaxation of a two species magnetofluid in an ac-
cretion disk is described in the presence of gravity. Relax-
ation is achieved by a constrained energy minimization;
the constraints are provided by the demands of preserv-
ing the system invariants as the dynamics evolves. For
the Hall MHD model of the electron-ion plasma, the in-
variants are the magnetic and the generalized helicities.

Such relaxed states seem to be accessible to accretion
disk plasmas that are subject to various forces including
the ones stemming from thermodynamic potential gradi-
ents, curvature effects, shear flows etc, as evident from
the corresponding Bernoulli condition. In this paper, we
have considered a simple 1D problem in the θ = π/2
plane of an accretion disk to delineate the GR effects
with approximate analytical and numerical methods.

We find that these equilibria are significantly different
from both their NR counterparts; the plasma dynamics is
also very different from purely geodesic motion. Effects
arising from curved spacetime, semi-relativistic temper-
ature and blackhole rotation give a rich and more re-
strictive structure to the equilibrium configuration. The
added physics in non-geodesic motion forces the veloc-
ity and field profiles into steeper decay rates than that
in geodesic motion, supported by the analysis of the
Bernoulli condition.

The oscillatory solutions reveal that the accretion disk
will have regions of significant azimuthal flow. These
states, in principle, could be responsible for a collimated
jet structure emanating from a black hole, as the plasma
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elements can follow the vortical field lines emanating out
of the disk [32].

This paper, however, constitutes a conceptual and pre-
liminary but, hopefully, an insightful investigation of
plasmas in accretion disks surrounding very compact ob-
jects. The real accretion disks have finite width with
density and temperature varying along the vertical di-
rection [33]. A full treatment will require at least a 2D
solution in different complex geometries [34–38].

Appendix A: 3+1 Dynamics of GravitoMagnetofluid

The approach chosen for the 3+1 splitting selects a
family of foliated fiducial 3-dimensional hypersurfaces
(slices of simultaneity) Σt labelled by a parameter t =
constant in terms of a time function on the manifold.
Furthermore, we let tµ be a timelike vector whose in-
tegral curves intersect each leaf Σt of the foliation pre-
cisely once and which is normalized such that tµ∇µt = 1.
This tµ is the ‘evolution vector field’ along the orbits of
which different points on all Σt ≡ Σ can be identified.
This allows us to write all space-time fields in terms of
t-dependent components defined on the spatial manifold
Σt. Lie derivatives of space-time field along tµ are iden-
tified with “time derivatives” of the spatial fields since
Lie derivatives reduce to partial time derivative for an
adapted coordinate system tµ = (1, 0, 0, 0).

Moreover, since we are using the Lorentzian signature,
the vector field tµ is required to be future directed.
Let us decompose tµ into normal and tangential parts
with respect to Σt by defining the lapse function α and
the shift vector βµ as tµ = αnµ + βµ with βµnµ = 0,
where nµ is the future directed unit normal vector
field to the hypersurfaces Σt. More precisely, the
natural timelike covector nµ = (−α, 0, 0, 0) = −α∇µt
is defined to obtain nµ = (1/α,−βµ/α) which satisfy
the normalization condition nµnµ = −1. Then, the
space-time metric gµν induces a spatial metric γµν
by the formula γµν = gµν + nµnν . Finally, the 3+1
decomposition is usually carried out with the projection
operator γµ ν = δµ ν + nµnν , which satisfies the cond!
ition nµγµν = 0. Also, the acceleration is defined as
aµ = nν∇νnµ.

Now, with the above foliation of space-time, the space-
time metric takes the following canonical form [20]

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt), (A1)

and it immediately follows that, with respect to an Eu-
lerian observer, the Lorentz factor turns out to be

Γ =
[
α2 − γij(βiβj + 2βivj + vivj)

]−1/2
, (A2)

satisfying dτ = dt/Γ, where vi is the ith component of
fluid velocity ~v = d~x/dt. Then the decomposition for the
4-velocity is [24]

Uµ = αΓnµ + Γγµ νv
ν , (A3)

with nµU
µ = −αΓ.

Now, since our unified anti-symmetric field tensorMµν

is constructed from the antisymmetric tensors Fµν and
Dµν , we apply the ADM formalism of electrodynamics
presented in [20–23] to define the generalized electric and
magnetic field, respectively, as

ξµ = nνMµν ; Ωµ =
1

2
nρε

ρµστMστ , (A4)

and thus express the unified field tensor

Mµν = nµξν − nνξµ − εµνρσΩρnσ. (A5)

We remind the reader that the generalized magnetic field
and the generalized vorticity are essentially synonymous.
Using the definition of the unified field tensor Mµν , the
expressions of 3D generalized electric and magnetic fields
turn out to be

~ξ = ~E − m

q
(1 + λfm(R)− λRFm(R))~∇(αGΓ)

− m

q
λFm(R)~∇(αGRΓ)

− m

q
(1 + λfm(R))

[
2σ · (GΓ~v) +

2

3
ΘGΓ~v

]
− m

qα
(1 + λfm(R)− λRFm(R))

(
Lt(GΓ~v)− L~β(GΓ~v)

)
− m

qα
λFm(R)

(
Lt(GRΓ~v)− L~β(GRΓ~v)

)
; (A6)

~Ω = ~B +
m

q
(1 + λfm(R)− λRFm(R))~∇× (GΓ~v)

+λFm(R)
m

q
~∇× (RGΓ~v), (A7)

where σ = σνµ and Θ are, respectively, the shear
and expansion of the congruence, defined as σαβ =
γµαγ

ν
β∇(µnν) − 1

3θγµν and Θ = ∇µnµ. We have also used

the relation ∇µnν = −aνnµ+σαβ+ 1
3θγµν to derive (A6).

Finally, we used L to denote Lie derivative.
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