Bacterial cell division is a complex process brought about by the coordinated action of multiple proteins. Separation of daughter cells during the final stages of division involves cleavage of new cell wall laid down at the division septum. In E. coli, this process is governed by the action of N-acetylmuramoyl-L-alanine amidases AmiA/B/C, which are regulated by their LytM activators EnvC and NlpD. While much is known about the regulation of septum cleavage in E. coli, the mechanism of daughter cell separation is not clear in Caulobacter crescentus, a dimorphic crescent-shaped bacterium. In this work, we characterized the role of AmiC, the only annotated amidase in C. crescentus. AmiC from C. crescentus is functional in E. coli and restores cell separation defects seen in E. coli amidase mutants, suggesting that AmiC has septum splitting activity. The medial localization of AmiC was independent of DipM, an LytM domain-containing endopeptidase. Our results indicate that enzymatic activity is essential for medial recruitment of AmiC. Overexpression of AmiC causes cell separation defects and formation of chains. Finally, overexpression of AmiC in cells inhibited for cell division leads to lysis. Collectively, our findings reveal that regulation of daughter cell separation in C. crescentus differs from that of E. coli and can serve as a model system to study bacterial cytokinesis. © 2017, Springer-Verlag GmbH Germany, part of Springer Nature.