Header menu link for other important links
X
Aliovalent Ta-Doping-Engineered Oxygen Vacancy Configurations for Ultralow-Voltage Resistive Memory Devices: A DFT-Supported Experimental Study
A. Barman, D. Das, S. Deshmukh, P.K. Sarkar, D. Banerjee, R. Hübner, M. Gupta, C.P. Saini, S. Kumar, P. JohariShow More
Published in American Chemical Society
2022
PMID: 35866235
Volume: 14
   
Issue: 30
Pages: 34822 - 34834
Abstract
Alteration of transport properties of any material, especially metal oxides, by doping suitable impurities is not straightforward as it may introduce multiple defects like oxygen vacancies (Vo) in the system. It plays a decisive role in controlling the resistive switching (RS) performance of metal oxide-based memory devices. Therefore, a judicious choice of dopants and their atomic concentrations is crucial for achieving an optimum Voconfiguration. Here, we show that the rational designing of RS memory devices with cationic dopants (Ta), in particular, Au/Ti1-xTaxO2-δ/Pt devices, is promising for the upcoming non-volatile memory technology. Indeed, a current window of ∼104is realized at an ultralow voltage as low as 0.25 V with significant retention (∼104s) and endurance (∼105cycles) of the device by considering 1.11 at % Ta doping. The obtained device parameters are compared with those in the available literature to establish its excellent performance. Furthermore, using detailed experimental analyses and density functional theory (DFT)-based first-principles calculations, we comprehend that the meticulous presence of Voconfigurations and the columnar-like dendritic structures is crucial for achieving ultralow-voltage bipolar RS characteristics. In fact, the dopant-mediated Vointeractions are found to be responsible for the enhancement in local current conduction, as evidenced from the DFT-simulated electron localization function plots, and these, in turn, augment the device performance. Overall, the present study on cationic-dopant-controlled defect engineering could pave a neoteric direction for future energy-efficient oxide memristors. © 2022 American Chemical Society. All rights reserved.
About the journal
Published in American Chemical Society
Open Access
Impact factor
N/A