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Let F and G be two bounded operators on two Hilbert spaces. Let their numerical 
radii be no greater than one. This note investigates when there is a Γ -contraction 
(S, P ) such that F is the fundamental operator of (S, P ) and G is the fundamental 
operator of (S∗, P ∗). Theorem 1 puts a necessary condition on F and G for them to 
be the fundamental operators of (S, P ) and (S∗, P ∗) respectively. Theorem 2 shows 
that this necessary condition is also sufficient provided we restrict our attention 
to a certain special case. The general case is investigated in Theorem 3. Some of 
the results obtained for Γ -contractions are then applied to tetrablock contractions 
to figure out when two pairs (F1, F2) and (G1, G2) acting on two Hilbert spaces 
can be fundamental operators of a tetrablock contraction (A, B, P ) and its adjoint 
(A∗, B∗, P ∗) respectively. This is the content of Theorem 3.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The symmetrized bidisc is

Γ =
{
(z1 + z2, z1z2) : |z1|, |z2| ≤ 1

}
.

Its distinguished boundary, i.e., the Shilov boundary with respect to the algebra of functions continuous on 
Γ and holomorphic in the interior of Γ is bΓ = {(z1 + z2, z1z2) : |z1| = 1 = |z2|}. A pair of commuting 
bounded operators (S, P ) on a Hilbert space H having the symmetrized bidisc as a spectral set is called a 
Γ -contraction. This means that the joint spectrum σ(S, P ) ⊂ Γ and

∥∥f(S, P )
∥∥ ≤ sup

{∣∣f(s, p)
∣∣ : (s, p) ∈ Γ

}
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for all f ∈ C[z1, z2]. The study of Γ -contractions was introduced and carried out very successfully over 
several papers by Agler and Young, see [3] and the references therein. It follows that the operator P is a 
contraction and ‖S‖ ≤ 2. It can be seen directly from the definition that (S∗, P ∗) is a Γ contraction too. 
Let DP = (I − P ∗P )1/2 and DP = RanDP . The fundamental operator is the unique bounded operator on 
DP that satisfies the fundamental equation

S − S∗P = DPFDP .

It has numerical radius w(F ) no greater than one. The fundamental operator of a Γ -contraction was in-
troduced in [8]. There it is shown that the fundamental equation has a unique solution. The discovery 
of the fundamental operator of a Γ -contraction put a spurt in the activities around it. In particular, 
we would like to mention Sarkar’s work [11] which made a significant contribution to the understanding of 
Γ -contractions.

In this paper, B(H) for a Hilbert space H will denote the algebra of all bounded operators on H. Since 
(S∗, P ∗) is also a Γ -contraction, it has its own fundamental operator G ∈ B(DP∗) with w(G) ≤ 1. Note 
how both F and G feature in the following explicit construction of a boundary normal dilation.

A boundary normal dilation of a Γ -contraction (S, P ) is a pair of commuting normal operators (R, U)
on a Hilbert space K containing H such that (R, U) is a dilation of the given pair (S, P ) and σ(R, U), the 
joint spectrum is contained in the distinguished boundary bΓ . Dilation means that

PHRmUn
∣∣
H = SmPn.

Such a pair (R, U) is also called a Γ -unitary. The following construction, done by two of the authors of the 
present paper in [9] and independently by Pal in [10], is one of the very few explicit constructions of dilations 
known, the only other ones being Schaeffer’s construction of the minimal unitary dilation of a contraction 
in [13] and Ando’s construction of a commuting unitary dilation of a pair of commuting bounded operators 
in [4].

Known Theorem. Let (S, P ) be a Γ -contraction. Let F and G be the fundamental operators of (S, P ) and 
(S∗, P ∗) respectively. Consider the space K defined as

K = · · · ⊕ DP ⊕DP ⊕DP ⊕H⊕DP∗ ⊕DP∗ ⊕DP∗ ⊕ · · · .

Let R and U be defined on K as follows.

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
...

...
...

...
...

...
· · · F F ∗ 0 0 0 0 0 · · ·
· · · 0 F F ∗ 0 0 0 0 · · ·
· · · 0 0 F F ∗DP −F ∗P ∗ 0 0 · · ·
· · · 0 0 0 S DP∗G 0 0 · · ·
· · · 0 0 0 0 G∗ G 0 · · ·
· · · 0 0 0 0 0 G∗ G · · ·
· · · 0 0 0 0 0 0 G∗ · · ·
...

...
...

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1.1)
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U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
...

...
...

...
...

...
· · · 0 I 0 0 0 0 0 · · ·
· · · 0 0 I 0 0 0 0 · · ·
· · · 0 0 0 DP −P ∗ 0 0 · · ·
· · · 0 0 0 P DP∗ 0 0 · · ·
· · · 0 0 0 0 0 I 0 · · ·
· · · 0 0 0 0 0 0 I · · ·
· · · 0 0 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.2)

Then the pair (R, U) is a Γ -unitary dilation of (S, P ).

This shows that it is of interest to know which pair of operators F and G, defined on different Hilbert 
spaces in general, satisfying w(F ) ≤ 1 and w(G) ≤ 1, qualify as fundamental operators. In other words, 
does there always exist a Γ -contraction (S, P ) such that F is the fundamental operator of (S, P ) and G is 
the fundamental operator of (S∗, P ∗)? In this note, our first result says that if there is such an (S, P ), then 
it forces a relation between F , G and P .

For a contraction P on a Hilbert space H, define

ΘP (z) =
[
−P + zDP∗

(
IH − zP ∗)−1

DP

]∣∣
DP

for all z ∈ D.

The function ΘP is called the characteristic function of the contraction P . By virtue of the relation PDP =
DP∗P (see Chapter 1, Section 3 of [14]), it follows that ΘP (z) is an operator from DP into DP∗ . For a given 
Hilbert space E , the symbol H2

E(D) stands for the Hilbert space of E valued analytic functions on D with 
square summable Taylor series coefficients at the origin. The characteristic function induces the operator 
MΘP

in B(H2
DP

(D), H2
DP∗ (D)) defined by

MΘP
f(z) = ΘP (z)f(z) for all z ∈ D.

Theorem 1. Let (S, P ) on a Hilbert space H be a Γ -contraction and F , G be the fundamental operators of 
(S, P ) and (S∗, P ∗) respectively. Then

ΘP (z)
(
F + F ∗z

)
=

(
G∗ + Gz

)
ΘP (z) (1.3)

holds, where ΘP is the characteristic function of P .

Since the theorem above gives a necessary condition, it is natural to ask about sufficiency. A contraction 
P is called pure if P ∗n strongly converges to 0 as n goes to infinity. This is Arveson’s terminology, see [5]. 
Sz.-Nagy and Foias called it a C.0 contraction.

A Γ -contraction (S, P ) is called pure if the contraction P is pure.

Theorem 2. Let P be a pure contraction on a Hilbert space H. Let F ∈ B(DP ) and G ∈ B(DP∗) be two 
operators with numerical radius not greater than one. If (1.3) holds, then there exists an operator S on H
such that (S, P ) is a Γ -contraction and F , G are fundamental operators of (S, P ) and (S∗, P ∗) respectively.

A contraction P is called completely-non-unitary (c.n.u.) if it has no reducing subspaces on which its 
restriction is unitary.

A Γ -contraction (S, P ) is called completely-non-unitary if the contraction P is completely-non-unitary.
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If P is not pure, the sufficiency condition is more complicated. The result for the c.n.u. case will be stated 
and proved in Section 3.

In the last section, we study when two pairs of operators can be fundamental operators of a tetrablock 
contraction and its adjoint. The set tetrablock is defined by

E =
{
x = (x1, x2, x3) ∈ C

3 : 1 − x1z − x2w + x3zw �= 0 whenever |z| < 1 and |w| < 1
}
.

See [1] and [2] to learn more about the geometric properties of the domain. A commuting triple of operators 
(A, B, P ) on a Hilbert space H is called a tetrablock contraction if E is a spectral set. Like Γ -contractions, 
tetrablock contractions also possess fundamental operators and these are introduced in [6]. Fundamental 
equations for a tetrablock contraction are

A−B∗P = DPF1DP and B −A∗P = DPF2DP (1.4)

where F1, F2 are bounded operators on DP . Theorem 1.3 in [6] says that the two fundamental equations 
can be solved and the solutions F1 and F2 are unique. The unique solutions F1 and F2 of Eqs. (1.4) are 
called the fundamental operators of the tetrablock contraction (A, B, P ). Moreover, w(F1) and w(F2) are 
not greater than 1.

The adjoint triple (A∗, B∗, P ∗) is also a tetrablock contraction as can be seen from the definition. By what 
we stated above, there are unique G1, G2 ∈ B(DP∗) such that

A∗ −BP ∗ = DP∗G1DP∗ and B∗ −AP ∗ = DP∗G2DP∗ . (1.5)

Moreover, w(G1) and w(G2) are not greater than 1. A tetrablock contraction (A, B, P ) on a Hilbert space 
H is called pure tetrablock contraction, if the contraction P is pure. Along the lines of [7], a model theory 
for pure tetrablock contractions was developed in [12], using the fundamental operators. Our result for 
tetrablock contractions is the following.

Theorem 3. Let F1 and F2 be fundamental operators of a tetrablock contraction (A, B, P ) and G1 and G2
be fundamental operators of the tetrablock contraction (A∗, B∗, P ∗). Then

(
G∗

1 + G2z
)
ΘP (z) = ΘP (z)

(
F1 + F ∗

2 z
)

(1.6)(
G∗

2 + G1z
)
ΘP (z) = ΘP (z)

(
F2 + F ∗

1 z
)

for all z ∈ D. (1.7)

Conversely, let P be a pure contraction on a Hilbert space H. Let G1, G2 ∈ B(DP∗) have numerical radii no 
greater than one and satisfy

[G1, G2] = 0 and
[
G1, G

∗
1
]

=
[
G2, G

∗
2
]
. (1.8)

Suppose G1 and G2 also satisfy Eqs. (1.6) and (1.7), for some operators F1, F2 ∈ B(DP ) with numerical radii 
no greater than one. Then there exists a tetrablock contraction (A, B, P ) such that F1, F2 are fundamental 
operators of (A, B, P ) and G1, G2 are fundamental operators of (A∗, B∗, P ∗).

2. Results for pure Γ -contractions

Definition 4. Let F and G be two Hilbert spaces. Let F ∈ B(F) and G ∈ B(G). Then (F, G) is called an 
admissible pair of operators if there is a Γ -contraction (S, P ) on a Hilbert space H such that DP = F , 
DP∗ = G, F is the fundamental operator of (S, P ) and G is the fundamental operator of (S∗, P ∗).
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The Hilbert spaces H2(D) and H2(T) are unitarily equivalent via the map zn �→ eint . Further, for a given 
Hilbert space L, H2

L(D) (respectively H2
L(T)) is unitarily equivalent to H2(D) ⊗L (respectively H2(T) ⊗L). 

We shall identify these unitarily equivalent spaces and use them, without mention, interchangeably as per 
notational convenience.

The following useful characterization of the fundamental operator can be found in [6] (Lemma 4.1).

Lemma 5. Let (S, P ) be a Γ -contraction on a Hilbert space H and F ∈ B(DP ) be its fundamental operator. 
Then F is the only operator which satisfies

DPS = FDP + F ∗DPP. (2.1)

The next lemma gives relations between the fundamental operators of Γ -contractions (S, P ) and (S∗, P ∗). 
These can be found in [9] (Lemma 7 and Lemma 11).

Lemma 6. Let (S, P ) be a Γ -contraction and F , G be fundamental operators of (S, P ) and (S∗, P ∗) respec-
tively. Then

PF = G∗P |DP
and DP∗DPF − PF ∗ = G∗DP∗DP −GP |DP

.

Proof of Theorem 1. For z ∈ D, we have

ΘP (z)
(
F + F ∗z

)
=

[
−P +

∞∑
n=0

zn+1DP∗P ∗nDP

](
F + F ∗z

)

= −PF + z
(
DP∗DPF − PF ∗) +

∞∑
n=1

zn+1DP∗P ∗nDPF +
∞∑

n=0
zn+2DP∗P ∗nDPF

∗

= −PF + z
(
DP∗DPF − PF ∗) +

∞∑
n=2

znDP∗P ∗n−2(P ∗DPF + DPF
∗)

= −PF + z
(
DP∗DPF − PF ∗) +

∞∑
n=2

znDP∗P ∗n−2S∗DP [by Lemma 5]

= −PF + z
(
DP∗DPF − PF ∗) +

∞∑
n=2

znDP∗S∗P ∗n−2DP .

On the other hand
(
G∗ + Gz

)
ΘP (z)

=
(
G∗ + Gz

)[
−P +

∞∑
n=0

zn+1DP∗P ∗nDP

]∣∣∣∣∣
DP

= −G∗P |DP
+ z

(
G∗DP∗DP −GP |DP

)
+

∞∑
n=1

zn+1G∗DP∗P ∗nDP +
∞∑

n=0
zn+2GDP∗P ∗nDP

= −G∗P |DP
+ z

(
G∗DP∗DP −GP |DP

)
+

∞∑
n=2

zn
(
G∗DP∗P ∗ + GDP∗

)
P ∗n−2DP

= −G∗P |DP
+ z

(
G∗DP∗DP −GP |DP

)
+

∞∑
n=2

znDP∗S∗P ∗n−2DP .

Now the equality in Eq. (1.3) follows from Lemma 6. This completes the proof. �
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Define W : H → H2(D) ⊗DP∗ by W (h) =
∑∞

n=0 z
n ⊗DP∗P ∗nh for all h ∈ H. Note that

∥∥W (h)
∥∥2 =

∞∑
n=0

∥∥DP∗P ∗nh
∥∥2 =

∞∑
n=0

(∥∥P ∗nh
∥∥2 −

∥∥P ∗n+1h
∥∥2) = ‖h‖2 − lim

n→∞

∥∥P ∗nh
∥∥2

.

Therefore W is an isometry in the case when P is pure. It is easy to verify that

W ∗(zn ⊗ ξ
)

= PnDP∗ξ for all ξ ∈ DP∗ and n ≥ 0.

It is well known that

Lemma 7. For every contraction P , the identity

WW ∗ + MΘP
M∗

ΘP
= IH2(D)⊗DP∗ (2.2)

holds.

See [7] for a proof of Lemma 7.

Proof of Theorem 2. Since P is pure, W is an isometry. We first find a relation between P , W and Mz, the 
operator of multiplication by z on H2(D) ⊗DP∗ .

M∗
zWh = M∗

z

( ∞∑
n=0

znDP∗P ∗nh

)
=

∞∑
n=0

znDP∗P ∗n+1h = WP ∗h. (2.3)

Therefore M∗
zW = WP ∗. Define S on H by S = W ∗MG∗+GzW . Since P is pure, from Lemma 7, we have 

(RanW )⊥ = RanMΘP
. The equation MΘP

MF+F∗z = MG∗+GzMΘP
implies that RanMΘP

is invariant under 
MG∗+Gz, in other words RanW is co-invariant under MG∗+Gz. We next show that S and P commute.

P ∗S∗ = W ∗M∗
zWW ∗M∗

G∗+GzW

= W ∗M∗
zM

∗
G∗+GzW

[
since WW ∗ is a projection onto RanW

]
= W ∗M∗

G∗+GzM
∗
zW [since Mz and MG∗+Gz commute]

= W ∗M∗
G∗+GzWW ∗M∗

zW = S∗P ∗.

Furthermore

S∗ − SP ∗ = W ∗M∗
G∗+GzW −W ∗MG∗+GzWW ∗M∗

zW

= W ∗(I ⊗G + M∗
z ⊗G∗)W −W ∗(I ⊗G∗ + Mz ⊗G

)(
M∗

z ⊗ I
)
W

= W ∗(I ⊗G + M∗
z ⊗G∗)W −W ∗(M∗

z ⊗G∗ + MzM
∗
z ⊗G

)
W

= W ∗(PC ⊗G)W
[
PC is the projection of H2(D) onto constants

]
= DP∗GDP∗ .

For all θ ∈ (0, 2π], we have G∗ + eiθG = ei
θ
2 (e−i θ

2G∗ + ei
θ
2G). Hence ‖G∗ + eiθG‖ = ‖(e−i θ

2G∗ + ei
θ
2G)‖. 

Note that for all θ ∈ (0, 2π] and ξ ∈ DP∗ we have
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∣∣〈(e−i θ
2G∗ + ei

θ
2G

)
ξ, ξ

〉∣∣ =
∣∣e−i θ

2
〈
G∗ξ, ξ

〉
+ ei

θ
2 〈Gξ, ξ〉

∣∣
≤

∣∣〈G∗ξ, ξ
〉∣∣ +

∣∣〈Gξ, ξ〉
∣∣ ≤ 2

[
since w(G) ≤ 1

]
.

Since (e−i θ
2G∗+ei

θ
2G) is a self-adjoint operator, we have ‖(e−i θ2G∗+ei

θ
2G)‖ ≤ 2. Therefore ‖(G∗+Gz)‖ ≤ 2

for all z ∈ D, which implies that ‖MG∗+Gz‖ ≤ 2. Hence ‖S‖ ≤ 2.
Hence (S∗, P ∗) is a commuting pair of operators on H such that the spectral radius of S is not greater 

than two and the operator equation S∗ − SP ∗ = DP∗XDP∗ has a solution for X (viz. G) with numerical 
radius of X not greater than one. Therefore by Theorem 4.4 in [8], (S∗, P ∗) is a Γ -contraction and hence 
so is (S, P ) as observed in the introduction.

Now we will show that F is the fundamental operator of (S, P ). Note that if X is the fundamental 
operator of (S, P ), then by Theorem 1 we have MΘP

MX+X∗z = MG∗+GzMΘP
. Also by hypothesis we 

have MΘP
MF+F∗z = MG∗+GzMΘP

. Since P is pure contraction, MΘP
is an isometry and hence we have 

MX+X∗z = MF+F∗z on H2
DP

(D), which implies that X = F . Therefore F is the fundamental operator of 
(S, P ). This completes the proof of the theorem. �
Remark 8. Theorem 2 shows that given a contraction P and two bounded operators F and G in B(DP )
and B(DP∗) respectively, there need not always exist an S such that (S, P ) is a Γ -contraction, F is its 
fundamental operator and G is the fundamental operator of (S∗, P ∗).

We would like to remark that given a pure contraction P and G ∈ B(DP∗) with w(G) ≤ 1, there is only 
one S such that (S∗, P ∗) is a Γ -contraction with fundamental operator G. The proof is as follows.

Let S and S′ be two different operators such that (S∗, P ∗) and (S′ ∗, P ∗) are Γ -contractions with the 
same fundamental operator G. Since P is a pure contraction, by Theorem 2.1 in [7], both S and S′ are 
unitarily equivalent to PHP

MG∗+Gz|HP
, where HP = RanW and the same unitary W : H → RanW works 

for both operators S and S′. Hence S = S′.

3. Results for completely-non-unitary Γ -contractions

In this section we shall prove a version of Theorem 2 that holds for the c.n.u. case. We first recall two 
minimal isometric dilations of a c.n.u. contraction. Let P ∈ B(H) be a c.n.u. contraction.

(i) Note that

I ≥ PP ∗ ≥ P 2P ∗2 ≥ · · · ≥ PnP ∗n ≥ · · · ≥ 0.

Therefore there exists a positive bounded operator, say P 2
∞, such that P 2

∞h = limn→∞ PnP ∗nh for all 
h ∈ H. Then PP 2

∞P ∗ = P 2
∞, which implies that ‖P∞h‖ = ‖P∞P ∗h‖ for all h. This defines an isometry 

T ∈ B(Ran(P∞)) such that TP∞ = P∞P ∗. Let U ∈ B(K) be the minimal unitary extension of T . Then 
Π0 : H → H2

DP∗ (D) ⊕K, defined as

Π0(h) =
(
W (h)
P∞

)
,

is an isometry, where W : H → H2
DP∗ (D), W (h) =

∑∞
n=0 z

nDP∗P ∗nh. We can check that 
(
Mz⊗I 0

0 U∗

)
is a minimal isometric dilation of Π0PΠ∗

0 and

Π0P
∗ =

(
Mz ⊗ I 0

0 U∗

)∗

Π0. (3.1)
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(ii) For all t ∈ [0, 2π) define the operator

ΔP (t) =
[
I −ΘP

(
eit

)∗
ΘP

(
eit

)] 1
2

where ΘP is the characteristic function of P introduced in Section 1. Consider the subspace

SP =
{
MΘP

f ⊕ ΔP f : f ∈ H2
DP

(D)
}
.

Then SP is a closed subspace of H2
DP∗ (D) ⊕ ΔPL2

DP
(T). Let QP be the orthogonal complement of SP

in H2
DP∗ (D) ⊕ ΔPL2

DP
(T).

There exists an isometry Π : H → H2
DP∗ (D) ⊕ ΔPL2

DP
(T) with Π(H) = QP such that 

(Mz 0
0 Meit

)
is a 

minimal isometric dilation of ΠPΠ∗ and

ΠP ∗ =
(
Mz 0
0 Meit

)∗

Π. (3.2)

Thus Π and Π0 give two minimal isometric dilations of P . But the minimal dilation is unique up to unitary 
equivalence. Thus we get a unitary Φ : H2

DP∗ (D) ⊕ ΔPL2
DP

(T) −→ H2
DP∗ (D) ⊕K, such that ΦΠ = Π0 and

Φ

(
Mz 0
0 Meit

)∗

=
(
Mz ⊗ I 0

0 U∗

)∗

Φ. (3.3)

Since Φ is unitary and satisfies (3.3), by an easy matrix calculation and the fact that any operator inter-
twining a pure isometry and a unitary is zero (Lemma 2.5 in [3]), we get Φ to be of the form

Φ =
(
I ⊗ V1 0

0 V2

)
(3.4)

where V1 ∈ B(DP∗) and V2 ∈ B(ΔPL2
DP

(T), K) are unitary operators.

Lemma 9. Let P be a c.n.u. Γ -contraction on H. Let X ∈ B(DP∗), w(X) ≤ 1 and R ∈ B(ΔPL2
DP

(T)) such 

that (R, Meit ) is a Γ -unitary on ΔPL2
DP

(T). If

(
MX∗+zX 0

0 R

)
SP ⊆ SP , (3.5)

then there exists Y ∈ B(DP ) with w(Y ) ≤ 1 such that

(
MX∗+zX 0

0 R

)(
MΘP

ΔP

)
=

(
MΘP

ΔP

)
MY +zY ∗ .

Proof. Eq. (3.5) allows us to define an operator T ∈ B(H2
DP

(D)) so that

(
MX∗+zX 0

0 R

)(
MΘP

ΔP

)
=

(
MΘP

ΔP

)
T. (3.6)
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In other words,

T =
(
MΘP

ΔP

)∗ (
MX∗+zX 0

0 R

)(
MΘP

ΔP

)
. (3.7)

To prove the result, it is enough to show that (T, Mz) is a Γ -isometry. Since w(X) ≤ 1, as shown in the 
previous section, we have ‖MX∗+zX‖ ≤ 2. Also, (R, Meit ) is a Γ -unitary, therefore ‖R‖ ≤ 2. Thus, from 
Eq. (3.6), we can easily deduce that ‖T‖ ≤ 2, since the operator 

(MΘP

ΔP

)
is an isometry. We shall now show 

that T commutes with Mz.
From Eq. (3.6) we have

MX∗+zXMΘP
= MΘP

T (3.8)

RΔP = ΔPT. (3.9)

Note that Mz commute with MX∗+zX and MΘP
. Therefore applying Mz on both sides of Eq. (3.8) we 

get

MΘP
TMz = MΘP

MzT. (3.10)

Also, Meit |ΔPL2
DP

(T) commutes with R and ΔP , therefore applying Meit on both sides of Eq. (3.9) we get

ΔPTMz = ΔPMzT. (3.11)

Eqs. (3.10) and (3.11) together with the fact that 
(MΘP

ΔP

)
is an isometry yield TMz = MzT .

Lastly, we shall show that T = T ∗Mz. To accomplish this, consider

M∗
z T = M∗

z

(
MΘP

ΔP

)∗ (
MX∗+zX 0

0 R

)(
MΘP

ΔP

)

=
(
MΘP

ΔP

)∗ (
M∗

z 0
0 M∗

eit

)(
MX∗+zX 0

0 R

)(
MΘP

ΔP

)

= T ∗.

Consequently, M∗
z T = T ∗, that is, T = T ∗Mz. Therefore we can conclude that (T, Mz) is a Γ -isometry. 

Agler and Young showed in [3] that the only way this can happen is that T is of the form MY +zY ∗ for some 
Y ∈ B(DP ), w(Y ) ≤ 1. This completes the proof. �

The next result, apart from its usefulness in proving the main theorem of this section, is interesting in 
its own right and depends on the beautiful model theory for a Γ -contraction developed by Agler and Young 
in [3]. They proved, by a Stinespring like method, that if (S, P ) is a Γ -contraction on a Hilbert space H, then 
H can be isometrically embedded in a Hilbert space K (by an isometry ΠAY , say) on which a Γ -isometry 
(S̃, P̃ ) acts such that the isometric image of H is a common invariant subspace of S̃∗ and P̃ ∗ and

ΠAY S
∗ = S̃∗∣∣

ΠAY H, ΠAY P
∗ = P̃ ∗∣∣

ΠAY H.

Moreover, the Γ -isometry (S̃, P̃ ) has a Wold decomposition, viz., K has an orthogonal decomposition K1⊕K2
such that K1 and K2 reduce both S̃ and P̃ , the pair (S̃|K1 , P̃ |K1) is a pure Γ -isometry and
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(S̃u, P̃u) def= (S̃|K2 , P̃ |K2)

is a Γ -unitary. In addition to this, the structure of a pure Γ -isometry was completely deciphered by them. 
It is as follows. There exists a Hilbert space E and a bounded operator Y on E such that w(Y ) ≤ 1
and (S̃|K1 , P̃ |K1) is unitarily equivalent to (Tψ, Tz) acting on H2

E(D), where ψ ∈ L∞(B(E)) is given by 
ψ(z) = Y ∗ + Y z for all z ∈ T. In short,

ΠAY S
∗ =

(
MY ∗+zY 0

0 S̃u

)∗

ΠAY and ΠAY P
∗ =

(
Mz 0
0 P̃u

)∗

ΠAY . (3.12)

Let P be a c.n.u. contraction and Π be as above. Then in Theorem 4.1 of [11], Sarkar showed that there 
is a unique isometry Ψ : H2

DP∗ (D) ⊕ ΔPL2
DP

(T) → K1 ⊕K2 such that ΠAY = ΨΠ. Indeed, Ψ is defined by 
sending Πh to ΠAY h. What Sarkar showed next in Theorem 4.1 of [11] is significant for our purpose, viz., 
Ψ is of the form (IH2(D)⊗ V̂1) ⊕ V̂2, for some isometries V̂1 ∈ B(DP∗ , E) and V̂2 ∈ B(ΔPL2

DP
(T), K2). Taking 

all this into account, we have from (3.12),

ΠS∗ =
((
IH2(D) ⊗ V̂ ∗

1
)
⊕ V̂ ∗

2
)((

IH2(D) ⊗ Y ∗ + Mz ⊗ Y
)
⊕ S̃u

)∗((IH2(D) ⊗ V̂1) ⊕ V̂2
)
Π

=
((
IH2(D) ⊗ V̂ ∗

1 Y
∗V̂1 + Mz ⊗ V̂ ∗

1 Y V̂1
)
⊕ V̂ ∗

2 S̃uV̂2
)∗
Π.

Therefore writing X = V̂ ∗
1 Y V̂1 and R = V̂ ∗

2 S̃uV̂2, we get the following neat relation

ΠS∗ =
(
MX∗+zX 0

0 R

)∗

Π (3.13)

for some operator X ∈ B(DP∗) with w(X) ≤ 1 and R ∈ B(ΔPL2
DP

(T)) such that (R, Meit |ΔPL2
DP

(T)) is a 

Γ -unitary on ΔPL2
DP

(T). We are going to show that X is unitarily equivalent to the fundamental operator 
of (S∗, P ∗). Using (3.13) and (3.2) we get

S∗ − SP ∗ = Π∗

(
MX∗+zX 0

0 R

)∗

Π

−Π∗

(
MX∗+zX 0

0 R

)
ΠΠ∗

(
Mz 0
0 Meit

)∗

Π

= Π∗

(
PC ⊗X 0

0 0

)
Π

[
since (R,Meit |ΔPL2

DP
(T)) is a Γ -unitary

]

= Π∗
0

(
PC ⊗ (V1XV ∗

1 ) 0
0 0

)
Π0

= DP∗
(
V1XV ∗

1
)
DP∗ .

Therefore G = V1XV ∗
1 is the fundamental operator of (S∗, P ∗). By Eq. (3.13) we have that ΠH = QP is 

an invariant subspace for 
(MX∗+zX 0

0 R

)∗. In other words, SP = QP
⊥ is invariant under 

(MX∗+zX 0
0 R

)
. Hence, 

using Lemma 9, we have proved the following.

Lemma 10. Let (S, P ) be a c.n.u. Γ -contraction. Then there exists Y ∈ B(DP ) with w(Y ) ≤ 1 such that
(
MX∗+zX 0

0 R

)(
MΘP

ΔP

)
=

(
MΘP

ΔP

)
MY +zY ∗ ,
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where X in the representation of S, i.e., Eq. (3.13), is unitarily equivalent to the fundamental operator for 
(S∗, P ∗).

The following result reveals a beautiful and useful relation between the operators S, P and P∞, when 
(S, P ) is a special Γ -contraction.

Lemma 11. Let (S, P ) be a c.n.u. Γ -contraction such that R = Meit + I = Meit+I in the representation 
(3.13) of S, then

P 2
∞ + PP 2

∞ − PP 2
∞S∗ = 0.

Proof. Let R = Meit+I . Using relations (3.2), (3.3), (3.13) and ΦΠ = Π0 we can write

S = Π∗
0

(
MG∗+zG 0

0 U∗ + I

)
Π0 and P = Π∗

0

(
Mz 0
0 U∗

)
Π0,

where G = V1XV ∗
1 .

Consider

P ∗ + PP ∗ − PP ∗S∗ = Π∗
0

(
M∗

z 0
0 U

)
Π0 + Π∗

0

(
MzM

∗
z 0

0 I

)
Π0

−Π∗
0

(
MzM

∗
zM

∗
G∗+zG 0

0 U + I

)
Π0.

Applying the property (3.1) of Π0, we get

P ∗ + PP ∗ − PP ∗S∗ = P ∗ + PP ∗ − PP ∗S∗ − P 2
∞P ∗ − P 2

∞ + P 2
∞S∗.

Hence, P 2
∞P ∗ + P 2

∞ − P 2
∞S∗ = 0, or equivalently, P 2

∞ + PP 2
∞ − PP 2

∞S∗ = 0. �
We are now in a position to state and prove the main result of this section.

Theorem 12. Let (S, P ) be a c.n.u. Γ -contraction on a Hilbert space H such that R = Meit+I in the 
representation (3.13) of S. Then

(
MG∗+zG 0

0 Meit+I

)(
MΘP

ΔP

)
=

(
MΘP

ΔP

)
MF+zF∗ , (3.14)

where F ∈ B(DP ), G ∈ B(DP∗) are the fundamental operators for (S, P ) and (S∗, P ∗) respectively. More-
over, if V1 is as in (3.4), then

(
MG∗+zG 0

0 Meit+I

)(
MV1MΘP

ΔP

)
=

(
MV1MΘP

ΔP

)
MY +zY ∗ (3.15)

holds for some Y ∈ B(DP ) with w(Y ) ≤ 1.
Conversely, if P is a c.n.u. contraction on H and F, Y ∈ B(DP ) with w(F ) ≤ 1, w(Y ) ≤ 1 and 

G ∈ B(DP∗) with w(G) ≤ 1 satisfy Eqs. (3.14) and (3.15), then there exists S ∈ B(H) so that (S, P )
is a c.n.u. Γ - contraction, F is the fundamental operator for (S, P ) and G is the fundamental operator for 
(S∗, P ∗).
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Proof. We have seen that if (S, P ) is a c.n.u. Γ -contraction and S has the form (3.13), then S∗ − SP ∗ =
DP∗V1XV ∗

1 DP∗ where X is as above. Thus, V1XV ∗
1 is the fundamental operator of (S∗, P ∗). Let G = V1XV ∗

1
and F denote the fundamental operator for (S, P ). Then by Theorem 1, we have

MΘP
MF+zF∗ = MG∗+zGMΘP

. (3.16)

We claim that

Meit+IΔP = ΔPMF+zF∗ . (3.17)

As ΔP commutes with Meit+I and ΔP is non-negative, therefore Eq. (3.17) is equivalent to

Δ2
PMeit+I = Δ2

PMF+zF∗ . (3.18)

Using the fact that

ΔP (t) =
[
1 −ΘP

(
eit

)∗
ΘP

(
eit

)] 1
2

and the representation

ΘP

(
eit

)
=

[
−P +

∞∑
n=0

ei(n+1)tDP∗P ∗nDP

]∣∣∣∣∣
DP

we get

Δ2
PMeit+I = DPPP 2

∞DP + DPP
2
∞DP

+ eit
[
DPP

2
∞DP + DPP

2
∞P ∗DP

]
+

∞∑
n=2

eint[DPP
2
∞P ∗(n−1)DP + DPP

2
∞P ∗nDP

]

+
−1∑

n=−∞
eint[DPP

1−nP 2
∞DP + DPP

1−nP 2
∞P ∗DP

]
(3.19)

and

Δ2
PMF+zF∗ = D2

PF + DPDP∗GP −DPSDP + DPPP 2
∞S∗DP

+ eit
[
F ∗D2

P + P ∗G∗DP∗DP −DPS
∗DP + DPP

2
∞S∗DP

]
+

∞∑
n=2

eint[DPP
2
∞P ∗(n−1)S∗DP

]

+
−1∑

n=−∞
eint[DPP

1−nP 2
∞S∗DP

]
, (3.20)

where to simplify the expressions that appear in the expansion of Δ2
PMF+zF∗ we have used that G being 

the fundamental operator for (S∗, P ∗) satisfies the equations DP∗GDP∗ = S∗−SP ∗ and DP∗S∗ = GDP∗ +
G∗DP∗P ∗. We defer the proofs of these two equations till Appendix A. Using these equations, we shall now 
show that the coefficients of eint are the same in Eqs. (3.19) and (3.20). For this, let Ln and Rn denote the 
coefficients of eint in the right hand side of Eqs. (3.19) and (3.20), respectively.
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We first look at

L0 = DPPP 2
∞DP + DPP

2
∞DP = DPPP 2

∞S∗DP ,

since PP 2
∞ + P 2

∞ − PP 2
∞S∗ = 0.

Now, consider

R0 = D2
PF + DPDP∗GP −DPSDP + DPPP 2

∞S∗DP

R0DP = DP

[
DPFDP + DP∗GPDP − SD2

P + PP 2
∞S∗D2

P

]
= DP

[
S − S∗P +

(
S∗ − SP ∗)P − S

(
1 − P ∗P

)]
+ DPPP 2

∞S∗D2
P

= 0 + DPPP 2
∞S∗D2

P

= L0DP .

Thus L0 = R0, since L0, R0 ∈ B(DP ).
From Eq. (3.19),

L1 = DPP
2
∞DP + DPP

2
∞P ∗DP = DPP

2
∞S∗DP ,

since P 2
∞ + PP 2

∞P ∗ = P 2
∞S∗.

Further, from Eq. (3.20),

R1 = F ∗D2
P + P ∗G∗DP∗DP −DPS

∗DP + DPP
2
∞S∗DP

DPR1 = DP

[
F ∗D2

P + P ∗G∗DP∗DP −DPS
∗DP + DPP

2
∞S∗DP

]
=

[
DPF

∗DP + DPP
∗G∗DP∗ −D2

PS
∗]DP + D2

PP
2
∞S∗DP

=
[
S∗ − P ∗S + P ∗(S∗ − SP ∗)∗ − (

1 − P ∗P
)
S∗]DP + D2

PP
2
∞S∗DP

= D2
PP

2
∞S∗DP

= DPL1.

Therefore, DPR1 = DPL1 which implies that R1 = L1, as R1, L1 ∈ B(DP ).
We shall now show the equality of Ln and Rn for n ≥ 2.

Ln = DPP
2
∞P ∗(n−1)DP + DPP

2
∞P ∗nDP

= DPP
2
∞S∗P ∗(n−1)DP = Rn.

Lastly, we shall show that Ln = Rn for all n ≤ −1. For n ≤ −1,

Ln = DPP
1−nP 2

∞DP + DPP
1−nP 2

∞P ∗DP

= DPP
1−nP 2

∞S∗DP = Rn.

All these above computations show that Ln = Rn for all n. Therefore, Δ2
PMeit+I = Δ2

PMF+zF∗ which 
implies that Meit+IΔP = ΔPMF+zF∗ . Hence, Eq. (3.14) holds true.

To show the validity of Eq. (3.15), note that
(
MX∗+zX 0

0 R

)∗

Π(H) ⊆ Π(H).

Therefore, by Lemma 9, we have Eq. (3.15).
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Conversely, let P be a c.n.u. contraction on H, and F, Y ∈ B(DP ) with w(F ) ≤ 1, w(Y ) ≤ 1 and 
G ∈ G(DP∗) with w(G) ≤ 1, satisfy Eqs. (3.14) and (3.15).

Let

S = Π∗

(
MX∗+zX 0

0 Meit+I

)
Π,

where X = V ∗
1 GV1.

From Eq. (3.15) we can easily deduce that Π(H) is invariant under

(
MX∗+zX 0

0 Meit+I

)∗

.

Also,

P = Π∗

(
Mz 0
0 Meit

)
Π and

(
Mz 0
0 Meit

)∗

Π(H) ⊆ Π(H).

Therefore,

S∗P ∗ = P ∗S∗.

Thus, (S, P ) is a commuting pair of bounded operators on H with ‖S‖ ≤ 2.
Now to show that G is the fundamental operator for (S∗, P ∗), consider

S∗ − SP ∗ = Π∗

(
MX∗+zX 0

0 Meit+I

)∗

Π

−Π∗

(
MX∗+zX 0

0 Meit+I

)
ΠΠ∗

(
Mz 0
0 Meit

)∗

Π

= Π∗

(
PC ⊗X 0

0 0

)
Π

= Π∗
0

(
PC ⊗G 0

0 0

)
Π0

= DP∗GDP∗ .

Thus, S∗ − SP ∗ = DP∗GDP∗ . Therefore, G is the fundamental operator for (S∗, P ∗).
Applying the first part of this result to the c.n.u Γ -contraction (S, P ), we obtain

(
MG∗+zG 0

0 Meit+I

)(
MΘP

ΔP

)
=

(
MΘP

ΔP

)
MC+zC∗ , (3.21)

where C ∈ B(DP ) is the fundamental operator for (S, P ). Then from the given equation, that is, Eq. (3.14)
and Eq. (3.21) and the fact that
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(
MΘP

ΔP

)

is an isometry we get MF+zF∗ = MC+zC∗ . Thus F = C. This completes the proof. �
Remark 13. Every pure contraction is a c.n.u. contraction. So, for a pure contraction P ∈ B(H), we have 
two results, Theorem 2 and the converse of Theorem 12. Theorem 12 demands two conditions, namely 
Eqs. (3.14) and (3.15), for the existence of S ∈ B(H) so that the operators F and G are the fundamental 
operators for (S, P ) and (S∗, P ∗), respectively, whereas in Theorem 2 the same conclusion holds just by 
assuming Eq. (3.14). Does this make Theorem 12 a weaker result? The answer is no as we shall see from 
the following discussion that if P is a pure contraction Eq. (3.14) holds if and only if Eq. (3.15) holds.

Let P ∈ B(H) be a pure contraction. Then P∞ and ΔP are both zero. Therefore, for the pure contrac-
tion P , Eqs. (3.14) and (3.15) become

MG∗+zGMΘP
= MΘP

MF+zF∗ (3.22)

and

MG∗+zGMV1MΘP
= MV1MΘP

MY +zY ∗ , (3.23)

respectively. Further, now since P is pure, Φ = I ⊗ V1, Π0Π
∗
0 + MΘP

M∗
ΘP

= I and Π0 = W . This implies 
that MΘP

and (I ⊗ V1)MΘP
are both isometries in B(H2

DP
(D), H2

DP∗ (D)) and they satisfy the following 
equation

MΘP
M∗

ΘP
= (I ⊗ V1)MΘP

M∗
ΘP

(
I ⊗ V ∗

1
)
.

Consequently, RanMΘP
= RanMV1MΘP

. Hence, by using Lemma 9, we can easily conclude that if Eq. (3.23)
holds, then Eq. (3.22) will also hold. Lastly, if Eq. (3.22) holds, then by using arguments similar to the ones 
used in the proof of Lemma 9, Eq. (3.23) will also hold.

4. Results for pure tetrablock contractions

In this section, we prove a result for pure tetrablock contractions similar to the result stated in Theorem 1
and Theorem 2 for pure Γ -contractions.

Before we state and prove the main results of this section, we need to recall a result from [6] which will 
come very handy in proving the main results.

Lemma 14. The fundamental operators F1 and F2 of a tetrablock contraction (A, B, P ) are the unique 
bounded linear operators on DP that satisfy the pair of operator equations

DPA = X1DP + X∗
2DPP and DPB = X2DP + X∗

1DPP.

The next two lemmas give analogous results for a tetrablock contraction to Lemma 6. These two lemmas 
can be found in [12]. We just state the results here without giving the proofs.

Lemma 15. Let (A, B, P ) be a tetrablock contraction on a Hilbert space H and F1, F2 and G1, G2 be 
fundamental operators of (A, B, P ) and (A∗, B∗, P ∗) respectively. Then

PFi = G∗
iP |DP

, for i = 1 and 2.
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Lemma 16. Let (A, B, P ) be a tetrablock contraction on a Hilbert space H and F1, F2 and G1, G2 be 
fundamental operators of (A, B, P ) and (A∗, B∗, P ∗) respectively. Then

(
F ∗

1 DPDP∗ − F2P
∗)∣∣

DP∗
= DPDP∗G1 − P ∗G∗

2 and(
F ∗

2 DPDP∗ − F1P
∗)∣∣

DP∗
= DPDP∗G2 − P ∗G∗

1.

The fundamental operators of a tetrablock contraction always abide by two relations (like in the case of 
Γ -contractions, Theorem 1). The next theorem, which was proved in [12] (Corollary 12), gives the relations 
between them.

Lemma 17. Let F1 and F2 be fundamental operators of a tetrablock contraction (A, B, P ) and G1 and G2 be 
fundamental operators of the tetrablock contraction (A∗, B∗, P ∗). Then

(
F ∗

1 + F2z
)
ΘP∗(z) = ΘP∗(z)

(
G1 + G∗

2z
)

and (4.1)(
F ∗

2 + F1z
)
ΘP∗(z) = ΘP∗(z)

(
G2 + G∗

1z
)

hold for all z ∈ D. (4.2)

Proof.

(
F ∗

1 + F2z
)
ΘP∗(z)

=
(
F ∗

1 + F2z
)(

−P ∗ +
∞∑

n=0
zn+1DPP

nDP∗

)

=
(
−F ∗

1 P
∗ +

∞∑
n=1

znF ∗
1 DPP

n−1DP∗

)
+
(
−zF2P

∗ +
∞∑

n=2
znF2DPP

n−2DP∗

)

= −F ∗
1 P

∗ + z
(
−F2P

∗ + F ∗
1 DPDP∗

)
+

∞∑
n=2

zn
(
F ∗

1 DPP
n−1DP∗ + F2DPP

n−2DP∗
)

= −F ∗
1 P

∗ + z
(
−F2P

∗ + F ∗
1 DPDP∗

)
+

∞∑
n=2

zn
(
F ∗

1 DPP + F2DP

)
Pn−2DP∗

= −P ∗G1 + z
(
DPDP∗G1 − P ∗G∗

2
)

+
∞∑

n=2
znDPBPn−2DP∗ [using Lemmas 14, 15 and 16].

On the other hand

ΘP∗(z)
(
G1 + G∗

2z
)

=
(
−P ∗ +

∞∑
n=0

zn+1DPP
nDP∗

)(
G1 + G∗

2z
)

=
(
−P ∗G1 +

∞∑
n=1

znDPP
n−1DP∗G1

)
+

(
−zP ∗G∗

2 +
∞∑

n=2
znDPP

n−2DP∗G∗
2

)

= −P ∗G1 + z
(
DPDP∗G1 − P ∗G∗

2
)

+
∞∑

n=2
zn

(
DPP

n−1DP∗G1 + DPP
n−2DP∗G∗

2
)

= −P ∗G1 + z
(
DPDP∗G1 − P ∗G∗

2
)

+
∞∑

znDPP
n−2(PDP∗G1 + DPG

∗
2
)

n=2
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= −P ∗G1 + z
(
DPDP∗G1 − P ∗G∗

2
)

+
∞∑

n=2
znDPP

n−2BDP∗

= −P ∗G1 + z
(
DPDP∗G1 − P ∗G∗

2
)

+
∞∑

n=2
znDPBPn−2DP∗ .

Hence (F ∗
1 +F2z)ΘP∗(z) = ΘP∗(z)(G1+G∗

2z) for all z ∈ D. Similarly one can prove that (F ∗
2 +F1z)ΘP∗(z) =

ΘP∗(z)(G2 + G∗
1z) holds for all z ∈ D. �

We end with the proof of Theorem 3.

Proof of Theorem 3. The first part is obtained by applying Lemma 17 to the tetrablock contraction 
(A∗, B∗, P ∗).

For the converse, let W be the isometry defined above. Since P is pure contraction, we have WP ∗ = M∗
zW

as seen in Eq. (2.3). Eqs. (1.8) imply that (MG∗
1+G2z, MG∗

2+G1z, Mz) is a commuting triple of bounded oper-
ators on H2

DP∗ (D). Using Theorem 5.7 (part (3)) of [6] one can easily check that (MG∗
1+G2z, MG∗

2+G1z, Mz)
is actually a tetrablock isometry. Define A = W ∗MG∗

1+G2zW and B = W ∗MG∗
2+G1zW . Eqs. (1.6) and (1.7)

tell that RanMΘP
is invariant under MG∗

1+G2z and MG∗
2+G1z. In other words RanW = (RanMΘP

)⊥ is 
invariant under M∗

G∗
1+G2z

and M∗
G∗

2+G1z
.

Commutativity of A and B with P can be checked easily. To show that A and B commute, we proceed 
as follows.

A∗B∗ = W ∗M∗
G∗

1+G2zWW ∗M∗
G∗

2+G1zW

= W ∗M∗
G∗

1+G2zM
∗
G∗

2+G1zW
[
since RanW is invariant under M∗

G∗
2+G1z

]
= W ∗M∗

G∗
2+G1zM

∗
G∗

1+G2zW

= W ∗M∗
G∗

2+G1zWW ∗M∗
G∗

1+G2zW
[
since RanW is invariant under M∗

G∗
1+G2z

]
= B∗A∗.

Therefore (A, B, P ) is a commuting triple of bounded operators. Now we shall show that (A, B, P ) is 
a tetrablock contraction. Note that for every polynomial f in three variables we have f(A∗, B∗, P ∗) =
W ∗f(T ∗

1 , T
∗
2 , T

∗
3 )W , where (T1, T2, T3) = (MG∗

1+G2z, MG∗
2+G1z, Mz). Let f be any polynomial in three vari-

ables. Then we have

∥∥f(A∗, B∗, P ∗)∥∥ =
∥∥W ∗f

(
T ∗

1 , T
∗
2 , T

∗
3
)
W

∥∥ ≤
∥∥f(T ∗

1 , T
∗
2 , T

∗
3
)∥∥ ≤ ‖f‖E,∞,

where the last inequality follows from the fact that (T1, T2, T3) is a tetrablock contraction.

A∗ −BP ∗ = W ∗M∗
G∗

1+G2zW −W ∗MG∗
2+G1zWW ∗M∗

zW

= W ∗M∗
G∗

1+G2zW −W ∗MG∗
2+G1zM

∗
zW

[
since RanW is invariant under M∗

z

]
= W ∗((I ⊗G1) +

(
Mz ⊗G∗

2
)
−
(
M∗

z ⊗G∗
2
)
−

(
MzM

∗
z ⊗G1

))
W

= W ∗(PC ⊗G1)W = DP∗G1DP∗ .

Similarly one can show that B∗−AP ∗ = DP∗G2DP∗ . This shows that G1, G2 are the fundamental operators 
of (A∗, B∗, P ∗). Let X1, X2 be the fundamental operators of (A, B, P ). Then we have, by first part of 
Theorem 3,
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(
G∗

1 + G2z
)
ΘP (z) = ΘP (z)

(
X1 + X∗

2 z
)

and(
G∗

2 + G1z
)
ΘP (z) = ΘP (z)

(
X2 + X∗

1 z
)

hold for all z ∈ D.

By this and the fact that G1 and G2 satisfy Eqs. (1.6) and (1.7), for some operators F1, F2 ∈ B(DP ) with 
numerical radii no greater than one, we have F1 + F ∗

2 z = X1 + X∗
2 z and F2 + F ∗

1 z = X2 + X∗
1 z, for all 

z ∈ D. Which shows that X1 = F1 and X2 = F2. Hence F1, F2 are the fundamental operators of (A, B, P ). 
This completes the proof of the theorem. �
Appendix A

A.1. Proof of Eq. (3.19)

ΔP (t)2
(
eit + I

)
=

[
I −ΘP

(
eit

)∗
ΘP

(
eit

)][
eit + I

]
=

[
I −

(
−P ∗ +

∞∑
n=0

e−i(n+1)tDPP
nDP∗

)(
−P +

∞∑
n=0

ei(n+1)tDP∗P ∗nDP

)][
eit + I

]

=
[
eit + I

]
−

[
P ∗ +

−1∑
n=−∞

eintDPP
−n−1DP∗

]

×
[
−P + eit(DP∗DP − P ) +

∞∑
n=2

eint(DP∗P ∗(n−2)(I + P ∗)DP

)]

=
[
eit + I

]
− P ∗P − eit

(
P ∗P − P ∗DP∗DP

)
+

∞∑
n=2

eintP ∗DP∗P ∗(n−2)(I + P ∗)DP +
−1∑

n=−∞
eintDPP

−n−1DP∗P

−
0∑

n=−∞
eintDPP

−nDP∗(DP∗DP − P )

−
0∑

n=−∞
eint

[
n−2∑

k=−∞
DPP

−k−1D2
P∗P ∗(n−k−2)(I + P ∗)DP

]

−
∞∑

n=1
eint

[ −1∑
k=−∞

DPP
−k−1D2

P∗P ∗(n−k−2)(I + P ∗)DP

]
.

We shall now simplify the coefficients of eint, n ∈ Z. Let Cn denote the coefficient of eint. In the following 
simplifications we shall be repeatedly using D2

P∗ = I − PP ∗, DPP
∗ = P ∗DP∗ , P 2

∞h = limn P
nP ∗nh for all 

h and PP 2
∞P ∗ = P 2

∞.

C0 = I − P ∗P −DPDP∗(DP∗DP − P ) −
−2∑

k=−∞
DPP

−k−1D2
P∗P ∗(−k−2)(I + P ∗)DP

= DPPDP + DPPP ∗DP −
∞∑
k=2

DPP
(
P k−2P ∗(k−2) − P k−1P ∗(k−1))(I + P ∗)DP

= DPPP 2
∞DP + DPP

2
∞DP .
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C1 = I − P ∗P + P ∗DP∗DP −
−1∑

k=−∞
DPP

−k−1D2
P∗P ∗(−k−1)(I + P ∗)DP

= D2
P + DPP

∗DP −
∞∑
k=1

DP

(
P k−1P ∗(k−1) − P kP ∗k)(I + P ∗)DP

= DPP
2
∞DP + DPP

2
∞P ∗DP .

Next we look at Cn, n ≥ 2. For n ≥ 2,

Cn = P ∗DP∗P ∗(n−2)(I + P ∗)DP −
−1∑

k=−∞
DPP

−k−1D2
P∗P ∗(n−k−2)(I + P ∗)DP

= DPP
∗(n−1)DP + DPP

∗nDP −
∞∑
k=1

DP

(
P k−1P ∗(k−1) − P kP ∗k)P ∗(n−1)(I + P ∗)DP

= DPP
2
∞P ∗(n−1)DP + DPP

2
∞P ∗nDP .

Lastly, we simplify Cn, n ≤ −1. For n ≤ −1,

Cn = DPP
−n−1DP∗P −DPP

−nDP∗(DP∗DP − P )

−
n−2∑

k=−∞
DPP

−k−1D2
P∗P ∗(n−k−2)(I + P ∗)DP

= DPP
−n+1P ∗DP + DPP

−n+1DP −
∞∑
k=0

DPP
1−n

(
P kP ∗k − P k+1P ∗(k+1))(I + P ∗)DP

= DPP
1−nP 2

∞DP + DPP
1−nP 2

∞P ∗DP .

Thus, Eq. (3.19) holds.

A.2. Proof of Eq. (3.20)

ΔP (t)2
(
F + eitF ∗) =

[
I −ΘP

(
eit

)∗
ΘP

(
eit

)][
F + eitF ∗]

= F + eitF ∗ −ΘP

(
eit

)∗[
G∗ + eitG

]
ΘP

(
eit

)
(
since ΘP

(
eit

)[
F + eitF ∗] =

[
G∗ + eitG

]
ΘP

(
eit

))
= F + eitF ∗ −

[
−P ∗ +

∞∑
n=0

e−i(n+1)tDPP
nDP∗

][
G∗ + eitG

]

×
[
−P +

∞∑
n=0

ei(n+1)tDP∗P ∗nDP

]

= F + eitF ∗ −
[
−P ∗ +

−1∑
n=−∞

eintDPP
−n−1DP∗

]

×
[
−G∗P + eit

(
G∗DP∗DP −GP

)
+

∞∑
n=2

eint(G∗DP∗P ∗ + GDP∗
)
P ∗(n−2)DP

]

= F + eitF ∗ −
[
−P ∗ +

−1∑
n=−∞

eintDPP
−n−1DP∗

]

×
[
−G∗P + eit

(
G∗DP∗DP −GP

)
+

∞∑
eintDP∗S∗P ∗(n−2)DP

]
.

n=2
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To get the last equality we used that G being the fundamental operator for (S∗, P ∗) satisfies DP∗S∗ =
GDP∗ +G∗DP∗P ∗. Next we multiply the last two terms, as we did to obtain (3.19), and collect coefficients 
of eint.

ΔP (t)2
(
F + eitF ∗) =

[
F − P ∗G∗P −DPDP∗

(
G∗DP∗DP −GP

)

−
−2∑

k=−∞
DPP

−k−1D2
P∗P ∗(−k−2)S∗DP

]

+ eit

[
F ∗ − P ∗GP + P ∗G∗DP∗DP −

∞∑
k=1

DPP
k−1D2

P∗P ∗(k−1)S∗DP

]

+
∞∑

n=2
eint

[
P ∗DP∗S∗P ∗(n−2)DP −

∞∑
k=1

DPP
k−1D2

P∗P ∗(n+k−2)S∗DP

]

+
−1∑

n=−∞
eint

[
DPP

−n−1DP∗G∗P −DPP
−nDP∗

(
G∗DP∗DP −GP

)

−
∞∑

k=2−n

DPP
k−1D2

P∗P ∗(n+k−2)S∗DP

]
.

Next we simplify the coefficients of eint, n ∈ Z. Let Dn denote the coefficient of eint. To simplify D′
ns we 

shall be repeatedly using D2
P = I − P ∗P , D2

P∗ = I − PP ∗, PDP = DP∗P , P ∗F = G∗P and DP∗GDP∗ =
S∗ − SP ∗.

D0 =
[
F − P ∗G∗P −DPDP∗

(
G∗DP∗DP −GP

)

−
−2∑

k=−∞
DPP

−k−1D2
P∗P ∗(−k−2)S∗DP

]

= F − PP ∗F + DPDP∗GP −DPSDP + DPPS∗DP

−
∞∑
k=2

DPP
(
P k−2P ∗(k−2) − P k−1P ∗(k−1))S∗DP

= D2
PF + DPDP∗GP −DPSDP + DPPP 2

∞S∗DP .

D1 = F ∗ − P ∗GP + P ∗G∗DP∗DP −
∞∑
k=1

DPP
k−1D2

P∗P ∗(k−1)S∗DP

= F ∗ − F ∗P ∗P + P ∗G∗DP∗DP −
∞∑
k=1

DP

(
P k−1P ∗(k−1) − P kP ∗k)S∗DP

= F ∗D2
P + P ∗G∗DP∗DP −DPS

∗DP + DPP
2
∞S∗DP .

For n ≥ 2,

Dn = P ∗DP∗S∗P ∗(n−2)DP −
∞∑
k=1

DPP
k−1D2

P∗P ∗(n+k−2)S∗DP

= P ∗DP∗S∗P ∗(n−2)DP −
∞∑
k=1

DP

(
P k−1P ∗(k−1) − P kP ∗k)P ∗(n−1)S∗DP

= DPP
2
∞P ∗(n−1)S∗DP .
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Lastly, for n ≤ −1,

Dn = DPP
−n−1DP∗G∗P −DPP

−nDP∗
(
G∗DP∗DP −GP

)
−

∞∑
k=2−n

DPP
k−1D2

P∗P ∗(n+k−2)S∗DP

= DPP
−n−1DP∗G∗P −DPP

−n
(
S∗ − SP ∗)∗DP + DPP

−nDP∗GP

−
∞∑
k=0

DPP
1−n

(
P kP ∗k − P k+1P ∗(k+1))S∗DP

= DPP
1−nP 2

∞S∗DP .

For each n ∈ Z, the expression for Dn is the same as required in Eq. (3.20). This proves Eq. (3.20).
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